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Sepsis contributes to 1 of every 5 deaths globally with 3 million per year occurring in
children. To improve clinical outcomes in pediatric sepsis, it is critical to avoid “one-
size-fits-all” approaches and to employ a precision medicine approach. To advance a
precision medicine approach to pediatric sepsis treatments, this review provides a
summary of two phenotyping strategies, empiric and machine-learning-based
phenotyping based on multifaceted data underlying the complex pediatric sepsis
pathobiology. Although empiric and machine-learning-based phenotypes help
clinicians accelerate the diagnosis and treatments, neither empiric nor machine-
learning-based phenotypes fully encapsulate all aspects of pediatric sepsis
heterogeneity. To facilitate accurate delineations of pediatric sepsis phenotypes for
precision medicine approach, methodological steps and challenges are further
highlighted.
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Introduction

Sepsis contributes to 1 of every 5 deaths globally with 3 million per year occurring in children.

Current treatment strategies for pediatric sepsis show room for improvement. Empiric antibiotic

therapies and organ-supportive treatment are employed to control infection, stabilize

hemodynamics, and modulate the septic response (1). Since current septic deaths occur in

children independently from the timely administration of antibiotics, ongoing pathobiological

mechanisms may be at play. While the sepsis pathobiological mechanism generally involves a

dysregulated immune response to infection leading to organ dysfunction (2), children with

sepsis show substantial heterogeneity in various parts of the pathobiological process.

Thus, to elicit desired success in treatments and avoid “one-size-fits-all” approaches, employing

a precision medicine approach is highlighted as a solution. A precision medicine approach usually

develops customized plans for disease prevention, diagnosis, and treatment, for patient subgroups

delineated based on input data. To delineate patient subgroups for a precision medicine approach,

multifaceted sources of the heterogeneity need to be considered, including but not limited to

infection etiologies, cytokine interactions, host comorbidity pattern, the timeline and

characteristics of diagnosis and treatment, and host genetics (3, 4) as they were shown to impact

both the disease evolution in and intervention response of septic children. This subgrouping

approach has been utilized in the advanced treatment of well-studied heterogeneous diseases,

such as cancer (5), but it hasn’t been applied to children with sepsis. This review paper can shed
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light on advancing our understanding of the complex sepsis pathology

and eliciting desired success in treatments.

This review provides a summary of two approaches, empiric and

machine-learning-based phenotyping of pediatric sepsis based on

multifaceted data. In empiric phenotyping, we will discuss pediatric

sepsis heterogeneity in biological processes and clinical parameters

in age- and (geographical) region-specific fashion. We will also

review biomarkers that effectively stratify children with sepsis for

various clinical purposes. Then, we review pediatric sepsis

phenotypes delineated using machine learning techniques. Finally,

realizing that neither empiric nor machine-learning-based

phenotypes fully encapsulate all aspects of pediatric sepsis

heterogeneity, we highlight methodological steps and challenges to

facilitate further accurate delineations of pediatric sepsis phenotypes.
Age-dependency of pediatric sepsis
heterogeneity

To effectively diagnose, treat, and prevent pediatric sepsis, it is

critical to understand the pathobiological processes that uniquely

affect pediatric patients. Below, we will discuss the age-specificity

that affects the diagnosis, treatment recommendation, risk, and

underlying medical conditions (6).

To diagnose pediatric sepsis, the Pediatric Sepsis Consensus

Congress (PSCC) proposed specialized medical guidelines different

from adults (SEPSIS-3). These guidelines emphasize the age-specific

classification for diagnosis due to different physiological and

pathological processes affecting children of different ages. For example,

the respiratory rate in breaths/min has a wide variability between

children from 0 days to 1 week (>50), 1 week to 1 month (>40), 1

month to 1 year (>34), 2 to 5 years (>22), 6 to 12 years (>18), and 13

to 18 years old (>14) (7). As one of the most common manifestations

of sepsis is increased respiratory rate, the age-dependent basal level

should be considered in diagnosis. The age-dependent pathology also

impacts treatment outcomes and influences recommendations for

children of different ages. For example, treatments have different

likelihoods of favorable outcomes from extracorporeal membrane

oxygenation (ECMO) depending on the patient’s age. ECMO has been

shown to increase survival in cases of respiratory failure with a

different survival rate between children (4 weeks to 18 years) and

newborns (<4 weeks) (39% and 73%, respectively) (8).

Additionally, pediatric sepsis has risk factors that do not apply to

adult sepsis or children of different ages. For example, although

premature birth or low body weight are risk factors to develop

severe sepsis in infants (6, 9), these risk factors would not work

directly for adults nor adolescents. Lastly, pediatric sepsis

demonstrates age-specificity in the underlying medical conditions.

Specifically, a study showed that infants with sepsis have chronic

lung disease (16.5%) and congenital heart disease (15%)

predominantly. On the other hand, children from 1 to 5 years and

from 5 to 9 years old commonly have neuromuscular diseases

(19.5% and 24.3% respectively) while adolescents have neoplastic

disorders like pre-existing cancer (from 10 to 14 years of age

23.4% and 13.8% for children 15 to 19 years old) as underlying

medical conditions (9). These comorbidities result in differences in

the outcome depending on the patient’s age. In pediatric patients
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younger than 1-year-old, cardiovascular conditions and multiple

organ dysfunction increase mortality with an odds ratio (OR) of

1.4 when compared to 10 to 19 years old children (10).
Regional heterogeneity of pediatric sepsis

Pediatric severe sepsis and septic shock incidence and mortality

vary depending on the combination of geographical region and

ethnicity. In the USA, the incidence of severe sepsis in 2005 was

7.7% (10). In comparison, the prevalence of pediatric severe sepsis

is 22.1% in Canada (11). In the SPROUT study that looks at

different regions around the world, they saw a wide range in

prevalence of severe sepsis. For example, 7.7%, 6.2%, 15.3%, and

16.3% of prevalence were reported in North America, Europe,

Asia, and South America, respectively (12).

Furthermore, severe sepsis and septic shock had a diverse range

in mortality in pediatric intensive care units (PICU) in different

countries. For example, in developed countries like Italy and Japan,

their mortality rate was 15% and 19% respectively (13, 14).

However, in developing countries such as Brazil (15), China (16),

and Colombia (17) mortality was higher (19.1%, 70%, and 34%,

respectively) for septic shock.

Clinical causes underlying mortality also show regional similarities

and differences between developed and developing countries. Relaxed

or strict adherence to treatment guidelines has a significant impact on

mortality rates both in developed and developing countries. A study

showed that pediatric septic shock patients had a decrease in mortality

from 38% to 6% when appropriate treatment (fluid resuscitation and

inotropic therapy) was administered in hospital settings in the United

States of America (18) and Brazil (19, 20). Furthermore, in developed

countries, the patient’s characteristics, such as the presence of

immunological chronic diseases, and the characteristics of the

infectious agent like the type of infectious agent are associated with

higher mortality from septic shock (20, 21). For example, a

retrospective study done in the USA found that previously healthy

pediatric sepsis patients had in-hospital mortality of 0.7%, while

patients that had an underlying medical condition had an in-hospital

mortality rate of 5.1% (22). On the other hand, in developing

countries, in addition to the above-mentioned risk factors, poverty,

malnutrition, low vaccination rates, poor sanitary conditions, and

characteristics of the health system, such as the decentralization of

care, the difficulty of access to health services and the shortage of

hospital beds are important factors associated with mortality (21). This

can be illustrated by a study done at PICU in Brazil that showed an

increase in mortality associated with unknown vaccination status of

pediatric sepsis patients with a relative risk per point increase of 2.57 (23).
Biomarker risk stratification panels for
mortality in pediatric sepsis

Several phenotypes have been identified based on prognostic

biomarkers that are empirically selected (Table 1) (24). Prognostic

biomarkers provide information on the likely outcome of an

individual and help in establishing the intensity of treatment for

the patient (25). For pediatric sepsis, the most established
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biomarkers include C-reactive protein, erythrocyte sedimentation

rate, procalcitonin, ferritin, serum thrombomodulin, CD64, and Il-8.

Among them, C-reactive protein (CRP), erythrocyte

sedimentation rate, procalcitonin, and ferritin are the most widely

used biomarkers in clinical settings because they are inexpensive

and are already used in PICUs in many countries around the

world (26–28). CRP is an acute phase reactant produced in

response to cellular injury during the inflammatory response and is

used as a marker of acute inflammation. When used in

combination with IL-6, CRP is a reliable marker of early infection

and disease progression (29). Interleukin-6 (IL-6) is a pro-

inflammatory cytokine that is an integral part of the cytokine

activation inflammation cascade (30). IL-6 rises fast but has a short

half-life, so CRP is used to monitor disease after the 24-hour mark

(29). CRP plasma levels increase within 4–6 h after the initial

tissue injury and continue to increase several hundred times within

24–48 h (31). CRP remains elevated in the early stages of response

and returns to normal when the damage has been managed. Thus,

a rapid decrease in CRP levels over the first 48 h of therapy

correlates with an effective response to the initial antimicrobial

therapy in septic patients (32). Erythrocyte sedimentation rate

(ESR) is used to differentiate between degrees of severity in states

of inflammation. ESR has high sensitivity and specificity in the

detection of inflammatory diseases and malignancy (33), however,

it is not reliable in newborns since ESR sedimentation is reduced

in newborns caused by a high hematocrit value (34, 35).

Procalcitonin (PCT) is a precursor of the hormone calcitonin and

is a reliable prognostic marker for sepsis differentiating

inflammatory responses from bacterial infections. During an

infection, PCT is released up to a thousand-fold increase in nearly

all tissues and cell types in the host in response to cytokines and

bacterial products (36). In patients with bacteremia, PCT levels are

significantly higher than the patients with fungemia who have a

moderate increase in PCT levels (37). The sensitivity and

specificity to discriminate infection from the inflammatory

response have been also reported in pediatric patients (38). Since

PCT increases as disease severity worsens and falls rapidly when

the infection gets controlled, it can predict sepsis mortality (39,

40). Similarly, ferritin has emerged as an important diagnostic

biomarker for pediatric sepsis. High levels of ferritin are associated

with poorer outcomes including death and can help differentiate

between the severity stages of pediatric sepsis (41). Patients with

high ferritin (≥1,000 ng/ml) were also more likely to have multiple

DNA viruses detected in plasma and increased mortality (odd ratio

2.6) in pediatric severe sepsis (42), and the same association with

mortality was reported by (43).

Other biomarkers, such as serum thrombomodulin have been

established for adult sepsis but recently demonstrated a prognostic

value for pediatric sepsis. Serum thrombomodulin levels can be used

as an early predictor of mortality and disease severity in pediatric

sepsis patients. In fact, when measuring pediatric sepsis patients on

day 1 and day 3 of admission, non-survivors likely have higher

levels of serum thrombomodulin compared to survivors.

Furthermore, serum thrombomodulin levels on day 1 are strongly

correlated with disease severity and can be used to predict the

development of septic shock, disseminated intravascular coagulation

(DIC), and multiple organ dysfunction syndrome (MODS) (44). In
Frontiers in Pediatrics 04
this prospective study, researchers analyzed the area under the curve

from the receiver operating characteristic (ROC) analysis to validate

serum thrombomodulin as a pediatric biomarker of sepsis using

blood samples recollected from previously healthy children with

sepsis, severe sepsis, and septic shock from PICU’s (44).

Since sepsis is a dysregulated immune response often to

infection, biomarkers for immune regulation, such as CD64 and

IL-8, have also been used for prognose pediatric sepsis. CD64 is a

high-affinity immunoglobulin Fc gamma receptor I and is

expressed constitutively on monocytes, but only to a very low

extent on resting polymorphonuclear cells (PMNs). During an

infection, CD64 expression on PMNs increases to promote

phagocytosis. In this regard, CD64 can be used for differentiating

bacterial infection from other inflammatory disorders in children

because there’s an important elevation of CD64 on neutrophils in

response to bacterial infection (45, 46). Also, Interleukin-8 (IL-8) is

an inflammatory cytokine that is released from monocytes,

endothelial cells, and neutrophils in response to IL-1 and TNF- α.

Increases in circulating IL-8 are seen early in the infectious course

and can be used as a prognostic biomarker that an elevation in IL-

8 would correlate with more severe disease and mortality (47, 48).

Combining biomarkers often enhances the predictive power in

complex diseases (49). A recent study demonstrates this by

comparing single-biomarker models like ferritin, lactate, leucocyte

count, Pediatric index of mortality 2 (PIM2), and CRP levels which

in ROC analysis could predict only up to 38.6% (PIM2 alone) and

a multiple-marker model (ferritin, lactate, CRP levels, and PIM2)

could predict 76% of mortality with an accuracy of 0.945 (26). The

Pediatric Sepsis Biomarker Risk Model (PERSEVERE) is an

advanced combinatorial approach that stratifies pediatric septic

shock risk based on high-dimensional biomarkers. It predicts 28-

day all-cause mortality using a Classification and Regression Tree

(CART) methodology on the five best-performing biomarkers

identified in a transcriptomic expression study, C-C chemokine

ligand 3 (CCL3), heat shock protein 70 kDa 1B (HSPA1B),

interleukin 8 (IL8), neutrophil elastase 2 (ELA2), and lipocalin 2

(LCN2). When applied to a test cohort, sensitivity was 89% and

specificity was 64% (50). Since the CART model is flexible to

integrate variables of different natures, it has been refined and

updated (51) in additional studies since its inception. For example,

PERSEVERE-II added platelet count (52) and PERSEVERE-XP

included four mRNA biomarkers (protein regulator of cytokinesis

1 (PRC1), histidine ammonia-lyase (HAL), DNA damage-inducible

transcript 4 (DDIT4), and ZW10 interacting kinetochore protein

(ZWINT) (53) and achieved further improvements. For example,

PERSEVERE-XP had a 95% sensitivity and 81% specificity for

detection of pediatric sepsis mortality which was superior to 81%

sensitivity and 74% specificity from PERSEVERE alone (53).
Empiric phenotypes of pediatric sepsis

In a related approach based on clinical observations combined

with a limited set of key biomarkers, Carcillo J,2019, specified 4

overlapping phenotypes of multiple organ failure patterns in

pediatric sepsis, Thrombocytopenia associated MOF (TAMOF),

Sequential liver failure associated MOF (SMOF), Immunoparalysis
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TABLE 2 Empirical and machine-learning-based phenotypes of pediatric sepsis.

Article
(Region)

Stratification Features Sample
characterization

Method Note

Wong et al.
2009 (US)

A, B, C whole-genome
Expression profiling

98 children ≤10 years old Hierarchical
clustering

Sanchez-pinto
et al., 2020
(US)

“Severe, persistent encephalopathy”,
‘Moderate, resolving hypoxemia’, ‘Severe,
persistent hypoxemia and shock’,
‘Moderate, persistent thrombocytopenia
and shock’

6 clinical features
(pSOFA subscore)
across multiple PICU
days

5,054 children ≤21 years
old

subgraph-
augmented
nonnegative matrix
factorization

This study collected patients
with MODS

Carcillo et al.,
2021 (US)

TAMOF, SMOF, IPMOF 5 clinical features and
3 biomarkers

401 children ≤18 years
old

Empirical method

Xiang et al.,
2021 (China)

pSIC group, non-pSIC group pediatric sepsis-
induced coagulation
(pSIC) score induced
by 3 clinical features

91 non-premature infants
and children ≤18 years
old

Empirical method predict 28-day mortality in
sepsis was, with the cutoff
value of > 3 (0.716 AU-ROC)

Koutroulis
et al., 2022
(US)

Phenotype 1,2,3,4 22 clinical features or
29 Clinical features

151 non-neonatal children Latent class
analysis, K-means
clustering

22 clinical features were
selected from William et al.’s
study and 29 clinical features
were selected from Seymour
et al.’s study.

Qin et al.,
2022 (US)

PedSep-A, B, C, D 23 Clinical features
and 2 biomarkers

404 children ≤18 years
old

Consensus K-
means clustering

Qin et al. 10.3389/fped.2023.1035576
associated MOF (IPMOF), and Macrophage Activation Syndrome

(MAS) based on physiologic, clinical and biomarkers variables such

as specific organ failure patterns, platelet count, soluble Fas ligand,

whole blood ex vivo TNF-α response to endotoxin, ADAMTS13

activity, and Ferritin (Table 2). TAMOF is characterized by

thrombotic microangiopathy with reduced ADAMTS13, SMOF has

elevated levels of sFasL. IPMOF is defined by prolonged

immunodepression, and MAS has uncontrolled inflammation. All

these phenotypes have varied prevalence and mortality rates among

patients. SMOF, TAMOF, and MAS phenotypes were associated

with higher mortality (around 45% in SMOF, TAMOF, and MAS

vs. 20% in IPMOF) and clinical trials have started to assess if

personalized treatment for these phenotypes leads to better

outcomes (54). Similarly, Xiang et al., 2021 proposed the pediatric

sepsis-induced coagulation score (pSIC), which classifies immune-

dysregulated pediatric sepsis patients based on prothrombin time,

platelet count, and pediatric Sequential Organ Failure Assessment

(SOFA) score derived from 4 items (respiratory SOFA,

cardiovascular SOFA, hepatic SOFA, and renal SOFA). pSIC scores

the degree of sepsis-induced coagulopathy (SIC) for pediatric

patients based on age-related pathophysiological and clinical

differences. Using Kaplan–Meier survival curve analysis, they found

patients with a high pSIC score (pSIC≥ 4) have worse clinical

outcomes than the non-pSIC group (pSIC < 4) with 0.716 in the

area under the curve of ROC for predicting 28-day mortality (55).
Machine-learning-based subgroups of
pediatric sepsis

Although these empiric phenotypes successfully stratified

children with sepsis for particular clinical purposes, they are not

designed to fully appreciate the innate heterogeneity of pediatric
Frontiers in Pediatrics 05
sepsis. This limitation led to the desire to refine phenotypes using

machine-learning (ML) techniques. ML allows computers to

agnostically discover patterns in the data, without being given a set

of explicit instructions (56) (Table 2). Wong et al. (2009) used

transcriptomic data and found and validated three subgroups in

septic shock pediatric patients, subclass A, B, and C, through

discovery-oriented expression filters and unsupervised hierarchical

clustering. Subclass A had the highest pediatric risk of mortality

(PRISM) III score, degree of organ failure, mortality rate (36%),

and significant differences in gene expression patterns in pathways

related to the adaptive immune system and glucocorticoid receptor

signaling that could be studied more to identify therapeutic targets.

The PRISM score is one of the widely used scoring systems to

quantify critical illness in the pediatric age group. On the other

hand, subclass B and C did not present predominantly

characteristic features (57, 58).

In another study conducted by Sanchez-Pinto and colleagues, the

subgraph augmented nonnegative matrix factorization method

revealed 4 distinct phenotypes in 5,054 critically ill pediatric

patients with MODS) (59). Among these phenotypes, Phenotype 1

was characterized by severe and persistent encephalopathy.

Phenotype 2 was characterized by moderate and resolving

hypoxemia. Phenotype 3 was characterized by severe, persistent

hypoxemia and shock, and Phenotype 4 was characterized by

moderate, persistent thrombocytopenia and shock.

Koutroulis et al., (2022) performed a systematic analysis using

latent class analysis (LCA), a mixture model that detects latent (or

unobserved) heterogeneity in data, on 151 pediatric sepsis patients.

To make the clusters they used variables that had been used in

other studies, which are 22 variables based on PRISM score (61) or

29 variables based on sepsis onset (62). The most important

characteristic of the 4 phenotypes delineated from the first data set

was Phenotype 1, which is characterized by multiple organ
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dysfunction. On the other hand, Phenotype 2 is characterized by low

severity with only a few elevated WBC parameters, phenotype 3

shows moderate severity with mild tachypnea, and phenotype 4

presents high severity with liver dysfunction with hypoxia. These 4

phenotypes were found to match well with the phenotypes from

the other data set, demonstrating moderate reproducibility (60).

In a recently published study, our research group used the

consensus k-means clustering analysis of 25 available bedside

variables including C-reactive protein and Ferritin levels at 24 h to

identify 4 phenotypes in severe sepsis patients with organ failure

(63). PedSep-A is defined by younger children (mean of 3 years)

with respiratory failure, with a low (2%) mortality (2%), PedSep-B
FIGURE 1

Overview of an operating protocol to delineate patient subgroups using observ
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is characterized by multiple organ failures with requirement for

intubation with a medium (12%) mortality, PedSep-C had

cardiovascular failure, lymphopenia and high ferritin with a

medium (10%) mortality, and PedSep-D is distinguished by

multiple organ dysfunction and a high mortality rate (36%).

However, these phenotypes of pediatric sepsis still do not

consider all the factors implicated in the age- and region-specificity

nor potentially complex effects of nutrition, vaccination, and

treatment strategy underlying the region-specificity. To guide

further efforts of machine-learning-based phenotyping, we will

provide general algorithmic steps applicable to delineate pediatric

sepsis subgroups below (Figure 1).
ational data of clinical features.
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Preprocessing of clinical data for machine-
learning-phenotypes

ML allows computers to agnostically discover patterns in the data

and improve with experience, without being given a set of explicit

instructions. Since it does the job without a set of instructions, it is

expected to create nonsynonymous patient subsets by mining the

clinical data in an unbiased fashion to improve the phenotype

delineations from empiric approaches. Below, we will discuss

several challenges to successfully develop machine-learning

methods to develop agnostic phenotypes for pediatric sepsis.
Sample size examination

Small sample-size and single-center studies are more common in

studies of pediatric sepsis due to the ten times less common

prevalence of sepsis in children compared to adults (64). A meta-

analysis conducted by Menon et al. indicated that some pediatric

sepsis studies were conducted with a very small sample size (i.e.,

less than 50) (65). With this limited sample size, the chance to

delineate the phenotypes is low. In statistics, this chance is

formally estimated by statistical power which indicates the

probability of rejecting the null hypothesis that no phenotypes exist

in the data. Therefore, power analysis is necessary for the data

collection step to quantitatively determine the smallest sample size

for detecting the phenotypes at the desired level of significance.

The simplest approach to conducting power analysis is standard

power equation, where powers can be directly estimated given a fixed

set of input parameters, such as expected effect size and standard

deviation in the population (66). However, standard power equations

are based on few assumptions of input data, so they are not suitable

in practical studies with complex data structures and flexible study

design (67). To address this problem, researchers can perform

simulation experiments where datasets are repetitively generated with

respect to the statistical properties of input data to calculate the

proportion of experiments in which the null hypothesis is rejected

(68). With the aid of simulation experiments, investigators can

estimate power more precisely by taking real data properties into

account. For example, Koutroulis et al., 2022 and (61, 62) estimated

the smallest sample size to delineate phenotypes through simulation

experiments. As a result, both found that 150 samples were enough

to identify 4 distinct phenotypes with 80% power (60).
Missing data handling

Clinical data can be missing for several reasons, such as (i) physicians

not ordering certain laboratory measures (e.g., cholesterol test not

ordered for all patients); (ii) mechanical error (e.g.,

sphygmomanometer failure); and (iii) patient refusal to respond to

questions (e.g., income-related questions). Missing data can prohibit a

successful delineation of phenotypes, as most machine learning

algorithms, including phenotyping methods, assume the data

completeness (69). Two commonly employed strategies to handle

missing data are complete case analysis and missing data imputing.
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The complete case analysis discards the observations with missing data

whereas the missing data imputation replaces the missing data with

estimations (70). Although the complete case analysis is much simpler

than imputation-based approaches, it can cause a significant loss of

samples. This can aggravate the sample size issue, especially in small-

scale studies. Further, if there was a relationship between missing data

and the values of variables in the data (missing data mechanism), then

this approach can introduce bias. Thus, the imputation strategy serves

as a reasonable alternative to complete case analysis.

Several imputation methods are widely adopted in the field.

Choosing the proper method requires a deep insight into the

missing mechanisms. Systematically, missingness can be

categorized into three patterns according to the missing

mechanism: (1) missing completely at random (MCAR), (2)

missing at random (MAR), and (3) missing not at random

(MNAR) (70). MCAR holds when data are missing by mere

accident or study design, which is usually not likely in practical

scenarios. MAR is more common in practical scenarios. It occurs

when data are missing through known mechanisms related to

patient characteristics, where the likelihood of one variable’s

missingness does not depend on the variable itself but is

conditional on other covariates with full information in the data

set (70). Hence, although observed values of a variable differ

systematically from missing values, methods such as Multiple

Imputation can use other observed covariate data to correct the

differences and perform imputation appropriately (71).

Contradicted to MAR, MNAR holds when missing data are

systematically different from observed values for unknown reasons

so that there is no way to utilize the information of observed data

(70). Thus, missingness should be modeled explicitly with a proper

method. For the case of outcomes with MNAR-based missingness

and covariates with MAR-based missingness, the Heckman

imputation model has been proposed to impute the missing data

by using a method named MICE (Multiple Imputation by Chained

Equations) (72). Furthermore, investigators should also be aware

that when the missing rate is exceptionally high in some variables,

removing the variables with high missingness may serve as a

reasonable strategy to ensure better performance of imputation.
Correlation adjustment

Correlation measures the degree to which two features relate to

each other. In observation data collected from children with sepsis,

significant correlations can be observed among cytokines and

routine laboratory data (73). If one wants to incorporate a linear-

model-based machine learning method, this would yield

multicollinearity, which makes it difficult to estimate the effect size

accurately. A phenotyping analysis can use the correlation

relationship to control the bias due to different weights of biological

mechanisms considered. For instance, both C-reactive protein (CRP)

and erythrocyte sedimentation rate (ESR) represent inflammation in

pediatric sepsis pathology, thus they would be highly correlated (74).

In this case, by considering both phenotypes, a subtype analysis can

overestimate the effect size of the inflammation process and

therefore introduce a bias toward inflammation. To reduce the bias,

one can identify the correlated feature pairs and remove one of the
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features to represent underlying factors equally (75). To determine

which feature in the correlated feature pairs to remove, the

missingness and the clinical context of the variables can be

considered. For example, if two clinical variables that show a

correlation in the data have different missing data ratios,

investigations can first consider dropping the feature with higher

missingness. If the two variables have similar missingness, their

clinical context can be further considered. For example, if CRP and

ESR are correlated and show similar missingness in a study

investigating a time-sensitive aspect of sepsis, keeping CRP and

removing ESR would make more sense since CRP is a more

sensitive indicator of rapid inflammatory response than ESR (74).
Data transformation

To build a statistical model using clinical data, a critical problem

is that clinical data usually do not follow normal (Gaussian)

distribution, while most statistical models assume normal

distribution. To address this problem, investigators need to

evaluate if variables in the data follow normal distribution. And

the variables not following normal distribution need to be

transformed towards a more normal distribution before being fed

to statistical models. Specifically, to determine if a variable follows

normal distribution, graphical tools such as histogram, box plot,

and quantile-quantile plot can be used to show it the data comes

from the normal distribution. Other statistical tests of normality

include Shapiro-Wilk (75), Kolmogorov–Smirnov (76, 77),

Lilliefors, and Anderson–Darling tests (78). Among them, Shapiro-

Wilk test is the most powerful test through examination based on

simulation analysis (79). Then, to transform those that do not

follow normal distribution, there are multiple transformation

methods to address different aspects of the problem. First, clinical

data values are often highly skewed due to extreme clinical cases,

such as severe sepsis and septic shock. Since the skewness shows

how much data is asymmetrical from the normal distribution, it

will introduce bias in the statistical estimation that assumes the

normal distribution. To normalize a highly skewed variable, log-

transform is one of the most frequently applied approaches (80).

Second, another essential transformation is data-scaling when the

range of clinical variables varies extensively. Without this step,

features with a broader scale range can overwhelm the downstream

statistical process, including machine-learning-based phenotyping.

Broadly accepted solutions to this problem include min-max

normalization and Z-score normalization. Under min-max

normalization, the minimum value of each feature gets

transformed into a 0, the maximum value gets transformed into a

1, and every other value gets transformed into a decimal between 0

and 1 accordingly. Z-score normalization transforms the values

such that the mean of all of the values is 0 and the standard

deviation is 1. The normalization schemes come in different pros

and cons when used for multiple variables. For example, although

min-max normalization puts all variables on the same exact scale,

it does not handle outliers well. And although Z-score

normalization handles outliers by diluting the effect in the

condition that the mean is 0 and the standard deviation is 1, it

does not put variables on the same scale.
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Delineating and validating phenotypes

After the preprocessing steps, multiple machine learning methods

can be used to further delineate and validate phenotypes. To select the

right method for the data at hand and make appropriate

interpretations from the results, it is important to understand the

pros and cons of the methods, which we will discuss below.
Unsupervised learning of the underlying
clusters for phenotyping

Unsupervised learning methods generally refer to statistical

approaches that learn the parameters of the underlying model

without first training by labeled data. Since the training based on

labels may serve as bias, unsupervised learning methods recently

gained popularity to delineate phenotypes of complex diseases in

an unbiased fashion. When the number of phenotypes is relatively

clear, K-means clustering is widely used (81) due to its

computational simplicity and interpretability. On the variable space

where observations are placed as data points with respect to the

variable values, it initially selects a particular number (K) of

random points as cluster centers (i.e., centroid) and assigns the

data points to the closest centroid based on a distance metric. In

low-dimensional data, Euclidean distance, which calculates the root

of square difference on the variable space between object pairs, is

widely used if the feature values are continuous. If the data has

many variables and makes a high-dimensional variable space,

Manhattan distance can be used to control distributional

discrepancy between variables. Also, if the data have categorical

variables, which is often the case in clinical data (e.g.,

comorbidities, symptoms), Hamming distance can be used for its

flexibility to handle different numbers of category values. After the

first assignment with respect to the centroids, the algorithm

repeatedly updates the centroids and the assignments until the

intra-cluster variation is minimized (i.e., convergence) (81).

Although K-means clustering is an unsupervised clustering, it

still requires prior knowledge about the number of clusters in the

data. If prior knowledge regarding the number of clusters is not

available, one can use another well-established method called

hierarchical clustering. Hierarchical clustering can be further

categorized into agglomerative and divisive clustering (82). The

agglomerative algorithm first considers each object as a single

cluster and iteratively combines the most similar leaf pairs into a

larger cluster. Oppositely, the divisive algorithm starts with one

large cluster that has all objects and recursively splits it into

smaller clusters. Principally, both K-means and hierarchical

clustering methods can be iteratively performed on subsampled

data to obtain a consensus clustering assessment (83). Due to the

robustness, the consensus clustering approach, either based on K-

means or hierarchical clustering, has been well accepted and

successfully applied in several critical care studies (Seymour et al.,

2019; Soussi et al., 2022) (62, 84). To validate the clustering result,

methods of different approaches can be used to ensure

generalizability. For this purpose, algorithms based on mixture

models are widely used, such as latent class analysis (LCA) and

latent profile analysis (LPA) (85). Due to differences in approach,
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the mixture model-based methods uniquely provide a probability

distribution over the cluster assignment for each object (86). With

the distribution estimation, the mixture models allow more

flexibility in cluster membership determination without clear-cut

assignment. However, by the same token, this approach does not

guarantee to assign all input samples to a subgroup.
Cluster number determination

Determining the optimal cluster number is a fundamental step

for unsupervised clustering methods to either as an input to

certain clustering algorithms (e.g., K-means) or to validate the

cluster numbers identified in other approaches. There have been

several methods proposed to determine the optimal cluster

number. One of the earliest proposed and most popular methods

is the Elbow method (87). Given a preset range of the cluster

numbers, the Elbow method employs an external clustering

method with each cluster number. Then it calculates the sum of

squared errors (SSE) for each specified cluster number and plots a

curve of SSE against the number of clusters. Finally, it defines the

“elbow” of the curve with the most dramatic change of the curve

as the optimal cluster number. This is based on the rationale that,

although adding more clusters does not hurt the fit and explains

more of the variation, the improvement becomes not worth the

added complexity brought by the clusters at some point (88).

Adding more clusters beyond the elbow point often means

clustering for the noise or data-specific signals of the data, also

known as an over-fitting problem. However, the Elbow method

becomes unreliable when the SSE plot is fairly smooth and the

elbow point is hard to unambiguously distinguish (89). Also, the

Elbow method only employs Euclidean distance to evaluate the

improvement and is thus appropriate for datasets with small size

and low complexity.

If the data has many samples and represents a complex

pathology, one can use the Silhouette method. The Silhouette

method considers the variable distribution in the form of variance,

skewness, high-low differences, etc. to quantify the tightness and

separation of objects within the assigned cluster by a value ranging

from 1 to −1. A higher positive value implies a better matching of

an object to its cluster, whereas a lower negative value denotes a

poorer matching performance. Therefore, the Silhouette method

also can be used to evaluate clustering performance (90).

Another commonly adopted cluster number determination

method is gap statistic, which compares the change in observed

within-cluster dispersion with an expected dispersion under a

simulated null reference distribution of the data, i.e., a

distribution with no obvious clustering (91). Since the gap

statistic measures the difference from the null distribution, the

clustering number that maximizes the gap statistic would be

optimal. However, to handle real-world datasets where the

clusters are not as well-defined, the maximization needs to be

balanced with the added complexity brought by the clusters. To

evaluate the balance, one can conduct a simulation study with

various numbers of clusters and choose the cluster number that

makes the difference from the null distribution by more than the

simulation error.
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Phenotype validation

After delineating a set of phenotypes for pediatric sepsis,

researchers should evaluate the validity of subtypes through

internal validation, external validation, and clinical plausibility

determination. Regarding internal validation, several evaluation

metrics can be employed to measure the robustness of the

phenotypes. As mentioned in the cluster number determination

section, Silhouette is one of the widely adopted intrinsic cluster

quality measures that does not require ground truth labels (91).

Another internal validation strategies involve comparing the cluster

similarity across various clustering methods. Although various

methods are designed under different assumptions and thus can

lead to disagreement in the assignment, valid cluster memberships

ought to be similar across diverse clustering methods. Additional

to internal validation, external validation assesses the

reproducibility of clustering by utilizing an extra source of data.

Normally, investigators use external datasets collected with the

same criteria as the exploratory dataset and perform the same

analysis to see if clusters with similar clinical characteristics can be

discovered. Finally, it is of great significance to examine the clinical

plausibility of derived phenotypes. Multiple types of variables other

than those already used in clustering (e.g., bedside records.

laboratory data, biological data, outcome information, a therapeutic

response) can be collected from the same cohort to investigate the

phenotype diversity (63) under the rationale that the phenotypes

are expected to be reflected in the additional variable set (92).
Discussion

In this manuscript, we reviewed pediatric sepsis heterogeneity

reflected in the age- and region-specificity. Then, we discussed two

main approaches for phenotyping septic children with less

heterogeneity based on the clinical characteristics, using empiric

and machine-learning approaches. First, we explored the

biomarkers that have been developed to empirically subgroup the

heterogenous septic children for particular clinical purposes, e.g., to

diagnose early infection and disease progression or to predict

deadly outcomes. For machine-learning-based phenotyping

approaches, we laid out several phenotypes delineated using diverse

data types. In the phenotype reviews, we further realized that the

current phenotypes do not fully grasp the heterogeneity implicated

in the age- and region-specificity. Thus, to facilitate the further

development of machine-learning-based phenotyping representing

the full spectrum of the heterogeneity, we discussed essential data

handling steps from a statistical point of view.

Although the approaches have shown success in improving

pathological understanding of complex diseases, we recognize their

limitations. First, when diverse types of molecular and clinical

variables (e.g., gene expression and laboratory measures,

respectively) are used for this purpose, the underlying disease

mechanisms may be represented across multiple variables with

different weights. Since the multiple representations with different

weights would result in bias in the phenotyping, using high-

dimensional data for phenotyping requires careful statistical
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handling of the variables. To address this problem, variable selection

methods or dimensionality reduction methods can be used to

identify a smaller set of representative variables that would

represent the underlying mechanisms with less redundancy. For

example, principal component analysis (PCA) can be used to select

the variables that linearly explain much of the data variance.

Second, empiric and machine-learning approaches would yield

different sets of patient subgroups. To reveal phenotypes with

distinct identities in the data, it is not clear how to reconcile the

different sets of patient subgroups identified by the two

approaches. Third, subgroup memberships may not be considered

distinct identities since patients may carry characteristics of

multiple subgroups with various weights (63). Thus, downstream

analyses may need to consider the weights, or the different

confidence levels of the phenotype assignments for clinically and

biologically reasonable interpretations. Since phenotyping patients

of a heterogenous complex disease serves as the first step of

precision medicine, we believe that this review will aid in

improving clinical outcomes of pediatric sepsis.
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