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Introduction: Early and accurate recognition of children at risk of progressing
to critical illness could contribute to improved patient outcomes and
resource allocation. In resource limited settings digital triage tools can
support decision making and improve healthcare delivery. We developed a
model for rapid identification of critically ill children at triage.
Methods: This was a prospective cohort study of acutely ill children presenting
at Jinja Regional Referral Hospital in Eastern Uganda. Variables collected in the
emergency department informed the development of a logistic model based
on hospital admission using bootstrap stepwise regression. Low and high-risk
thresholds for 90% minimum sensitivity and specificity, respectively
generated three risk level categories. Performance was assessed using
receiver operating characteristic curve analysis on a held-out test set
generated by an 80:20 split with 10-fold cross validation. A risk stratification
table informed clinical interpretation.
Results: The model derivation cohort included 1,612 participants, with an
admission rate of approximately 23%. The majority of admitted patients were
under five years old and presenting with sepsis, malaria, or pneumonia. A 9-
predictor triage model was derived: logit (p) =−32.888 + (0.252, square root
of age) + (0.016, heart rate) + (0.819, temperature) + (−0.022, mid-upper arm
circumference) + (0.048 transformed oxygen saturation) + (1.793, parent
concern) + (1.012, difficulty breathing) + (1.814, oedema) + (1.506, pallor). The
model afforded good discrimination, calibration, and risk stratification at the
selected thresholds of 8% and 40%.
Conclusion: In a low income, pediatric population, we developed a nine variable
triage model with high sensitivity and specificity to predict who should be
admitted. The triage model can be integrated into any digital platform and
used with minimal training to guide rapid identification of critically ill children
at first contact. External validation and clinical implementation are in progress.
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Introduction

Child mortality in low- and-middle income countries

(LMICs) remains high (1). Most of these deaths are preventable

or easy to treat and occur within 24 h of hospital admission (2).

Rapid identification of critical illness is important because delay

in treatment is associated with an escalated risk of death and

disability (2). Triage, the prioritization of patients to identify the

sickest for earliest intervention, can optimize resource allocation

and markedly improve patient outcomes especially in resource

limited settings (3–5).

The validity of current pediatric triage tools is uncertain (6,

7), particularly within resource limited settings. A lack of

standardized data and insufficient follow-up on children not

admitted to health facilities remain major limitations of

research in this field. The current gold standards for triage are

the World Health Organization’s (WHO) Integrated

Management of Childhood Illness (IMCI) (8) and Emergency

Triage Assessment and Treatment Plus (ETAT+) (9) guidelines

for diagnosing and managing sick patients. However, health

workers in resource limited settings often lack the training and

infrastructure to follow these clinical recommendations (10, 11).

Digital health interventions have the potential to support clinical

decision making and improve the quality of care in resource limited

settings (12). Digital platforms can facilitate quality improvement,

and data-driven algorithms can be continuously updated and

improved with new information or optimized to meet the specific

needs of each setting (13). It has been demonstrated that digital

triage tools can optimize resource allocations, reduce treatment

wait times, and improve patient outcomes (14).

We describe the development of a simple triage model

combining clinical signs, symptoms, and readily available vital

signs that can be embedded into a digital platform. The model

was designed for use with limited clinical training to guide rapid

identification of critically ill children at the first point of contact.

Model development was the first phase in the Smart Triage

study. The model has since been implemented in a mobile triage

platform and is being used at hospital sites in Kenya and

Uganda with the goal of reducing time to treatment in children.
Methods

Model development and reporting followed TRIPOD

(transparent reporting of a multivariable prediction model for

individual prognosis or diagnosis) guidelines (Supplementary

File S1) (15).
Trial registration

Clinical Trials.gov Identifier: NCT04304235, Registered 11

March 2020.
Frontiers in Pediatrics 02
Study design and setting

This study was conducted at the pediatric emergency

department (ED) of Jinja Regional Referral Hospital (JRRH),

a public hospital funded by the Uganda Ministry of Health.

JRRH is the largest referral hospital in Eastern Uganda and

serves patients residing in Jinja and eight surrounding

districts. In 2021, the pediatric ED evaluated 29,022 patients

and had an admission rate of approximately 20%. There are

87 admission beds in the unit. Most children who present to

the pediatric ED are under five years of age.

Triage is conducted by one designated nurse with assistance

from two to three student nurses.

This was a prospective cohort study conducted between

April 2020 and March 2021. This study was approved by the

institutional review boards at the University of British

Columbia in Canada (ID: H19-02398; H20-00484), the

Makerere University School of Public Health in Uganda and

the Uganda National Council for Science and Technology.

This is one modelling component of a multi-site clinical study

for which the full protocol has been published (16).
Eligibility and sampling

Children under 19 years of age seeking assessment for an acute

illness at the pediatric emergency department of JRRH between

8:00 am and 5:00 pm were enrolled. Children presenting for

elective procedures, scheduled appointments or treatment of

chronic illnesses were not eligible for enrollment. Participation

was voluntary and written informed consent was provided by a

parent or guardian prior to enrollment. Assent was required

from children above eight years of age. A quasi-random

sampling method based on time cut-offs was adopted (17).
Data collection and management

Study procedures were initiated in the triage waiting area of

the pediatric OPD. Following enrollment, study nurses

conducted an interview and clinical examination to capture the

candidate predictor variables (Supplementary Table S2). Study

procedures did not interfere with or introduce delays to care

delivery. Data were collected using password secured Android

tablets, and a custom-built mobile application with an

encrypted database. The Masimo iSpO2® Pulse Oximeter with

micro USB connector was connected directly to the tablet to

collect pulse oximetry and heart rate and the SureTemp 692

thermometer was used to measure core temperature. At the

end of each day, data was uploaded directly from the Android

tablets to REDCap (Research Electronic Data Capture) (18)

and sent to the central study server at the BC Children’s
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Hospital Research Institute. After each upload, data on the tablets

was automatically deleted. Standard operating protocols for data

collection and management are available on the Pediatric Sepsis

CoLab Dataverse (17).
Candidate predictor variables

Predictor variables were based on sepsis, the most common

cause of preventable child deaths from infection (19). Candidate

predictor variables were generated in accordance with the

guidelines developed by the Pediatric Sepsis Predictor

Standardization (PS2) working group (20, 21). The PS2 working

group is a subgroup within the Pediatric Sepsis CoLab, a global

network for collaboration and data sharing to improve the

quality of care and decrease morbidity and mortality from sepsis

(22). Guidelines for the standardized collection of predictor

variables in studies for pediatric sepsis were derived using a

systematic review and a modified Delphi approach to

standardize definitions and assign a tier level to each variable

using a three-point tiering system (Tier 1: essential, Tier 2:

Important, Tier 3: Exploratory) (21, 23). Due to limitations in

time and resources at the point of triage in resource limited

settings, all Tier 1 variables and relevant Tier 2 variables (as

determined by study investigators) applicable to children of all

ages were selected for inclusion, for a total of 63 candidate

predictor variables (Supplementary Table S2).
Modelling outcome

The primary outcome was hospital admission (as

determined by the hospital clinicians) for more than 24 h.

Currently, need for admission at JRRH is determined using

ETAT + guidelines and clinician expertise. To capture any

critically ill cases who may have been sent home on the day

of enrollment, children readmitted within 48 h were also

considered to have a positive admission outcome. The

hospital registry was used to collect data on admission status.

Caregivers were called 7 days post-discharge, or 7 days post-

study enrollment (for non-admitted patients), to confirm

admission status and determine readmission status. Therefore,

readmissions to other healthcare centers were also counted in

our primary outcome.
Statistical analysis

Sample size
The sample size estimation was computed based on the

number of predictors expected in the final model (n), the

outcome event rate (I ), and calculated as N = (n × 10)/I by

employing the typical minimum standard of 10 events per
Frontiers in Pediatrics 03
effective variable. Preliminary analysis at the study site

suggested an estimated admission rate of 20%, and thus to

allow for a model with 10 predictors we require a minimum

sample of 500 participants. Based on the uncertainty

commonly present in these smaller sample sizes and clinical

feasibility (large case load), we targeted a minimum sample

of 1,500 participants (24).

Model development, validation, and calibration
As missing data was expected to be minimal (<5%),

median and mode imputation strategies were used for

continuous and categorical predictors, respectively.

Predictors with less than 10 events per variable were not

considered for inclusion in the model to reduce potential of

overfitting. Continuous variables were assessed graphically

for linear associations with the outcome and transformed

where appropriate. A physiological transformation of oxygen

saturation was used to linearize the relationship between

oxygen severity and impairment of gas exchange.

Transformation was based on an altitude adaptive virtual

shunt model [70.103 × log10(101.687 − SpO2) − 55.833],

which has been demonstrated to improve the fit of logistic

regression models (25, 26).

Bootstrapped stepwise regression was used to select

predictors to comprise the logistic regression model. A stepwise

selection procedure, which repetitively added or dropped

predictors to minimize Akaike information criterion (AIC), was

repeated on 2,000 bootstrap replicates (27). A final consensus

model was derived from the predictors present in at least 80%

of the bootstrap sample models. To quantify the predictive

accuracy of the consensus predictors, data was split into

training (80%) and validation (20%) sets and a 10-fold cross

validation procedure was applied to compute a pooled estimate

of the area under the receiver operating characteristic

(AUROC) curve, sensitivity, specificity, predictive values, and

likelihood ratios. Standard errors of these characteristics were

derived from 2,000 bootstrap replicates. Calibration was

evaluated graphically (28). The final model was applied and

evaluated using the methods above on the subpopulation of

children under five years of age to assess robustness across age

groups. The model was performance was also evaluated on

only children under 5 years and alternatively using all

admissions (regardless of length of stay) as positive outcome to

assess robustness.

Risk stratification and clinical interpretation
Two risk thresholds were selected to divide participants

into three triage categories (emergency, priority, and non-

urgent). Low and high-risk thresholds were selected to

correspond with a sensitivity and specificity of at least 90%,

respectively. These markers were selected to develop a triage

model highly sensitive in detecting high risk cases (avoiding

false negatives) but specific in identifying emergency cases
frontiersin.org
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(avoiding false positives) to optimize resource allocation

while seeing that critically ill children do not experience

delays. A risk stratification table was used to evaluate model

classification accuracy, defined as the ability of the model to

separate participants into triage categories, such that cases

with and without outcomes are more likely to be in the

higher and lower risk strata, respectively.
Patient and public involvement

Patients were not involved in the conceptualisation, design

or conduct of this study. The results of the study will not be

disseminated directly to participants.
FIGURE 1

Diagram of participant flow.
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Results

Participants

During April 27th, 2020 and March 31st, 2021, 2,030

patients were screened for eligibility, of which 418 (20.6%)

were excluded (Figure 1). In total, 1,612 participants were

enrolled in the study. The prevalence of males and females

was roughly equal and approximately 90% of the cohort was

comprised of children under 5 years of age (Table 1).

According to the anthropometric characteristics, 147 (12.3%)

participants were underweight (weight-for-age z-score <−2),
325 (20.2%) were stunted (height-for-age z-score <−2), and
169 (10.5%) were wasted (weight-for-height z-score <−2)
(Table 1).
frontiersin.org
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A total of 375 (23.3%) participants were admitted to the

hospital, of which 343 (21.3%) were admitted for a minimum

duration of 24 h and 4 (0.1%) were readmitted within 48 h of
TABLE 1 Participant characteristics.

Participants, N (%)

Sex

Female 780 (48.5)

Male 829 (51.5)

Age

<30 days 80 (5.0)

30 days–1 year 633 (39.3)

1–2 years 406 (25.2)

2–5 years 318 (19.7)

5–10 years 144 (8.9)

10+ years 31 (1.9)

Anthropometric Characteristics

MUAC < 125 mm 205 (12.7)

MUAC < 115 mm 87 (5.4)

Underweight (WAZ <−2) 198 (12.3)

Severely underweight (WAZ <−3) 75 (4.7)

Stunting (HAZ < −2) 325 (20.2)

Severe stunting (HAZ < −3) 147 (9.1)

Wasting (WHZ <−2) 169 (10.5)

Severe wasting (WHZ < −3) 81 (5.0)

Vital Signs

Oxygen saturation < 90% 29 (1.8)

Respiratory rate > 60 breaths per minute 224 (13.9)

Temperature > 40°C 18 (1.1)

Outcomes

Admitted 375 (23.3)

Length of stay >=24 h 343 (21.3)

Readmitted 12 (0.7)

Within 48 h 4 (0.2)

Mortality 9 (0.6)

Not admitted 1,232 (76.4)

Returned and admitted 26 (1.6)

Within 48 h 19 (1.2)

Mortality 2 (0.1)

Positive admission outcome* 364 (22.6)

Admission Diagnosis Profile

Malaria 170 (45.3)

Pneumonia 50 (13.3)

Sepsis 83 (22.1)

Neonatal Sepsis 10 (2.7)

Gastroenteritis/Diarrhea 18 (4.8)

Other 44 (11.7)

*Defined as admitted for at least 24 h or returned and admitted within 48 h.

MUAC, middle upper arm circumference; WAZ, weight-for-age z-score;

HAZ, height-for-age z-score; WHZ, weight-for-height z-score.
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discharge (Table 1). Additionally, 19 (1.9%) participants initially

sent home returned and were admitted to a hospital or health

facility within 48 h. This resulted in 364 (22.6%) positive

admission outcomes (Table 1). The most common reasons for

admission were malaria (45.3% of admitted participants), sepsis

(22.1%), and pneumonia (13.3%) (Table 1). Five variables did

not meet the minimum criteria of 10 events for inclusion in the

model derivation process (Supplementary Table S3). Univariate

analysis revealed many variables to be significantly associated

with the admission outcome and missing data was minimal

(Supplementary Table S3).
Triage model

The equation for the derived nine-predictor logistic triage

model was: logit (p) =−32.888 + (0.252, square root of age) +

(0.016, heart rate) + (0.819, temperature) + (−0.022, mid-upper

arm circumference) + (0.048 transformed oxygen saturation) +

(1.793, parent concern) + (1.012, difficulty breathing) + (1.814,

oedema) + (1.506, pallor (Table 2). The model achieved good

predictive accuracy quantified by a cross validated AUROC

curve of 86% (Figure 2A) and was well calibrated (Figure 2B).
Risk stratification

The model achieved 91% (95% CI 88%, 94%) sensitivity at

an 8% low-risk threshold and 92% (95% CI 90%, 94%)

specificity at a 40% high-risk threshold (Figure 2A) (Table 3).

The non-urgent and priority strata each comprised of

approximately 40% of participants, while the remaining 20%

were stratified as emergency (Table 3). The model achieved

similar AUROC performance characteristics when applied to

children under five years of age and when admission of any

duration was used as the modelling outcome (Supplementary

Figures S4). This demonstrates robustness across the range of

ages and to adjustments of the admission outcome.
Discussion

Summary

The logistic triage model comprised of five objectively

measurable (age, heart rate, temperature, oxygen saturation,

MUAC) and four easily assessable (difficulty breathing,

oedema, pallor, parent concern) predictor variables was

developed using hospital admission as an indicator of acuity.

Most predictors retained in this model are consistent with

previous pediatric triage models (29, 30); and international

guidelines (8). Parent concern is not currently included in

ETAT + or used as a formal criterion to determine admission
frontiersin.org
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TABLE 2 Summary of the triage model.

Variable Standardized
prompt

Estimate p-
value

Odds
Ratio
(95%
CI)

(Intercept) −32.888 <0.0001

Transformed
oxygen
saturation*

Measure peripheral
oxygen saturation using
the mobile pulse oximeter
(See SOP) (20).

0.048 <0.001 1.05 (1.02,
1.07)

Heart rate
(bpm)

Record the patient’s heart
rate from previous pulse
oximetry measurement
(See SOP) (20).

0.016 <0.001 1.02 (1.01,
1.02)

Temperature
(°C)

Measure and record
axillary temperature (See
SOP) (20).

0.819 <0.0001 2.27 (1.92,
2.69)

MUAC (mm) Measure and record the
child’s mid-upper arm
circumference (See SOP)
(20).

−0.022 <0.0001 0.98 (0.97,
0.98)

Age (square
root)

Enter age at admission in
months.

0.252 <0.0001 1.29 (1.18,
1.40)

Parent concern Ask: Do you think that
your child needs
admission because they
are sicker than they have
been in the past?

1.793 <0.0001 6.01 (3.79,
9.63)

Difficulty
breathing

Is the child having
difficulty breathing
compared to a well child?

1.012 <0.0001 2.75 (1.97,
3.84)

Oedema Does the child have pitting
oedema on their feet,
knees, or face?

1.814 <0.0001 6.14 (2.44,
10.76)

Pallor Is the child pale at their
palms, oral mucosa, or
conjunctiva compared to
their caretaker?

1.506 <0.0001 4.51 (2.69,
7.59)

*Transformed SpO2 computed using physiologically derived altitude adjusted

virtual shunt formula: 70.103 × log 10(101.687− spo2)− 55.833 (24). MUAC,

mid-upper arm circumference.

FIGURE 2

Performance of the triage model in the study cohort. ROC, receiver
operating characteristics; AUC, area under the curve. (A) 10-fold
cross validated ROC curve where labelled points represent low risk
(8%) and high risk (40%) thresholds. (B) Calibration plot where 45-
degree straight line corresponds to the line of perfect calibration
on which model predicted risks coincide with the observed
frequency and the bias corrected curve represents pooled results
from 1,000 bootstrap samples.
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status. Nevertheless, there is growing evidence to support the

role of parent concern in early recognition of critical illness in

children (31). This model, when used with good clinical

judgement and adequate quality control can help and guide

clinical decision making in terms of patient prioritization.

This model represents the first iteration of a triage tool that

will be continuously updated to reflect the latest available data

and adapted based on illness profiles and population dynamics.

The WHO has acknowledged that digital health

interventions and systems that use patient data to drive health

practices can lead to improved quality of care (32). An ETAT

+mobile health intervention and an electronic IMCI

algorithm implemented at primary health centres in Malawi

and Burkina Faso, respectively, improved both triage and

resource allocation (33, 34). Yet data-driven triage algorithms
Frontiers in Pediatrics 06
provide unique benefits over digitally implemented clinical

guidelines. They enable quality improvement, are easily

updated, and can be adjusted to meet setting-specific needs.
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TABLE 3 Summary of risk stratification into three triage categories.

Non-urgent Priority Emergency

Risk threshold ≦0.08 >0.08 ≦0.40 >0.40

Participant and Outcome Stratification

Participants, N (%) 666 (41.3) 628 (39.0) 318 (19.7)

Admitted participants, N (%) 36 (5.4) 116 (18.5) 223 (70.1)

Length of stay < 24 h, N (%) 3 (0.45) 7 (1.1) 8 (2.5)

Length of stay 24–48 h, N (%) 7 (1.1) 32 (5.1) 70 (22.0)

Length of stay >48 h, N (%) 22 (3.3) 73 (11.6) 139 (43.7)

Readmitted participants, N (%) 7 (1.1) 13 (2.1) 18 (5.7)

Within 48 h, N (%) 5 (0.75) 5 (0.80) 13 (4.1)

Mortality, N (%) 0 (0.0) 2 (0.32) 9 (2.8)

Positive admission outcome, N (%) 34 (5.1) 110 (17.5) 220 (69.2)

Performance Assessment*

Mawji et al. 10.3389/fped.2022.976870
Implementation of a standardized platform for data collection

(21), and detailed standard operating protocols including a

robust mechanism to capture follow up of discharged

participants (20) will enable reproducibility required for

model validation that is lacking in the current literature.

It should be noted that this triage model cannot and does

not function to replace ETAT + but rather to serve as an

adjunct to the patient prioritization process. ETAT + has been

developed as a package of guidelines, training, and quality

improvement in East Africa, and has become the national

framework for facility-based pediatric care in this country.

This triage algorithm helps guide patient prioritization at first

contact for children who would otherwise be waiting in line

for hours to be formally triaged and treated by health workers.
True positive to false positive ratio 330:616 305:322 220:98

Sensitivity (95% CI) 0.91 (0.88, 0.94) 0.84 (0.80, 0.87) 0.59 (0.54, 0.64)

Specificity (95% CI) 0.50 (0.45, 0.61) 0.74 (0.72, 0.77) 0.92 (0.90, 0.94)

Negative predictive value (95% CI) 0.95 (0.94, 0.96) 0.94 (0.93, 0.95) 0.89 (0.86, 0.90)

Positive predictive value (95% CI) 0.35 (0.34, 0.38) 0.49 (0.46, 0.51) 0.69 (0.64, 0.73)

Negative likelihood ratio (95% CI) 0.18 (0.13, 0.24) 0.22 (0.17, 0.27) 0.43 (0.38, 0.49)

Positive likelihood ratio (95% CI) 1.80 (1.69, 1.92) 3.23 (2.91, 3.59) 7.50 (6.09, 9.23)

*Values computed using the upper limit, median, and lower limit of the risk

threshold range for the non-urgent, priority, and emergency categories

respectively. Results are pooled estimates of 2,000 bootstrap replicates. CI,

confidence interval.
Clinical interpretation

More than 90% of admitted participants were diagnosed with

sepsis or infectious diseases thus validating the use of sepsis

predictors as candidate predictors of critical illness in model

development (Table 1). The high negative predictive

performance of the model at the low-risk threshold supports its

ability to exclude low-risk patients while the negative likelihood

ratio indicates a 5.5-fold decrease in the odds of needing

hospital admission for a patient classified as non-urgent

(Table 3). A positive predictive value of 35% (95% CI 34%,

38%) was achieved at the high-risk threshold which, given the

relatively low prevalence of positive admission outcomes,

demonstrates capability of the model to correctly classify

emergency patients. The positive likelihood ratio indicates a

7.5-fold increase in the odds of needing hospital admission for

a patient classified as emergency (Table 3). Furthermore, 91.5%

of participants admitted for at least 24 h, 78.3% of participants

readmitted within 48 h, and 100% of deaths were contained in

either the priority or emergency category (Table 3).
Limitations

This model may not be generalizable to other contexts as it

was developed from a very young cohort population, with high

rates of malaria and malnutrition. While this type of cohort is

typical of pediatric populations in low-income countries, model

performance may be affected by varying age distributions and

in settings without high rates of malaria and malnutrition.

A major limitation of the study was the use of hospital

admission as a surrogate for severity of illness. The study cohort

consisted only of children presenting with acute illnesses. To

exclude admitted cases lacking severe illness, a duration of stay

of at least 24 h was required to count as a positive outcome. A

7-day follow up call was conducted to capture children

inadvisably sent home. Children who returned to a health
Frontiers in Pediatrics 07
facility and were readmitted within 48 h were also counted as

positive outcomes. Mortality was also ascertained from the

follow up call. Deaths in this 7-day period were minimal for

both admitted (n = 9) and non-admitted (n = 2) participants and

meaningful analysis could not be conducted. Both non-admitted

cases that died at home were classified as emergency by the

triage model and perhaps should have been considered positive

outcomes. This however was unlikely to have impacted the

results due to the low mortality rate of children sent home (0.6%).

Another limitation is the lack of external validation, which is

needed to assess the model’s clinical utility. The model is

currently being evaluated in a multisite study that will include

clinical implementation in low-resource hospitals across sub-

Saharan Africa to assess performance in varied geographical

locations, seasons, and with different disease prevalence and

severity (16).

Finally, there are concerns regarding implementation of

digital health systems in LMICs. These include limited

availability of smartphones, computer infrastructure, and a

continuous supply of electricity, in addition to staffing attitude

and training challenges. In response, to complement the

digital triage interventional study, we are conducting a cost-

effectiveness analysis to maximize the benefit of implementing

such technology in low resource hospitals (35). The WHO

views digital health as an accessible and affordable solution

for global health delivery in LMICs and an important tool in
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achieving sustainable development goals (36). Safe and

appropriate scale up has been prioritized within national and

global digital health strategies (37–39).
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