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Extracorporeal membrane oxygenation (ECMO) is a life-saving support for

cardio-respiratory function. Over the last 50 years, the extracorporeal field

has faced huge technological progress. However, despite the improvements

in technique and materials, coagulation problems are still the main contributor

to morbidity and mortality of ECMO patients. Indeed, the incidence and

survival rates of the main hemorrhagic and thrombotic complications in

neonatal respiratory ECMO are relevant. The main culprit is related to the

intrinsic nature of ECMO: the contact phase activation. The exposure of the

human blood to the non-endothelial surface triggers a systemic inflammatory

response syndrome, which chronically activates the thrombin generation

and ultimately leads to coagulative derangements. Pre-existing illness-related

hemostatic dysfunction and the peculiarity of the neonatal clotting balance

further complicate the picture. Systemic anticoagulation is the management’s

mainstay, aiming to prevent thrombosis within the circuit and bleeding

complications in the patient. Although other agents (i.e., direct thrombin

inhibitors) have been recently introduced, unfractionated heparin (UFH) is

the standard of care worldwide. Currently, there are multiple tests exploring

ECMO-induced coagulopathy. A combination of the parameters mentioned

above and the evaluation of the patient’s underlying clinical context should be

used to provide a goal-directed antithrombotic strategy. However, the ideal

algorithm for monitoring anticoagulation is currently unknown, resulting in a

large inter-institutional diagnostic variability. In this review, we face the features

of the available monitoring tests and approaches, mainly focusing on the role

of point-of-care (POC) viscoelastic assays in neonatal ECMO. Current gaps in

knowledge and areas that warrant further study will also be addressed.
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Introduction

The role of extracorporeal membrane oxygenation (ECMO)

in the neonatal population has been clearly established in

the last decades (1). Furthermore, it has been demonstrated

ECMO supports cardiac and pulmonary reversible diseases once

conventional management has failed (2). In comparison,

extracorporeal cardiopulmonary resuscitation (ECPR)

represents a minor neonatal ECMO indication (2). In 2021 in

Europe, 261 neonatal ECMO have been performed, 148 for

pulmonary, 88 for cardiac, and 25 for ECPR indications (3).

Despite technological improvements, such as

miniaturization and simplification of circuits, new coating

systems, new vascular accesses, low hemolytic centrifugal

pumps, and increasingly efficient artificial membranes,

hemostatic management remains a real challenge during ECMO

(4). Thrombosis and bleeding frequently occur, even in the same

patient. Coagulation problems are the main leading cause of

mortality and morbidity, as reported by the Extracorporeal Life

Support Organization (ELSO) registry in 2021 (5). In neonatal

pulmonary ECMO, themost common hemostatic complications

reported are brain hemorrhage (intraventricular or intra-extra

parenchymal, respectively, 2.9 and 3.3%), peripheral cannula

site bleeding (4.3%), surgical site bleeding (6.3%), clots in the

circuit components (29.2%), moderate or severe hemolysis

(10%), pulmonary hemorrhage (3.4%), gastrointestinal bleeding

(1.4%) (5).

The ideal ECMO running should consist of an “unclotted”

circuit in a “clotting” patient. However, patient and circuit

factors make obtaining this hemostatic balance difficult. Hence,

the real ECMO running is an “unclotted” patient and a

“clotted” circuit.

The exposure of human blood to the non-endothelial

surface of the circuit determines platelet aggregation, continuous

activation of the coagulation cascade, and the chronic generation

of thrombin. Over time, this leads to coagulation problems,

especially in a prothrombotic trend (6). Moreover, the

Abbreviations: ACT, activated clotting time; APTT, activated partial

thromboplastin time; AT, antithrombin; CFT, clot formation time; CHD,

congenital heart disease; CLI, clot lysis index; ECMO, extracorporeal

membrane oxygenation; ECPR, extracorporeal cardiopulmonary

resuscitation; ELSO, Extracorporeal Life Support Organization; FFP,

fresh frozen plasma; ICH, intracranial hemorrhage K time, coagulation

time; LMWH, low molecular weight heparin; LY, clot lysis; MA, maximal

amplitude; MCF, maximal clot firmness; MCV, mean corpuscular volume;

NICU, neonatal intensive care unit; PMEA, poly-2-methoxy-ethyl

acrylate; PRBCs, packed red blood cells; PT, prothrombin time; RBCs,

red blood cells; ROTEM, rotational thromboelastometry; R time, reaction

time; TEG, thromboelastography; TF, tissue factor; UFH, un-fractioned

heparin; US, United States; VAD, ventricular assist device; VCT, viscoelastic

coagulation test; vWf, von Willebrand factor.

continuous platelet activation results in down-regulation of the

receptors and degranulation, making platelets hyporeactive and

dysfunctional, representing an important cause of bleeding (6).

The neonatal hemostatic system is intrinsically unstable,

being in developmental evolution in the first days and weeks

of life (7, 8). This means it could be more susceptible to

hemostatic alterations and less capable of facing bleeding or

thrombotic triggers. Moreover, the pre-existing conditions and

comorbidities that led the patient to ECMOmay have triggered a

systemic inflammatory response, contributing to the coagulation

derangements (9–12).

Unfractionated heparin (UFH) is the mainstay of hemostatic

treatment (13, 14). Hemostatic function monitoring allows

for dynamically adjusting the heparin dose to maintain

a correct balance between anticoagulation and bleeding

(13). Regrettably, there is not a single reliable test, but a

combination of different laboratory examinations helps to

adjust the antithrombotic therapy (4, 14, 15). Each method

measures different functional and quantitative hemostatic

variables and may not be comparable straightaway: activated

partial thromboplastin time (APTT), anti-factor Xa, and

antithrombin (AT) levels are plasma-based tests, activated

clotting time (ACT), and viscoelastic assays (thrombo-

elastography/thrombo-elastometry) are performed on whole

blood. Mainly, thromboembolic events frequently occur,

although traditional coagulation tests are in the targeted

ranges (15). In addition, reference ranges for neonatal age

are lacking for some tests. All these factors contribute to the

sizeable inter-institutional variability in diagnostic test use

and management.

This review discusses the relative pros and cons of

the different monitoring approaches. Next, we address the

challenges in hemostatic diagnostics and anticoagulation

management, focusing on the role of point-of-care (POC)

viscoelastic assays in neonatal ECMO. We conclude by

discussing current gaps in knowledge, emerging technologies,

and areas that warrant further study.

Why do we need to worry about
hemostasis in neonates on ECMO?

Patient-related factors

Developmental hemostasis

The concept of “developmental hemostasis” refers to the

maturation of the coagulation system from fetal to adult life (7, 8,

16–18). Newborns have reduced levels (around 50% of adults) of

most procoagulant factors, especially the vitamin-K dependent

(FII, FIX, FX, FVII), factor XI, XII, prekallikrein, and high

molecular weight kininogen (19–21). Moreover, anticoagulant

factors vitamin K dependent (protein C and protein S) and

antithrombin are also reduced. Similarly, the clot lysis is reduced
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(6, 12). With the reduction in pro- and anticoagulant factors, the

hemostatic system of a healthy term neonate is then considered

balanced (18, 22–24). On the other hand, factors VIII, XIII,

fibrinogen, and von Willebrand factor (vWf) levels are similar

or even increased at birth compared to adult life (21).

Primary hemostasis is also different in the neonatal age. The

function is considered somewhat impaired even in a normal

or slightly reduced platelet count at birth (25–27). Despite

this described “hyporeactivity,” the functional tests, such as

bleeding time and closure time (CT) of the platelet function

analyzer (PFA-100), are often shortened in newborns (25, 28).

Term newborns have CT shorter than preterm ones accordingly

to the hyporeactivity of the preterm platelets (29). Primary

hemostasis is maintained through higher hematocrit levels,

mean corpuscular volume (MCV) of neonatal erythrocytes, vWf,

and a large amount of high molecular weight multimers of vWf,

which counterbalance platelets hyporeactivity (26, 27, 30).

Then, this developing hemostatic system is intrinsically

susceptible to bleeding or thrombosis in critical neonates,

depending on the underlying disease and the systemic response

to different triggers (12). In this scenario, ECMO may further

complicate the picture by disrupting this delicate balance due to

the increased risk of dilutional coagulopathy, reducing thrombin

generation, and rising bleeding risk (Table 1). In addition,

neonates are more prone to heparin resistance secondary to low

antithrombin concentrations (6).

Pre-existing conditions and comorbidities

A strict link between inflammatory response caused by

infection or injury and activation of the coagulation cascade

is well-described (9). Therefore, a disruption in one of these

mechanisms may affect the entire balance, leading to excessive

inflammatory response or coagulopathy (Table 1) (10).

Inflammation determines the activation of primary and

secondary hemostasis in the endothelial lumen, decreases the

action of natural anticoagulants, and inhibits the antifibrinolytic

system through cytokine release. Also, natural anticoagulants

reduce the endothelial response to inflammatory mediators

(9, 11). Therefore, critically ill newborns who have systemic

inflammatory response syndrome often have associated

coagulopathy (12).

The baseline coagulation status and the platelet count may

vary depending on the underlying pathology, as newborns

affected by meconium aspiration syndrome have different

hemostatic profile compared with septic or cardiopathic ones.

For example, children with cyanotic congenital heart

disease (CHD) have thrombocytopenia secondary to increased

destruction of peripheral platelets and reduced platelet

production despite the increased erythropoietic stimulus

(11, 31). The pathogenetic mechanism is not entirely clear.

However, it appears to be due to the inhibition of megakaryocyte

differentiation consequent to chronic hypoxia and right-to-left

shunt in the Botallo arterial duct, allowing blood to bypass

the pulmonary bed, where megakaryocytes break down into

platelets (32–34). Furthermore, the increased risk of bleeding in

these patients is due not only to thrombocytopenia but also to

reduced levels of large multimers of vWf (11, 32). In addition,

bone marrow suppression in sepsis or immune reactions may

also determine thrombocytopenia (35).

Circuit-related factors

The ECMO-circuit

All components of the ECMO circuit, such as cannulas,

tubes, blood pump, and membrane oxygenator, are artificial

non-biological surfaces (12, 36). Therefore, blood exposure to

these foreign biomaterials activates the coagulation cascade and

the inflammatory response (Table 1) (35, 37).

Some advances in technology have been obtained in

the last years: 1. biomimetic tubes, with heparin-coated or

nitric oxide-bonded surfaces, are thought to reduce cellular

activation, release of proinflammatory mediators, and platelets

activation; 2. biopassive materials for circuit lines, such as

phosphorylcholine or poly-2-methoxy-ethyl acrylate (PMEA),

prevent the thrombogenic response, with a reduction in platelets

and complement activation; 3. endothelialization of the circuit,

in vivo or in vitro, could be the future for ECMO circuits, as

endothelium is the key element which physiologically regulates

inflammation and coagulation within the body (4). However,

these technologies still do not avoid the need for systemic

anticoagulation, and they are still not widely available soon as

part of ECMO circuits (4).

After the start of ECMO, plasma proteins, including

albumin, factor XII, fibrinogen, and kallikrein, are immediately

attached to the non-endothelial surface, followed by vWf and

glycoproteins (6, 13, 36). Factor XII is then activated to factor

XIIa, which activates the intrinsic pathway of the coagulation

cascade, with consequent thrombin generation (6).

Von Willebrand factor binds and activates circulating

platelets, producing exposure of tissue factor (TF) and

activation of the extrinsic coagulation pathway (13). Kallikrein

activates systemic inflammatory response via the complement

system. The complement cascade determines further activation

of platelets, polymorphonuclear cells, and expression of

cytokines which further increase the proinflammatory

state (12, 36). Fibrinolysis is then activated to limit clot

formation and thrombosis (13). In reaction to the massive

procoagulant state, overactivation of fibrinolysis determines the

consumption of clotting factors, impaired platelet function, and

thrombocytopenia (21). In neonates, contact and complement

activation seem to predominate in the first 24 h, while after 72 h

of ECMO start, clotting, and fibrinolytic system play the leading

role (Table 1) (12, 35).
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TABLE 1 Factors contributing to hemostatic derangements in ECMO.

Patient-related factors Circuit-related factors

Pro-thrombotic factors - Reduced levels of AT, protein C, protein S

- high hematocrit, high MCV, high vWf, high molecular

weight multimers of vWf

- Pre-existing conditions (cytokines→ activation of

primary and secondary hemostasis, reduced action of

natural anticoagulants and antifibrinolytic system)

- Intrinsic resistance to heparin

- Foreign artificial surfaces → platelets adhesion and

activation of the coagulation cascade

- complement activation via kallikrein→ inflammation

- Turbulence and low flow zones→ hemolysis

Pro-hemorragic factors - Reduced levels of vitamin K-dependent coagulation

factors, factors XI, XII, prekallikrein, and high molecular

weight kininogen

- Platelets hyporeactivity

- Pre-existing conditions (thrombocytopenia in sepsis,

reduced platelets production, and reduced levels of large

multimers of vWf in cyanotic CHD)

- Hemodilution

- Overactivation of fibrinolysis → clotting factors

consumption, impaired platelet function, and

thrombocytopenia

- Shear stress→ disruption of high molecular weight vWf

multimers→ “acquired von Willebrand syndrome.”

AT, antithrombin; CHD, congenital heart disease; MCV, mean corpuscular volume; vWf, von Willebrand factor.

Inflammation and endothelial dysfunction

Proinflammatory cytokines are secreted in response to the

patient’s illness and exposure to the ECMOcircuit. Inflammation

and hypercoagulability are strictly connected: increased levels of

interleukin (IL) 6 are associated with ECMO-related multiorgan

failure, while some soluble cytokines (IL-6, IL-8, tumor necrosis

factor-α) may contribute to the endothelial damage (36).

Turbulent blood flow and increased shear stress generated by

the ECMO circuit promote further cellular damage, platelet

activation, and hemolysis (12, 35). Endothelial dysfunction may

lead to continuous platelet and coagulation activation, resulting

in consumption coagulopathy (Table 1) (12).

Thrombin generation

Thrombin generation results from the coagulation cascade

via TF and contact system. Thrombin is central in the

coagulation pathway, as it converts fibrinogen to fibrin and

activates factors XIII, V, VIII, XI, and platelets. The production

of a small amount of thrombin determines an explosive

amplification of the entire process (12, 36). Unfractionated

heparin inhibits clot formation but is not totally efficacious

in inhibiting thrombin generation and coagulation within the

circuit (12, 36).Moreover, neonates on ECMO showed persistent

coagulation activation, represented by increased thrombin

generation and fibrinolysis (Table 1) (38).

Platelets and von Willebrand factor

Platelet alterations involve both platelet count and

platelet function. They are well-described during ECMO and

may lead to bleeding and thrombotic complications (35).

Thrombocytopenia may result from underlying conditions,

such as sepsis, which is especially common in neonatal intensive

care units (NICUs), where its incidence is 18–35% (39). In

addition, hemodilution from the ECMO priming volume may

exacerbate the pre-existing reduced platelet count (35). Usually,

platelet count decreases >40% within the first 1–2 h of ECMO

start (14).

Functional impairment is determined by platelet activation,

which occurs at the start of ECMO, resulting from contact with

the circuit’s surface, shear stress, and turbulent flow within

the tubes. Activated platelets adhere to the ECMO oxygenator

and endothelium, increasing the thrombotic risk (12, 35).

In addition, platelet microparticles, fragments of activated

platelet membrane released during shear stress, contribute to

thrombus formation as they are involved in vascular injury

and promote prothrombotic and proinflammatory conditions

(12, 35, 40, 41). Their procoagulant properties are mediated

by membrane phosphatidylserine exposure, which activates

the contact-dependent coagulation pathway. Elevated levels

of microparticles are found in many thrombotic states, such

as arterial thrombosis, idiopathic thrombocytopenic purpura,

and thrombotic thrombocytopenia. Furthermore, platelet

microparticles are involved in cell-to-cell communication,

modulating innate and adaptative immunity, and cancer-related

angiogenesis (40, 41).

The dysfunctional platelet activation determines platelet

exhaustion and decreased aggregation, resulting from

degranulation, receptor inhibition, and down-regulation.

Therefore, underlying patient conditions, consumption, and

hemodilution result in thrombocytopenia (36, 42). The degree

of thrombocytopenia is correlated with the patient’s illness

severity and platelet count at the time of starting ECMO rather
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than with the duration (4). Often, platelet transfusions are

needed to correct the severe thrombocytopenia and reduce the

bleeding risk (14).

Moreover, drugs with platelet inhibitory properties, such as

milrinone, nitric oxide, and histamine-2-receptor blockers, are

usually prescribed during ECMO, thus potentially interfering

with the hemostatic balance (Table 1) (36, 43, 44).

Shear stress determines disruption of high molecular

weight vWf multimers, causing the “acquired von Willebrand

syndrome” (AVWS), which consists of a functional defect in

vWf, associated with bleeding (12, 35, 45, 46).

This condition is well described in patients with mechanical

valves and ventricular assist devices (VADs) (47). However,

literature on pediatric patients is scarce, despite evidence

suggesting this phenomenon is common during ECMO (47,

48). Acquired von Willebrand syndrome might occur in 100%

of the patients under ECMO support, and it is reversible

at the weaning (47). Due to the pivotal role of high-

weight vWf multimers in neonatal primary hemostasis, AVWS

might be more pronounced in newborns than adults as they

counterbalance platelet hyporeactivity (46). Therefore, diagnosis

of AVWS in case of bleeding should always be considered.

Hemolysis

Hemolysis is increased in neonates during ECMO compared

to older children and adults due to turbulent flow through the

smaller cannulas; fetal hemoglobin, which makes red blood cells

more susceptible to mechanical stress; elevated hematocrit, and

hemoglobin concentration (Table 1) (12, 49, 50). In addition, red

blood cells are destroyed by mechanical damage in the circuit

pump and complement activation (14). Plasma-free hemoglobin

levels >50 mg/dl are suggestive of hemolysis, even if the

measurement of plasma-free hemoglobin is not standardized

across centers (12, 49, 50). Hemolysis contributes to renal failure,

lead to the need for circuit component change, and has been

associated with thrombotic events, transfusions, and mortality

(49, 51). The explanation for hemolysis complications could be

the overwhelming haptoglobin and hemopexin, which bind free

hemoglobin. Then, the free hemoglobin binds the endogenous

nitric oxide, determining vasoconstriction (4).

How can we achieve the hemostatic
balance in neonates on ECMO?

Unfractionated heparin and antithrombin

During ECMO, anticoagulation is mandatory to maintain

the circuit components’ patency and avoid thrombosis while

increasing the patient’s risk of bleeding (6, 14). Therefore,

continuous infusion of UFH is the standard of care in pediatric

and neonatal ECMO. However, the evidence is mainly derived

from adult population studies, and data on pharmacokinetics

and pharmacodynamics of UFH in children and neonates are

scanty (13, 14). In a survey conducted in the United States (US),

94% of the centers used continuous UFH infusion, while the

remaining 6% used bivalirudin, a direct thrombin inhibitor (52).

This differs from a previous survey, in which 100% of the centers

used UFH (53).

Unfractionated heparin binds antithrombin and increases its

activity by 2,000- to 3,000-fold (36). Unfractionated heparin-

antithrombin complex inhibits free thrombin and prevents

further thrombin generation, whereas thrombin bound to fibrin

or subendothelial matrix is unaffected by UFH (12–14, 36). As

a result, bounded thrombin will still contribute to thrombin

generation, increasing the need for heparin (21).

The advantage of UFH is the low cost, speed in action,

familiarity with use, reversibility of its effect through a

specific antidote, and anti-inflammatory properties (tissue

regeneration, reduction in producing reactive oxygen species,

and cardiovascular protection) (12, 13, 36). Furthermore, high

heparin infusion dose has been associated with lower hemolysis

and mortality rate (12, 50, 54).

Unfractionated heparin binds AT and other plasma proteins,

such as acute phase reactant proteins, platelet factor 4, and

high molecular weight multimers of vWf (13). The plasma

concentration of all these proteins is increased due to the

activation of the hemostatic system and the inflammatory

response during ECMO, resulting in a reduction of UFH

bioavailability and anticoagulant effect (12, 13, 21). In neonates,

UFH has a variable effect related to the increase in the

volume of distribution, reduction of circulating AT levels,

and renal function (12, 13). Moreover, heparin has an age-

dependent mechanism of action (4, 55–57). As a result,

neonates require greater doses of heparin than adults to achieve

thrombin inhibition (21). Therefore, UFH response should be

closely monitored through aPTT or ACT (13). In addition,

despite being rarely described in neonates, heparin may induce

immune-mediated thrombocytopenia due to antibodies against

the complex platelet factor 4-heparin (12, 58).

Usually, a heparin bolus of 50–100 U/kg is administered at

ECMO start, followed by a continuous infusion at 20–50 U/kg/h

(2, 59).

Normal levels of AT are required for UFH to work

appropriately, as it inhibits factor IIa, factor Xa, and other

serine proteases involved in the coagulation pathway. As stated

above, neonates and children have physiologically lower AT

levels that reach adult values around 3–6 months of age (8, 13,

16). Moreover, circulating levels of AT seem to decrease over

time in ECMO (12, 36, 60–63). For these reasons, according

to a survey by Bembea et al. in 2013, 51% of the ECMO

centers routinely measure and supplement recombinant human

antithrombin (rhAT) (53). In a more recent survey conducted

in the US, 73% of the centers reported occasional measuring

of antithrombin and 51% empirically administering rhAT (52).

Extracorporeal Life Support Organization suggests maintaining
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AT levels between 80 and 120% (64). However, using rhAT

in the neonatal population may increase the bleeding risk, as

procoagulant factors are physiologically reduced (13, 36, 60).

Research studies on rhAT replacement therapy showed

different and controversial results regarding outcomes

(mortality, circuit failure, thrombotic, and hemorrhagic events),

diagnostic and therapeutic correlations (UFH infusion, ACT

levels, blood product use) (60, 61, 65–69). Indeed, the rhAT

administration during ECMO is not routine in the neonatal

population, and current clinical practice depends on the

single-center protocol.

Direct thrombin inhibitors

Direct thrombin inhibitors in ECMO are represented by

bivalirudin and argatroban. They have been studied in adult

patients, whereas data in newborns and children are scanty and

derived from case reports or case series (70–73).

Direct thrombin inhibitors have some advantages compared

to UFH, as they can inhibit free and bound thrombin. Indeed,

their action is independent of AT, and they do not bind to

plasma proteins (12, 36, 74). In addition, a complete thrombin

inhibition may reduce coagulation factors consumption, as

thrombin-mediated hemostasis activation should be reduced.

On the other hand, disadvantages are represented by the lack of

inhibition of the contact pathway of the coagulation cascade and

their lack of reversibility (12, 36, 74).

Bivalirudin is the most common direct thrombin inhibitor

used because of its short half-life (25min). Still, it has no reversal

agent, and its dose must be adjusted in case of renal impairment.

Moreover, its dose interval described in the literature is wide

(0.05–1.6 mg/kg/h), lacking linearity in the upper side of the

therapeutic range when monitored with APTT (4).

However, in recent years, evidence about the use of

bivalirudin has been rising in pediatrics. Safety and efficacy have

been successfully evaluated in neonatal and pediatric patients

as periprocedural anticoagulation or anticoagulation in patients

subjected to thrombosis (75–77). Side effects, such as bleeding,

were not increased; otherwise, bivalirudin has been associated

with more prolonged life of the ECMO circuit and even reduced

need for red blood cell transfusions (78, 79). Dosing and

monitoring are still a matter of debate. Neonates showed in

vitro an increased response to bivalirudin in comparison to

older children and adults, with a 2-fold reduction in thrombin

generation (80).

To our knowledge, a single study exploring the use

of bivalirudin in neonatal ECMO has been published. The

authors confirmed its safety for thrombosis and bleeding and

found that an increased dose of bivalirudin was necessary to

maintain stable anticoagulation as a tolerance or tachyphylaxis

mechanism developed. Furthermore, there was no significant

correlation between monitored bivalirudin dose with APTT and

TEG-R (81).

Antiplatelet agents and hemostatic adjuncts

Antiplatelet agents, such as acetylsalicylic acid, clopidogrel,

and dipyridamole, are frequently used in pediatric VAD

patients (82). Therefore, they could be considered therapeutic

agents in addition to anticoagulants in ECMO, although

thrombocytopenia, common in neonatal ECMO, could increase

the risk of bleeding. However, further studies are needed to

explore their potential role in neonatal and pediatric ECMO

(12, 36).

Antifibrinolytic agents, such as tranexamic acid and

ε-aminocaproic acid, are reported to reduce intracranial

hemorrhage (ICH) and surgical site bleeding (13, 83, 84).

Rational use of these agents may derive from the increased

fibrinolysis reported in pediatric and neonatal populations

compared to adults (21, 36). However, they have also

been associated with more frequent circuit changes and

thromboembolic complications, precluding their use in

pediatric and neonatal ECMO, except before, during, and after

surgeries to reduce the risk of bleeding (13, 36, 85–87).

In some case reports and case series, recombinant activated

factor VII (rFVIIa) has been reported to decrease bleeding and

packed red blood cells (PRBCs) transfusion need, although with

an increased risk of thrombosis (13, 36, 88, 89). Therefore, its

use in ECMO remains off-label, and it is not recommended in

children, though it could be considered in case of refractory

bleeding (13, 36, 90).

Prothrombin complex concentrates (PCC) (3 or 4 Factors

PCC) could be considered only in cases of life-threatening and

unresponsive bleeding, as it has been studied in a few research

studies. In contrast, the administration of activated prothrombin

complex concentrate (APCC) has been associated with a chance

of fatal thrombosis in an adult patient (13, 91).

Transfusional therapy

Blood product transfusions are often administered during

neonatal ECMO. The rationale related to the use of blood

transfusions products are:

• the need to prime the circuit with PRBCs and fresh frozen

plasma (FFP) to avoid hemodilution;

• the need for frequent blood samples to assess coagulation

status and to monitor anticoagulation therapy;

• the anemia related to hemolysis;

• bleeding from cannulation and surgical site as a possible

complication (92, 93).

Although PRBCs transfusions are common, the established

threshold is still a matter of debate, as hemoglobin and

hematocrit targets are based primarily on expert opinion (4).

Usually, neonatal and pediatric patients receive 30–105

ml/kg/d of PRBCs (93, 94). Exposure to PRBCs has been

associated with increased mortality and morbidity, impacting
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short- and long-term outcomes (93, 95–99). Indeed, PRBCs

may contribute to hemolysis and, in turn, to oxidative stress

and thrombotic risk (37, 92, 100). Moreover, oxidative stress is

proportional to the volume, and the units of PRBCs transfused

(92, 101). In a recent review published in 2018, the authors did

not recognize a specific target during ECMO. Still, they suggest

that the decision should be based on cardiorespiratory support

and oxygen delivery (102).

Platelets and FFP transfusions are performed in high

volumes during ECMO, around 25 and 47 ml/kg/d, respectively

(92, 103). Their extensive use is driven by the risk of bleeding

(104). On the other hand, their use is typically preventive rather

than therapeutic, based on blood test alterations and not on

evidence of clinical bleeding (105).

Scientific evidence is scarce about indications following

laboratory tests for FFP and platelet transfusions (104). The

most common thresholds, 80–100 × 109/L for platelets and

INR 1.5–1.8 for FFP, are based on expert opinion (4, 92, 104).

Depending on the protocol adopted by the single-center, plasma

transfusionsmay also be guided by INR, prothrombin time (PT),

aPTT, ACT, antithrombin, TEG R-time, ROTEMA10, andMCF,

with a more liberal threshold in case of active bleeding. The

laboratory test improvement after FFP or platelet transfusion is

mild, both in bleeding and non-bleeding patients (104). In recent

years, concern about the safety of platelet transfusion in children

and newborns has been rising, as platelet transfusions have been

associated with increased mortality (106–109). In conclusion,

the transfusional approach is still a matter of debate. Finding a

balance between bleeding risk and adverse transfusion effects is

challenging, and evidence-based recommendations are lacking.

How can we monitor hemostasis in
neonates on ECMO?

To date, there is not one optimal test to monitor hemostasis

and titrate anticoagulation therapy in ECMO (4). Monitoring

anticoagulation protocols vary across centers, depending on

the expertise of the ECMO team (13). Moreover, monitoring

anticoagulation is even more challenging in critically ill

newborns, as hemostasis is evolving, and reference ranges are

lacking for most tests (12).

A survey from Bembea et al. revealed that 97% of the

respondent centers used ACT in monitoring anticoagulation,

with most centers using a combination of ACT, APTT, anti-

Xa, and thromboelastography (TEG) (13, 53). However, a more

recent survey revealed an almost universal application of the

anti-Xa assay (90% of the respondent centers) with a decrease

in ACT use (65%) (52).

Today a single-test monitoring protocol is not advised, given

the complexity of the task. Otherwise, the best combination is

still unclear, and multiple tests mean lots of iatrogenic blood loss

in a critically ill newborn (Table 2) (12).

A disadvantage common to all coagulation assays is the

difference in the reagents and coagulation analyzers used in

the laboratories, which makes them not well-comparable and

standardized (6). As a result, correlations between laboratory

test results and complications, such as thrombosis, bleeding, or

mortality, have not been found in various studies (54, 110–113).

Activated clotting time

The oldest and best-known test to monitor anticoagulation

is ACT, which measures the intrinsic and common pathway of

the coagulation cascade (21).

Activated clotting time is a rough but straightforward

bedside test performed on whole blood to assess anticoagulation

adequacy (14). It measures the time for whole blood to clot when

activated by kaolin, celite, or glass beads (12). It is low cost,

requires a small sample size (2–3 whole blood drops), is easy to

perform, and may be used even during transport (2).

Activated clotting time range targeted is usually between

180 and 220 s, with the expected rate of heparin infusion

20–50 U/kg/h (14, 21). Depending on the ACT result obtained,

UFH infusion may be adjusted, and the ACT re-checked in an

hour (13).

Activated clotting time remains one of the most common

tests used to monitor anticoagulation in ECMO, despite its

results being influenced by patient underlying coagulopathy,

platelet dysfunction, AT, age, hemodilution, sample size,

and temperature (21). Due to all these influencing factors,

reproducibility is scarce, especially in neonates where hemostasis

is continuously developing (14).

Another disadvantage of ACT is its accuracy, which

decreases with the ongoing time of ECMO. However, its

reliability improves when adequate clotting factor levels are

maintained during the procedure (21).

To note, if the ACT is out of range with an adequate

heparin infusion rate, other factors influencing hemostasis must

be searched with other tests. Activated clotting time values

correlate poorly with heparin levels, anti-Xa, or APTT (4, 14,

21). Activated clotting time is the test with the lowest correlation

with heparin dose and is the least affected by changes in heparin

doses compared to anti-Xa and APTT, especially in low heparin

doses as in ECMO (113–116). In addition, a weak correlation has

been found between ACT and platelet count, with the highest

ACT values when the platelet count is below 100.000/mmc

(111, 113).

Other ACT tests such as the i-STAT ACT are now available.

In addition, ACT derived from POC instruments such as the

TEG with the TF activation may be a good test for the future,

despite its use not being universally spread yet (21).

In summary, the ACT is an excellent crude method to obtain

immediate information about the anticoagulation of the circuit.
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TABLE 2 Features of tests available to monitor anticoagulation in ECMO.

Test Test features Advantages Disadvantages Target Influenced by

ACT Point of care

Whole blood

Small sample size

Low cost

Rapid and easy

Poorly related to UFH doses

and change

Poor correlation with APTT

and anti-Xa inhibition

180–220 s Underlying coagulopathy,

platelet dysfunction, AT, age,

hemodilution, sample size,

temperature

Anti Xa Lab test

Citrated plasma

Direct measure of heparin

effect on Xa

High cost

Not ready available

Expertise needed

No role in determining the

hemostatic potential

0.3–0.7 IU/ml Hyperbilirubinemia,

plasma-free Hb levels,

hypertriglyceridemia, AT levels,

assay type

APTT Lab test

Citrated plasma

Low cost

Widely spread

Readily available

Often prolonged in

newborn

Poor correlation between

APTT and anti-Xa

Often overestimates heparin

activity

Ratio 1.5–2.5 times

baseline

Hyperbilirubinemia,

hyperlipidemia,

anti-phospholipid antibodies,

increased C reactive protein,

liver disease, UFH

contamination, hemodilution

TEG/ROTEM Point of care

Whole blood

Small sample size

Rapid and easy

Reflect whole hemostasis

Guide transfusion need

Lack of neonatal reference

ranges

R time in kaolin

2–3-fold longer than

R time in heparinase

(R time in kaolin

15–25min)

Reagent and plasma-free Hb

AT, antithrombin; Hb, hemoglobin; s, seconds; UFH, unfractionated heparin.

Still, it is insufficient to monitor anticoagulation in ECMO

correctly, so other tests should be considered for addiction

(Table 2) (21).

Anti-factor Xa

The anti-factor Xa test is now the most popular test for

UFH and low molecular weight heparin (LMWH) monitoring

in many ECMO centers (14, 52). It measures the inhibition of

factor Xa by heparin in plasma, detecting the rate of factor Xa

inactivation by the heparin/antithrombin complexes (12, 110,

113, 117).

Unlike the ACT, which is influenced by all the other factors

with a potential impact on coagulation, anti-Xa levels measure

the heparin effect or concentration and the inhibition of FX

conversion. This explains the weak correlation between anti-Xa

levels and ACT in adult and pediatric/neonatal ECMO (4, 111).

However, it has been found to have the strongest correlation

with heparin dose compared to ACT, APTT, TEG, and AT

levels (111, 113, 114). Otherwise, it is not affected by other

parameters with hemostatic impacts, such as FVIII or fibrinogen

levels (113).

The anti-factor Xa test can be performed in the absence or

presence of AT. The first case measures the heparin effect, while

the second measures the heparin concentration. The effective

range is between 0.3 and 1.1 IU/ml, depending on the single-

center, with the most common goal range used 0.3–0.7 IU/ml

(2, 14, 52). In neonates, as they have low levels of AT, an anti-

Xa assay in the absence of AT is more representative of what

happens in vivo, otherwise may overestimate heparin activity

and mask AT deficiency (12, 52).

To note, anti-Xa has poor reliability in patients with

hyperbilirubinemia, increased plasma-free hemoglobin levels,

and hypertriglyceridemia and is influenced by AT levels and

assay type (2, 4). Other disadvantages are the training required

to be performed, its high costs, and the time to run the test (114).

Moreover, it has no role in evaluating thrombin generation, so it

should be integrated with other tests (Table 2) (12).

Anti-Xa-based monitoring of UFH protocols showed that

higher doses of heparin are needed in infants compared to

older children to obtain therapeutic anti-Xa levels (52, 110). In

addition, a more stable heparin dosing, with few “out of range”

results, without increased complications, has been found with

anti-Xa-based protocol compared to ACT-based protocol (118).

Activated partial thromboplastin time and
prothrombin time

Activated partial thromboplastin time is widely recognized

as a test to monitor heparin therapy in adults, even if it is poorly

reliable in the acute management of ECMO (14, 21, 117).
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Activated partial thromboplastin time represents the clotting

time of recalcified, platelet-poor citrated plasma when activated

by an intrinsic pathway activator (12, 14). Different methods

and analyzers are used to determine APTT, influencing the

sensitivity to heparin, and the reference ranges to use, making

the test less comparable across centers (13).

Prothrombin time and activated partial thromboplastin

time are often prolonged in newborns, regardless of ECMO.

Therefore, they are unreliable for studying in vivo hemostasis

in neonatal age (16, 18). In addition, they have low prediction

capability in clinically significant bleeding (19, 22, 23). The

APTT response to heparin also varies with age, with the more

substantial prolongation of APTT in younger children exposed

to the same heparin amounts as the older ones (4, 56, 57). Poor

correlation between APTT and anti-Xa has been reported, too

(119, 120). In other studies, the correlation between APTT and

anti-Xa was moderate, but APTT often overestimated heparin

activity (110).

Moreover, APTT is influenced by hyperbilirubinemia,

hyperlipidemia, anti-phospholipid antibodies, and increased C

reactive protein (12).

In adults, APTT ratio values 1.5–2.5 times above baseline

moderately correlate with a heparin concentration, preventing

thrombus formation (14, 21).

In summary, APTT may be used in monitoring

anticoagulation in adults because it correlates well with

anti-factor Xa levels, less so in children and neonates

(Table 2) (14).

Prothrombin time is a citrate plasma clotting time that

investigates the clotting factors of the extrinsic and common

pathway of the coagulation cascade through factor VII

activation by TF and phospholipid. Prothrombin time has a

strong correlation with coagulation factors levels but minimal

correlation with heparin, AT, and factor XII (113). It is the most

specific test for changes in clotting factors of the extrinsic and

common pathways (113). It may be helpful in ECMO as it may

detect the need for clotting factors supplementation in case of

bleeding with normal heparin activity (Table 2).

Thromboelastography and rotational
thromboelastometry

The use of viscoelastic coagulation tests (VCTs),

such as thromboelastography (TEG) and rotational

thromboelastometry (ROTEM), is widespread for

anticoagulation monitoring in ECMO (Table 2). In a recent

survey conducted in the US, 41% of the centers reported using a

viscoelastic test to monitor anticoagulation (52).

They have the advantage of dynamically examining the

clotting process, from detecting the first fibrin filaments

to the clot lysis (21). Moreover, VCTs provide information

about the coagulation factors, platelet functions and number,

platelet-fibrin interaction, fibrinogen levels and activity, and

fibrinolysis (14). Like ACT, they are bedside techniques, making

the result available in real-time (12).

Viscoelastic coagulation tests are represented as a flat line

corresponding to the liquid phase of the whole blood. Then,

the line diverges into two lines with increasing amplitude until

the maximum clot firmness is reached. Finally, the two lines

converge simultaneously with the clot lysis (Figure 1) (121).

All these steps are described by the different TEG/ROTEM

parameters. They may indicate which aspect of the hemostatic

process is disrupted, with a possible therapeutic approach to

correct the coagulopathy.

Thromboelastography reaction time (R)/ROTEM Clot

formation Time (CT) reflects the time from the test beginning

to the first detection of fibrin filaments. The alpha angle and

coagulation (K) time describe how fast the clot grows and

depends on clotting factors, platelets, and fibrinogen levels.

TEGMaximal Amplitude (MA)/ROTEMMaximal Clot Firmness

(MCF) represents the platelets and fibrinogen activity. TEG

Lysis (LY) 30/ROTEM Clot Lysis Index (CLI) 30 describes the

fibrinolysis 30min afterMA/MCF (121, 122).

Rotational thromboelastometry and thromboelastography

provide the same information, even with different parameter

names, although the results are not interchangeable as they use

different methodology and laboratory assays (123).

Thromboelastography can be performed with whole fresh

blood that must be analyzed within 4–6min, whereas if citrated

blood is used, the test can be delayed for a few hours, albeit with

slightly different results (121).

Activators are frequently utilized in VCTs to faster the

process. Kaolin is the most used with TEG; its ROTEM

equivalent is the INTEM, which uses ellagic acid and

phospholipids to explore the contact-dependent coagulation

pathway. Rotational thromboelastometry (ROTEM) EXTEM

uses TF to analyze the extrinsic coagulation pathway. At

the same time, rapid TEG activates coagulation through a

FIGURE 1

TEG trace in kaolin (black trace) and heparinase (green trace).

R-time is prolonged 2–3-fold in kaolin compared to heparinase,

whereas MA is una�ected by heparin.
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combination of TF and kaolin to allow faster assessment of the

hemostatic status (121, 124). Adding heparinase (Heparinase

in TEG, HEPTEM in ROTEM) allows a heparin-free curve

in patients subjected to anticoagulation with UFH (21, 121).

Moreover, the functional fibrinogen test (FLEV-TEG in TEG,

FIBTEM in ROTEM) allows for measuring the amount of

fibrinogen that contributes to the clot strength. They block the

platelet contribution to the MA or MCF parameter by TF and

abciximab, a GPIIb/IIIa inhibitor (FLEV-TEG), and TF and

cytochalasin D, an actin polymerization inhibitor (FIBTEM)

(Figure 2). Their use permits discrimination between the deficit

of fibrinogen and the deficit of platelets and decides which one

must be administered to the patient (125–130).

Viscoelastic coagulation tests are successfully used in adult

critical care settings to guide transfusion practice, improving

outcomes (121, 131, 132). In NICU, TEG and ROTEM are

attractive owing to the peculiarity of the hemostatic system

of the newborn, especially preterm, to assess the coagulation

status and potential to drive FFP or platelets administration

(19, 22, 92, 124, 133–144).

Reaction and clot formation (R and CT) time are the most

important parameter when using TEG or ROTEM in ECMO, as

it refers to the time needed to obtain the first fibrin filaments

(Figure 1). They are influenced mainly by clotting factors and by

treatment with heparin of vitamin K antagonists (121).

Therefore, anticoagulation management is usually based on

R or CT time, comparing the values obtained with or without

heparinase (123).

In our experience, the best way to monitor anticoagulation

with TEG is to perform a heparinase TEG and a kaolin TEG

simultaneously, with R time in kaolin 2–3 fold longer than R

time in heparinase (R time in kaolin 15–25min) (2, 21). The

ratio between R time in kaolin and R time in heparinase drives

the need to increase or decrease heparin infusion (2). Maximal

amplitude parameter, which describes the maximum amplitude

of the TEG trace, is a measure of platelets and fibrinogen

concentration and function and may have a role in determining

the need for fibrinogen or platelets administration when the

functional fibrinogen test is performed (2). The same tests may

be performed with ROTEM.

Studies have demonstrated a weak correlation between

TEG and APTT/ACT and a strong correlation between MA

and platelet count (145). In addition, qualitative platelet

dysfunction during ECMO has been demonstrated in a

retrospective pediatric study using Platelet-Mapping TEG. Still,

the correlation between this alteration and bleeding risk is yet to

be determined (146).

In a retrospective study, a reduced MCF of INTEM,

EXTEM, and INTEM with heparinase showed a correlation

with increased thrombotic risk. Coagulation factors and

platelet consumption may explain this finding during ECMO.

No correlation was found between ROTEM parameters and

bleeding complications (128).

FIGURE 2

Functional fibrinogen test (FLEV-TEG) (green trace) shows the

platelet contribution to MA parameter compared to kaolin test

(black trace).

Clot formation time on INTEM and HEPTEM was found to

have a moderate-strong correlation with aPTT and HaPTT for

children receiving bivalirudin for anticoagulation (123).

In adults, the use of POC tests to monitor anticoagulation

has been demonstrated to provide reliable and timely

information about the risk of bleeding, with a good correlation

with traditional coagulation tests (147). They reflect the patient’s

hemostatic status in mechanical circulatory support, monitor

the anticoagulation and anti-aggregation therapy, and their use

reduces the risk of thromboembolic and bleeding complications

(15). A retrospective study on neonates affected by congenital

diaphragmatic hernia revealed improved goal-directed blood

product transfusions and reduced bleeding complications,

especially hemothorax requiring chest tube placement or

thoracotomy (148).

Further studies to standardize TEG and ROTEM are

required, as reference ranges for neonatal and pediatric

populations are not well-established, as well as optimal target

values for ECMO patients (52, 59, 122).

Future perspectives and conclusion

Due to the complexity of the hemostatic system of the

newborn and the impact of extracorporeal circulation on

the hemostatic balance, anticoagulation management is a real

challenge during neonatal ECMO.

Unfractionated heparin remains the mainstay of treatment,

but other agents, such as antiplatelets and direct thrombin

inhibitors, are of great interest and could be considered in the

future (12, 36). In addition, newer anticoagulant agents, such

as factor XIa and XIIa inhibitors, are now in the early stage of

research studies. They might be promising in the future, as they

can uncouple the antithrombotic effect from the anti-hemostatic

effect (149–151).

The best strategy to monitor and titrate anticoagulation

is still unknown, but in recent years, different and more
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reliable tests have substituted the traditional ACT and APTT. A

combination of multiple techniques is probably the best option,

as they explore various aspects of the coagulation status. In our

experience at the neonatal ECMO center, TEG may provide

helpful real-time information to drive the heparin infusion

and the need for blood product transfusions, besides other

tests. Of course, further studies are needed to clarify the role

of every single test in the overall management and the best

combination to achieve a safe balance between hemostasis and

thrombosis during ECMO to obtain a shared protocol across

the centers.
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