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Premature children are at high risk for delays in language and reading, which can
lead to poor school achievement. Neuroimaging studies have assessed structural
and functional connectivity by diffusion MRI, functional MRI, and
magnetoencephalography, in order to better define the “reading network” in
children born preterm. Findings point to differences in structural and functional
connectivity compared to children born at term. It is not entirely clear whether
this discrepancy is due to delayed development or alternative mechanisms for
reading, which may have developed to compensate for brain injury in the
perinatal period. This narrative review critically appraises the existing literature
evaluating the neural basis of reading in preterm children, summarizes the
current findings, and suggests future directions in the field.
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1. Introduction
1.1. Preterm birth and neurodevelopment

Premature infants are known to be at risk for brain injury, including periventricular
leukomalacia, intraventricular hemorrhage, diffuse white matter injury, and cortical gray
matter abnormalities (1-4). Insults related to premature delivery, such as hypoxia,
ischemia, inflammation, undernutrition, and sepsis, may result in dysregulation and
toxicity from microglia, injury to the oligodendrocyte precursors, and/or direct injury to
axons leading to white matter dysmaturation (5, 6). Additionally, premature infants,
especially those delivered at youngest gestational ages, are at risk of developmental delay,
including cognitive, motor, behavioral, language, and learning deficits (1, 7-9).

Abbreviations

AF, arcuate fasciculus; CST, corticospinal tract; dMRI, diffusion MRI; DTI, diffusion tensor imaging; ELBW,
extremely low birth weight <1,000 g; EPT, extremely preterm <28 weeks gestation; FA, fractional anisotropy;
fMRI, functional magnetic resonance imaging; GA, gestational age; ICP, inferior cerebellar peduncle; IFG,
inferior frontal gyrus; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; MCP,
middle cerebellar peduncle; MEG, magnetoencephalography; NODDI, Neurite Orientation Dispersion and
Density Imaging; PT, preterm; ROI, region(s) of interest; SCP, superior cerebellar peduncle; SFOF, superior
fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; TC, term control; UF, uncinate fasciculus;
VLBW, very low birth weight <1,500 g; VPT, very preterm <32 weeks gestation.
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Children born prematurely are less likely to be ready for
school and more likely to experience educational delay, with
risks increasing as birth gestational age (GA) decreases (10-12).
Preterm (PT) children continue to perform below their term-
born peers in reading, spelling, mathematics, and measures of
executive function and behavior (8, 13-18), in one meta-
analysis performing a half standard deviation below term peers
in reading (13). Poor academic achievement can lead to grade
failure, lower rates of higher education, lower vocational
potential, and behavioral issues, which may compromise success
(19, 20). Studies report two to three times higher risk of
learning disability for very preterm (VPT, <32 weeks GA) and
very low birth weight (VLBW, <1,500 g) children and three to
five times higher risk for extremely preterm (EPT, <28 weeks
GA) and extremely low birthweight (ELBW, <1,000 g) children,
with many requiring remedial assistance in school (21-24).
Rates of specific learning disability vary across cohorts, which
may be at least partially attributed to varied definitions of
learning disability, but are higher than expected in ELBW and
VLBW (16, 18, 25). Though data are mixed, some cohorts
demonstrate an increased rate of specific reading disability
compared to term-born comparison children (TC) and rates of
combined reading and mathematics disability and comorbid
learning disability with intellectual disability are higher in PT
children (16, 18, 25).

1.2. Development of the reading network
and impact of prematurity

Even outside of a formal diagnosis of learning disability,
premature children demonstrate deficits in reading skills,
including phonological awareness, decoding, vocabulary, rapid
naming, and comprehension, and are subsequently at risk for
low achievement in reading (17, 18, 26-29). Emergent literacy
comprises the period before formal instruction in reading when
children acquire these fundamental skills for reading (30). Delays
in any of the foundational components of emergent literacy can
lead to later delays in reading acquisition. As language is one
such crucial foundational skill for the development of literacy, it
is unsurprising that language delays at younger ages are
predictive of reading ability in PT children at school age (31-33).
Unfortunately, deficits in reading skills do not appear to improve
with time in PT, with gaps in decoding remaining stable over age
at assessment and gaps in reading comprehension widening with
age at assessment (26). Therefore, identification of modifiable
factors that could confer resiliency in preterm children is of the
utmost importance.

The development of reading is an advanced skill that
harnesses the pre-existing language network, pairing it with
regions of the brain involved in the recognition of visual
symbols such as letters and words (orthographic processing),
decoding words (phonological processing), and areas involved
in semantic comprehension and attention (34, 35). Though the
exact timing is fluid, reading acquisition occurs roughly in 3
stages—emergent literacy from age 3 to around 6 years, early
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literacy when formal instruction in reading begins (grade 1-3,
6-8),
maintenance (grade 4, roughly age 9-10 and beyond) (34).

roughly age and conventional literacy or reading
Initial reading focuses on the decoding of words into
phonemes, or units of sound, and letter and word recognition.
As reading skill advances, this process becomes automatic and
readers attain fluency, at which point the reader switches from
learning to read to reading to learn (36).

The “reading network” in typically developing term children
and adults has been well studied using neuroimaging. The
dorsal stream of the reading network is involved in
phonological processing and verbal repetition, involving two
white matter tracts—the arcuate fasciculus (AF) and superior
longitudinal fasciculus (SLF)—which connect the regions of
superior temporal gyrus, angular gyrus, and supramarginal
gyrus to the area surrounding the inferior frontal gyrus (IFG,
includes Broca’s area) (37). In term children, the bilateral dorsal
tracts are initially associated with reading but quickly left
lateralize, with connectivity of the left dorsal tracts positively
associated with reading skill until age 10 when the association
between FA of the left-sided dorsal tracts and reading skill
disappears (38). The ventral stream is involved in more rapid
semantic processing and orthographic recognition of words,
characterized by several white matter tracts—the inferior
(IFOF),

fasciculus (ILF), and uncinate fasciculus (UF)—which course

fronto-occipital  fasciculus inferior  longitudinal
through the left occipitotemporal sulcus and fusiform gyrus (37,
39). These tracts connect the language network, comprised of
dorsal and ventral streams (35), to the visual word form area
and regions related to executive function and attention, thus
comprising the reading network (39). In term children, FA of
the bilateral tracts is positively associated with reading skills
from age 6-10, after which the ventral tracts associated with
reading begin to left lateralize as well. Ultimately, by age 10,
decreased structural connectivity of the UF is associated with
better reading performance (38). Some studies include as part
of the reading connectome the corticospinal tracts, corpus
callosum, forceps major and minor, and the cerebellar
peduncles which have been associated with reading in various
studies in TC (40-43).

Relatively few neuroimaging studies have investigated the
development of language and reading in PT children, who are at
risk for delays in both areas. Brain connectivity related to
language in PT children has been more extensively studied, with
some studies suggesting that preterm children may employ
different

compared to TC (44-52). It is possible that preterm children

structural and functional networks for language
who are at risk for brain injury may develop compensatory
pathways for language and reading that differ from their term
peers. Assessment of structural connectivity of the reading and
language networks has been performed with diffusion imaging,
primarily diffusion tensor imaging (DTI). Functional connectivity
is being explored to assess reading, with limited studies performed
with functional MRI (fMRI)

(MEG), which can be used to determine activation in task-

and magnetoencephalography

associated cortex.
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1.3. Imaging methods used to assess
reading networks

While of the
methodologies used to assess reading networks in PT and TC is

an extensive review of each imaging
not possible within this paper, we will briefly summarize the
various techniques used in the articles discussed. Most studies
evaluating reading-related skills in term and preterm children
with neuroimaging use diffusion MRI (dMRI), often specifically
employing diffusion tensor imaging (DTI) to assess structural
connectivity. DTT is a measure of the direction of water diffusion
and results have been interpreted as reflecting white matter
integrity (53). Fractional anisotropy (FA) is a commonly used
measure which represents the degree to which diffusion is in one
direction (anisotropic), as would be expected within an axon or
otherwise highly myelinated region. Other metrics include axial
diffusivity, the degree of diffusion in the principal direction;
radial diffusivity, the degree of diffusion in the direction
perpendicular to the principal direction; and mean diffusivity, the
net degree of diffusion. It is acknowledged that DTI is an
oversimplified model, which is problematic if one desires a
measure of “white matter integrity,” as DTI is unable to
sufficiently address the problem of crossing fibers which impact
approximately 90% of the voxels in the brain (54). Therefore,
higher-order “tensor free” models might be preferred. One
example of advanced diffusion imaging that has been used in
studies of reading is Neurite Orientation Dispersion and Density
Imaging (NODDI), which distinguishes between the intracellular,
extracellular, and cerebrospinal fluid diffusion compartments
(55). NODDI is thought to account for density of axons and
increased dispersion that may contribute to unreliable fractional
anisotropy results, thereby providing a more reliable picture of
white matter microstructure (55). The metric of neurite density
is correlated with the intensity of myelin stain and is weakly
positively correlated with FA; neurite orientation dispersion
assesses the tract direction of axons and provides an improved
assessment of crossing fibers and connectivity (55). Another
method, myelin water fraction imaging, has been proposed to be
a more accurate measure of myelin histology than DTI (56).
Relaxometry, a measure of relaxation time in T1 or T2 weighted
MRI, might be more reflective of myelin water fraction than DTI
(57, 58). Relaxometry and myelin water fraction imaging have
not been widely used to study reading in preterm children,
though they have been explored in term children (59).

Functional imaging allows evaluation of regions of cortex that
activate during a specific task, which—theoretically—may provide a
clearer picture of the network of regions involved in reading. fMRI
can be performed during resting state or during an activity, during
which a blood oxygen level dependent (BOLD) signal is created
when neuronal activation and oxygen consumption leads to
increased local blood flow causing a change in magnetization of
hemoglobin molecules in the red blood cells as they shift from
deoxygenated back to oxygenated (60). fMRI studies can evaluate
areas of the brain used during a task in real-time, providing
insight into neural connectivity by investigating areas of cortex
that activate in response to specific tasks. For task-based fMRI
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studies, statistical contrasts can be generated to identify task (i.e.,
reading) associated BOLD activation vs. rest or vs. a control
condition. For resting-state and for task-based fMRI studies, the
time series of this BOLD activation can be correlated with the
time series of other brain regions or areas of task-associated
activation to give a measure of functional connectivity. fMRI has
excellent spatial resolution, allowing data-driven identification of
possible regions of importance during certain cognitive tasks.
One of the downsides of fMRI, however, is that the temporal
resolution is relatively slow compared to other modalities. MEG,
which can also be used to assess functional connectivity, has sub-
millisecond resolution. This fast processing is ideal for evaluating
tasks which involve rapid integration of diffuse areas of the
brain, such as reading and language, and has been used to assess
functional connectivity related to language in preterm children
(48, 50, 51). A review of all the functional connectivity metrics
that can be derived from the time series data in MEG or EEG is
beyond the scope of this paper. However, as noted above, a
distinct advantage of these methodologies is the sub-millisecond
temporal resolution that can be used to not only assess
undirected functional connectivity (as in fMRI) but also directed
measures of connectivity and information flux (61).

1.4. Behavioral assessments of reading

Reading fluency depends on several prerequisite skills, including
verbal comprehension and vocabulary, phonological awareness or the
ability to decode words, and rapid orthographic recognition of letters
and eventually sight words (36, 62). Studies assessing reading skills
often assess these foundational skills as well. Commonly used tests
to evaluate language skills in English-speaking participants include
the Peabody Picture Vocabulary Test, a measure of receptive
vocabulary (63), and the Comprehensive Evaluation of Language
Fundamentals, which assesses measures of receptive language,
language The
Comprehensive Test of Phonological Processing (CTOPP) is

expressive language, and vocabulary  (64).
particularly important as it assesses decoding skills related to
phonological processing and speed of retrieval through several
subtests (65). Phonological processing is acknowledged to be a
critical foundational skill related to future reading ability in TC and
PT (32, 66). Measures that specifically assess reading skill include
Gray Oral Reading Test which produces an Oral Reading Index
comprised of 4 subtests assessing rate, accuracy, fluency, and
comprehension (67) and the partner Gray’s Silent Reading Test
which assess silent reading ability; Woodcock-Johnson Tests of
Achievement Basic Reading Composite, which measures decoding
ability via the word identification and word attack subtests, and the
which

comprehension (68); Woodcock Reading Mastery Test which

passage  comprehension  subtest assesses  reading
assesses decoding, rapid naming, passage comprehension, and
fluency (69); Test of Word Reading Efficiency measures efficiency of
sight word reading and decoding skills (70); Peabody Individual
Achievement Test which assesses reading recognition and
comprehension in additional to other academic skills (71); and

Wide Range Achievement Test which assesses reading skills and
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comprehension in addition to spelling and mathematics (72). Most
studies in term children that assess reading focus on the skills that
compose reading, such as decoding or phonological awareness and
rapid naming, as opposed to fluent reading (34). This is true in the
literature of preterm children as well.

1.5. Objectives

The aim of this paper is to systematically search for and critically
review the existing literature exploring structural and functional
brain connectivity related to reading in preterm children. We will
summarize what is known to date, review potential controversies
in the field, and assess areas for further study. We will focus on
the neural underpinnings of reading in preterm children and
discuss whether alternative connectivity or mechanisms for
reading are present in children born PT vs. TC. Investigation of
these mechanisms may reveal compensatory pathways which may
serve as markers of resiliency or positive adaptability, allowing PT
children to overcome the risks of prematurity to achieve normal
cognitive outcomes. An improved understanding of this area may
ultimately lead to interventions that could help optimize outcomes
and improve quality of life for premature children.

2. Materials and methods

For this review, a systematic search was performed using
of the
“neuroimaging” or “MRI” or “connectivity” or “EEG;” and

combination terms “premature” or “preterm;’

10.3389/fped.2023.1083364

“reading” or “literacy” in the PubMed and Embase databases,
yielding 167 and 123 results respectively. An additional search
was performed using MeSH terms “infant, premature” or “infant,
low birth weight,” and “functional neuroimaging” or “diffusion
MRI” and “reading,” as a MeSH major topic and limiting results
to those involving human subjects and written in the English
language, yielding 64 articles. There was no restriction based on
date of publication, with the search updated until October 27,
2022. A total of 354 abstracts from all searches were identified,
which was reduced to 162 after removal of repeated articles and
those with full text either not available (3) or not available in
English (6, see Figure 1). These abstracts were screened for
relevance to the topic and in total, 50 full text articles were
reviewed in detail to assess for eligibility including 14 identified
from references of the first search. Articles were then further
excluded if not related to premature children, reading outcome,
or structural or functional connectivity.

Three articles were excluded due to being commentary articles
only. Three studies were identified that related reading in preterm
children to findings on structural MRI, including volumetric
analyses (73, 74) and degree of temporal lobe gyrification (75).
These were not included due to the focus of the current study
on connectivity-related imaging and reading. We identified only
one EEG study relating early postnatal EEG background activity
to literacy precursor skills at age 5 (76). This study was
excluded due to a lack of focus on connectivity. Four case series
discussing structural connectivity and reading outcome were
identified from children excluded from the larger cohorts of the
studies reported; these were not included but are mentioned
briefly in the discussion.

Articles identified from

database searches
(m=354)

Abstracts reviewed

Articles removed due to duplicates
(n=183), full text not available (n=3),
non-English language (n=6)
n=192)

(n=162)

Full text articles assessed for
eligibility, including

Abstracts and titles excluded that were
not relevant to topic
(n=126)

additional articles identified
from references (n=14)
(n=50)

Studies included in review
n=22)

FIGURE 1

Article selection process. Flowchart describing the article selection process including initial database search with removal of duplicates, abstracts
reviewed and excluded, and finally full texts reviewed and either excluded or included in the literature review.

Full texts excluded due to not related to
connectivity, not related to premature
children, not related to reading outcomes,
commentary articles, or case series
n=28)
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Ultimately, 22 articles evaluating neuroimaging of structural or
functional connectivity related to reading outcomes in preterm
children were included in this review. All studies were cohort
studies; no randomized control trials, systemic reviews, or meta-
analyses were identified. Fifteen articles related to structural
connectivity were selected that compared outcomes in preterm
children to controls, assessed connectivity through diffusion
imaging, and attempted to correlate connectivity to behavioral
outcomes related to reading. The search revealed very few fMRI
or functional connectivity studies of reading in prematurity. Four
functional imaging studies (3 fMRI, 1 MEG) focused on
connectivity and reading-related outcomes. An additional 3 task-
based fMRI studies were
identification of alternate areas of activation during reading tasks

included in this review due to
and an attempt to correlate these “reading networks” to reading-
related metrics. It should be noted that these three articles do
not use overt connectivity metrics in their studies, which is a
weakness. However, they were reviewed given the dearth of
available literature in this area and the importance in establishing
regions of interest or “nodes” before conducting connectivity
analyses. Across imaging types, articles which attempted to relate
neuroimaging findings to reading outcomes and did not reveal
significant associations were included. The articles were evaluated
with a focus on the population studied, imaging methods
employed, and results, which were compared between studies.

3. Results

The results of our systematic search of the neuroimaging of
brain connectivity supporting reading in preterm children are
reviewed below according to three neuroimaging methodologies
identified: 15 dMRI, 6 fMRI, and 1 MEG study.

3.1. Diffusion MRI

Most of the literature of neuroimaging related to connectivity
and reading-related outcomes in formerly preterm children use
dMRY, typically DTL Table 1 lists all the studies reviewed related
to structural connectivity and reading-related outcomes. For
clarity, the studies assessed are divided by whether the subjects
assessed are at the stage of early literacy or conventional literacy,
with DTI studies discussed first followed by studies using
advanced dMRI methods.

3.1.1. Early literacy phase (6—8 years)

Most studies evaluating the white matter microstructure in
younger children aged 6-8 years who have begun formal
instruction in reading are performed in a cohort of VPT
compared to (TC) (57, 77-79). A summary of DTI studies can
be found in Table 1. These studies assess regions of interest
(ROI) based on prior studies in TC of tracts related to reading,
including both dorsal and ventral tracts.

Dodson compared VPT children born at 22-32 weeks and TC
at age 6 with DTI and assessments evaluating language,

Frontiers in Pediatrics

10.3389/fped.2023.1083364

phonological processing, and reading via rapid naming and
decoding (77). The PT group had lower core language scores and
IQ than TC but no significant difference in phonological
processing scores. On DTI analysis, FA of the left arcuate
fasciculus (AF) was positively associated with phonological
awareness scores in both term and PT children. Conversely, FA
of the right uncinate fasciculus (UF) was positively associated
with language scores in the FT group only, not in PT children.
Dubner evaluated DTI of the corpus callosum in the same
cohort, dividing the VPT group into those with a history of
prenatal inflammatory conditions (bronchopulmonary dysplasia,
necrotizing enterocolitis, or sepsis) compared with those who did
not and TC (78). The reading skill assessed was decoding in
addition to executive function metrics. FA was significantly lower
and MD higher in multiple segments of the corpus callosum in
the PT group who experienced inflammatory conditions
compared to the term and the preterm group without a history
of a major inflammatory event. In the combined sample analysis
with both TC and PT, higher FA of the occipital segment of the
corpus callosum was associated with better reading and executive
function, however this was not significant when separated by
group. Another study from the same cohort relates DTT at age 6
with reading fluency and comprehension at age 8 in VPT and
TC (79). On DTI at age 6, FA of the left AF, bilateral SLF, and
left ICP positively related to reading scores at age 8 in TC. In
PT, there were no significant associations between reading and
FA of the left AF, right SLF, or left ICP. Significant association
between reading outcome and FA of the left SLF in PT emerged
only following the addition of pre-literacy skills to the model. No
associations were found between reading scores and ventral
stream tracts in either group.

Brignoni-Perez compared FA of ROI selected a priori with
reading fluency and comprehension using DTI in addition to
quantitative T1 relaxometry (R1), which is the inverse of the
time constant in T1-weighted MRI, in 8-year-old VPT compared
to TC (57). For TC, reading scores positively correlated with FA
of the left AF and bilateral SLF, but no association between
reading scores and FA of any tracts were seen in PT. However,
on relaxometry analysis, reading scores in PT were positively
correlated with R1 of the right UF, left ILF, and left SLF while
no correlations were found between reading scores and R1 of any
pathway in TC.

There are studies employing tensor-free analysis of dMRI from
the longitudinal Victorian Infant Brain Study (VIBeS). Thompson
evaluated VPT at age 7 compared to TC with constrained spherical
(CSD)
tracts

deconvolution modeling of cortico-striatal and
(80).

connectivity and reading were found only in TC, not PT, with

thalamocortical Relationships  between tract
better word reading scores weakly associated with increased tract
connectivity from the left caudate and nucleus accumbens to the
left lateral prefrontal cortex and the left putamen-motor tract. In
a subset of the VIBeS cohort at age 7, Kelly used DTI and
advanced dMRI methods (neurite density measurement with
NODDI and tract-based spatial statistics, TBSS) in VPT and TC
(81). In VPT only, reading scores were positively correlated with

FA of diffuse fiber tracts including the cerebellar peduncles,
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corticospinal tract, IFOF, ILF, UF, anterior thalamic radiation,
external and internal capsules, forceps major and minor, SLF,
corona radiata, cingulum, fornix, posterior thalamic and optic
radiation, and left superior fronto-occipital fasciculus (SFOF).
However, NODDI metrics of axon dispersion and density did
not specifically correlate with reading.

3.1.2. Conventional literacy phase (9 years and
above)

Most studies evaluating white matter tracts related to reading
have been performed in cohorts of older children in later stages
of reading development (conventional literacy phase) with a
focus on a-priori selected tracts. A Finnish cohort study of 9-
year-old VPT and TC correlated DTI with reading fluency,
comprehension, rapid naming, word reading, verbal
comprehension and spelling (82). In VPT, increasing FA of the
left AF and bilateral SLF positively related to rapid naming
scores. Rapid naming is an important factor in reading ability
(82, 83). FA of left SLF (branches 2, 3) was positively associated
with verbal comprehension and spelling scores. In growth
restricted VLBW specifically, there was a positive association
with reading comprehension scores and FA of the left IFOF, a
ventral stream pathway. In TC, correlation of FA of the left SLF
(branch 1) was found with rapid naming, but most tracts
assessed were not associated with reading outcomes. A DTI study
assessing 16-year-old adolescents stratified both by reading ability
and birth group, compared TC with PT (who were further
divided into “low-risk” or “high-risk” based on severity of
neonatal complications) (84). The study correlated FA of the
SLF, IFOF, and SFOF with decoding, phonological awareness,
and rapid naming. Across groups, FA of the left SLF decreased
and RD increased as reading performance increased in letter-
word identification and phoneme reversal. FA of the right SLF
decreased as attention performance decreased across groups.
Direction of association with FA was consistent for PT and TC.
Mullen related DTI

Multicenter IVH Prevention Trial at age 16 to sight reading,

in a subset of the cohort from the

non-word decoding, and phonological awareness (85). Despite
the finding of lower FA of the corpus callosum in VPT
compared to TC, there was no correlation of FA of the corpus
callosum with reading scores. VPT exhibited a significant positive
correlation between FA of the bilateral UF and receptive
language scores along with rapid naming scores.

Most studies of older PT children investigate a cohort of 9- to
17-year-olds enrolled in a multi-site study assessing cognitive
outcomes of prematurity, with 4 reports from the Palo Alto arm
(86-89) and 1 from the Pittsburgh arm (90). The PT group is
heterogeneous in age and degree of prematurity (<36 weeks
gestation). Testing of verbal IQ, receptive and expressive
language, verbal memory, linguistic processing speed, syntactic
comprehension, single-word reading, pseudoword reading, and
reading comprehension were performed with both groups scoring
within normal limits. DTT was analyzed with TBSS in a subset of
this cohort (86). For PT, there were positive correlations between
verbal IQ, linguistic processing speed, syntactic comprehension,
and decoding with FA in 15 tracts forming a diffuse bilateral
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network including the corpus callosum, forceps major and
minor, bilateral anterior thalamic radiation, bilateral corticospinal
tracts (CST), bilateral IFOF, bilateral ILF, bilateral SLF, and
bilateral UF. FA of all tracts positively correlated with syntactic
comprehension and decoding. Language and reading scores
positively associated with FA of the corpus callosum, forceps
minor, left SLF, bilateral ILF, right anterior thalamic radiation,
right corticospinal tract, and bilateral IFOF. Regression analyses
identified the most important tract predictors of a given
outcome: right IFOF for verbal IQ and syntactic comprehension,
bilateral forceps minor for receptive vocabulary and verbal
memory, right anterior thalamic radiation for linguistic
processing speed, genu of the corpus callosum for decoding, and
left UF for reading comprehension. There were no statistically
significant associations in TC between FA of any tract and
several behavioral measures. Travis performed tract segmentation
in the Palo Alto cohort using predefined ROIs associated with
reading, including bilateral anterior SLF, AF, CST, UF, and ILF,
which were then correlated with reading decoding and
comprehension (89). Positive correlations were found in PT
between decoding and FA of the bilateral anterior SLF, left AF,
and bilateral CST as well as between comprehension and FA of
the left anterior SLF, left UF, and right CST. TC had negative
correlations between decoding and FA of the left anterior SLF,
bilateral CST, and bilateral UF and negative correlations between
comprehension and FA of the left anterior SLF, left UF, and left
AF, in contrast to the TBSS study of the same cohort by
Feldman (86). The proof of concept study by Yeatman evaluating
fiber (AFQ)
demonstrated a positive correlation in PT between single word
reading skills and FA of the left AF and left SLF, while a
negative correlation was found in TC between single word
reading skills and FA of the left AF (87).

Two additional reports from the same multi-site study of

automatic tract quantification methodology

reading and language evaluate connectivity of specific structures:
the cerebellum and the corpus callosum. Decoding and reading
comprehension were positively associated with FA of middle
cerebellar peduncles (MCP) in both PT and TC (88). Negative
associations were demonstrated in both groups between FA of
the SCP and ICP and decoding and reading comprehension,
though when controlled for the other skill, only FA of the left
ICP remained significantly correlated with decoding and FA the
right SCP with comprehension. The Pittsburgh arm of this
multi-site study correlated decoding and passage comprehension
with DTI of the corpus callosum (90). Lower FA of the genu,
body, and splenium of the corpus callosum was found in PT
compared to TC. Increasing FA of the body of the corpus
callosum positively related to word identification scores in both
groups.

There is one study that uses advanced diffusion imaging to
evaluate connectivity related to word reading in PT. A subset of
the VIBeS cohort was assessed at age 13 using tensor-free
(NODDI
complement their DTI analysis with TBSS, providing more

techniques and Spherical Mean Technique) to
reliable assessment of white matter integrity than FA alone (91).

Though significant correlations were found between connectivity
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metrics and mathematics outcomes, analysis relating FA or
NODDI of any tracts with reading outcome was not significant.

3.2. Functional MRI

The literature assessing functional connectivity related to
reading in preterm children is limited. 3 fMRI studies reported
connectivity metrics and attempted to relate connectivity with
behavioral measures related to reading. These studies are listed in
Table 2. There are 3 additional studies which report task-based
fMRI results that suggest alternative areas of activation in
tasks children. Though
connectivity metrics are reported, these studies are related to the

reading-related in preterm no
reading network used by preterm children. These studies have
been included in an effort to discuss all available studies that

speak to the reading network in preterm children (Table 3).

3.2.1. Early literacy phase (6—8 years)

All studies identified investigating reading-related functional
connectivity in PT were performed in VLBW children from the
Multicenter Indomethacin IVH Prevention trial. These studies
assessed reading and language skills. They are not longitudinal in
nature due to use of varying subsets of participants and different
tasks. Of these, 1 study involves the early literacy phase of
reading attainment. Gozzo compared 7- to 9-year-old PT and
TC, correlating connectivity on fMRI with reading recognition
and comprehension (44). Wernicke’s area (Left Brodmann Area
22) was selected as the reference ROI and connectivity was
assessed to canonical left-sided language areas and their right-
sided homologues. PT exhibited different patterns of connectivity
compared to TC with increased cross-hemispheric activity and
involvement of right sided-homologues. Specifically, increased
connectivity was seen in PT from Wernicke’s area to the right
and left supramarginal gyri and the right IFG (homologue of
Broca’s area). In this study, correlations were not found between
connectivity and behavioral metrics of reading. This is the only
study of functional connectivity in PT in the early literacy phase
at the time of this review.

3.2.2. Conventional literacy phase (9 years and
above)

Another study from the Multicenter IVH Prevention Trial
assessed functional connectivity correlated with reading scores
[Test of Word Reading Efficiency (TOWRE) assessing sight word
reading and decoding], phonological awareness, and language in
PT and TC at 16 years of age (47). Wernicke’s area was used as
a reference region and connectivity was assessed between this
area and 3 ROIs that were significant in the study by Gozzo:
bilateral supramarginal gyri and the right-sided homologue of
Broca’s area in the IFG (44). No significant correlations were
found between connectivity in these pathways and reading or
with
language measures demonstrated increased strength of the

phonological awareness scores. However, correlations
alternative pathway between the left-sided Wernicke’s area and

the inferior portion of the right supramarginal gyrus was
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inversely related to receptive vocabulary. Subjects whose mothers
had low levels of education also had increased connectivity
strength in this pathway.

In a third study from the Multicenter IVH Prevention Trial,
connectivity during resting state fMRI at 18-20 years was related
to rapid naming and phonological awareness for PT and TC
(92). The intrinsic connectivity contrast degree map identified an
area in the left cerebellum in PT compared to TC which was
used as a reference region for whole brain connectivity analysis.
In PT, increased connectivity was found from this seed region in
the left cerebellum to the bilateral IFG, encompassing Broca’s
area on the left and its right-sided homologue. There were no
correlations found between these pathways and phonological
scores, important for reading ability, in either PT or TC.
However, the strength of connectivity from the left cerebellar
ROI to the bilateral IFG positively correlated with receptive
language scores in PT (not in TC).

While not studies of connectivity metrics explicitly, some task-
based fMRI studies have investigated differences in representation
in PT children vs. TC. Because
definition of ROIs or “nodes” of the network of interest is a

of the “reading network”

critical step in any functional connectivity analysis, the studies
are briefly summarized. In a small study of adolescent male VPT
compared to TC undergoing alternating visual phonologic
processing tasks in fMRI (93), VPT demonstrated reduced
activation in the left peristriate cortex, left cerebellum, and right
precuneus with increased activation in the right hemisphere,
precentral gyrus, and superior frontal cortex, whereas TC
demonstrated greater activation in the peristriate cortex which
includes the putative “visual word form area” which is important
for reading in TC as demonstrated by decreased activation in
children with dyslexia (39, 94).

In a study from a subset of the IVH Prevention cohort, Ment
performed task-based fMRI in PT and TC at age 12 and
correlated reading-related BOLD activation with behavioral
metrics including silent reading, sight reading, decoding
efficiency, phonological awareness and language scores (95).
Compared to TC, VPT demonstrated reduced activation in the
left middle temporal gyrus, left angular gyrus, and posterior
cingulate gyrus and reduced deactivation in the left inferior
parietal lobule and right inferior frontal gyrus during semantic
processing. During phonologic processing, VPT demonstrated
alternative patterns of activation in the left middle and superior
temporal gyri, right anterior middle temporal gyrus, and left
parahippocampal gyrus whereas TC demonstrated widespread
frontal and occipital deactivation.

Finally, a task-based fMRI study of Swedish PT and TC
adolescents related activation to measures of reading accuracy
and reaction time in addition to metrics of visuospatial
processing and verbal comprehension related to reading ability
(96). PT exhibited increased activation in the left IFG during
the

supramarginal gyrus for orthographic processing, and decreased

phonologic  processing, decreased activation in right

activation in a different region of the left IFG during the

semantic condition. For PT, higher semantic task accuracy was
related to increased activation in the left angular gyrus. PT
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exhibited lower visuo-spatial scores vs. TC which were correlated
with increased right supramarginal gyrus activation during the
phonologic processing task. However, there was no difference
between groups in accuracy or reading time during the task,
suggesting that the atypical
demonstrated by PT may be compensatory.

activation and deactivation

3.3. Magnetoencephalography

This review identified one study evaluating connectivity using
magnetoencephalography (MEG) which is included in Table 2.
Using a previously discussed cohort (84), Frye evaluated PT
and TC adolescents categorized both by reading ability and
birth group (97). PT were divided into low-risk and high-risk
based on neonatal complications. Participants performed real-
word and non-word rhyme tasks during MEG with ROI
analysis involving Broca’s and prefrontal areas, frontal and
supplementary motor areas, middle temporal gyrus, superior
temporal and Heschl’s gyri, in addition to supramarginal and
angular gyri. The MEG metric assessed was number of dipoles
(NOD). Among good and average readers, those born high-risk
preterm had greater NOD, especially during the 250-350 ms
latency, in the prefrontal area during the real word rhyme task
than those born low-risk PT and TC. Similarly, among good
and average readers during the non-word rhyme task, the high-
risk PT group demonstrated greater NOD, particularly during
the 350-450 ms latency, in the left prefrontal area the low-risk
PT and TC. Poor readers across birth groups demonstrated
lower NOD in the Broca’s and left prefrontal areas and higher
NOD in homologous right sided cortical regions. The authors
suggest their findings may reflect compensatory mechanisms of
frontal overactivation and reduced left lateralization. While the
authors analyze time courses of electromagnetic brain activity,
number of dipoles is not a commonly used MEG connectivity
metric and might not be interpretable as a functional
connectivity metric at all. There are no other studies evaluating
connectivity on MEG related to reading in preterm children to
which we can compare results.

4. Discussion

As neuroimaging techniques advance, dMRI, fMRI, and MEG
have all been used to evaluate brain structure and function related
to emergent literacy and reading measures in PT children who are
known to be at risk for reading difficulty. Elucidation of the reading
network in PT would help define typical development in this
population and the neuroimaging correlates of such.
Subsequently, biomarkers indicative of children at risk for poor
reading may be identified, allowing earlier intervention and may
potentially guiding effectiveness of future interventions. Though
innovative work has been done to elucidate the reading network
in PT and the differences from TC, much important work

remains to fully characterize this process.
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4.1. Structural connectivity and reading in
prematurity

4.1.1. Early literacy phase (6—8 years)

In studies of younger children, FA of the classical dorsal and
ventral pathways positively associated with reading in TC are
largely not associated with reading outcome in PT (57, 77, 79).
FA of diffuse and widespread tracts were associated with reading
skill in PT in one larger study, but correlations were not found
using tensor-free metrics (81). One study was done evaluating
relaxometry, a myelin-water fraction related metric, which
demonstrated associations with reading in PT only, but
associations were not found with FA alone (57).

4.1.2. Conventional literacy phase (9 years and
above)

Studies in older children and adolescents have focused on
specific ROI. Several studies have associated increased FA of
certain segments of the corpus callosum with better reading-
related outcomes in PT (78, 86, 90). Interestingly, some studies
in TC have demonstrated that good readers have lower FA in the
corpus callosum than poor readers, which may represent pruning
or decreased interhemispheric connections as reading ability
matures (42, 43). Additionally, studies of language in PT have
identified
compensatory mechanisms for language function, possibly due to

extra-callosal pathways which may serve as
perinatal injury to the corpus callosum (49, 52). The cerebellum
has been implicated in reading development in TC, with several
studies implicating cerebellar structures as important in reading
and emergent literacy skills (40, 41), and thus, has been explored
in studies of PT. There are variable findings relating cerebellar
structures with reading skill in PT, with one study showing
positive associations of FA of the left ICP in PT and not TC (92)
and another showing negative association with the left ICP and
reading in both PT and TC (88). The findings are inconsistent.
As cerebellar structures are associated with the contralateral
cerebrum, we would have expected the right cerebellum to be
associated with left lateralized language and reading pathways in
older TC if not in PT. Of particular interest in many studies of
PT are the classical dorsal and ventral tracts associated with
reading outcome in TC. In general, negative associations were
found between FA of these pathways (left sided SLF, AF, bilateral
UF, bilateral CST) and reading outcome in TC while positive
associations are seen with the same tracts and reading outcome
in PT (82, 86, 87, 89). One explanation of the negative
correlations with reading outcome might be that, in TC, pruning
leads to decreased FA in important areas as efficiency increases,
such that initial positive associations between FA and ability
become negative associations in later years. Alternately, the
network in TC could become more complex with increased
crossing fibers resulting in lower FA. Notably, some of these
studies demonstrate positive associations in PT adolescents
between FA of right sided tracts and reading outcomes at an age
when the tracts, specifically the SLF, have typically have left
lateralized in TC, which may suggest delayed maturation (82,
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89). However, other studies did not find such correlations with
reading outcome (98). Reduced left lateralization of white matter
tracts in children born PT compared to TC is among the most
widely described findings in structural connectivity studies of
older children and adolescents (85, 86, 97), consistent with
literature in preterm children revealing reduced left lateralization
of language-related pathways (45, 99). In TC with dyslexia,
reduced lateralization of reading-related pathways has been
demonstrated compared to typically developing peers, with
increased bi-hemispheric involvement thought to represent strain
or increased effort required read (39, 94, 100). Research reviewed
above using higher-order tensor-free analysis of diffusion data
did not find significant results in PT.

It should be noted that the reviewed studies are not truly
longitudinal so the following comparisons between studies are
speculative at best. It is possible seemingly contradictory findings
in younger and older cohorts of PT represent a delay in typical
development of reading-related pathways. In the early literacy
phase, reading outcome appears to be positively correlated with
FA in traditional white matter tracts of the reading network in
TC, but no association is seen in PT. This seems to shift in later
childhood and adolescence during the conventional literacy phase
when reading fluency has been achieved, with findings of no or
negative associations of FA of dorsal and ventral stream tracts
with reading outcome in TC but positive associations of the
same tracts with reading outcome in PT. Aside from a delay in
typical development, another possibility is that PT harness
alternative pathways that are not identified in studies that use a
priori defined tracts or are not adequately identified by FA as a
metric. It is possible as well that varied outcomes can be
attributed to methodological differences between studies.

4.2. Functional connectivity and reading in
prematurity

4.2.1. Early literacy phase (6-8 years)

Functional MRI studies of reading in PT children involve
relatively small sample sizes, typically of older children. We
found only one study of functional connectivity in the early
literacy phase. In this study, areas canonically related to
language, such as Wernicke’s area, had increased connectivity to
right sided homologues and frontal areas in PT (44, 47). These
areas of alternative functional connectivity were not successfully
related to behavioral measures of reading or language.

4.2.2. Conventional literacy phase (9 years and
above)

Notably, the task-based functional connectivity study available
in older children (47) is based on a priori-selected ROIs from the
study in younger children (44). The alternative connectivity
identified from Wernicke’s area to the right SMG has been
associated with language outcomes in PT, which are foundational
skills that contribute to reading ability. Interestingly, in this study
increased connectivity in the alternative pathway was negatively
associated with language

scores and degree of maternal
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education. This suggests that alternative connectivity pathways
may be most heavily relied on by those PT with the greatest deficits.

In general, the supplemental task-based fMRI studies reviewed
demonstrate diffuse and bilateral patterns of activation in TC
relative to PT children. Indeed, PT children appear to activate
areas different from TC during task-based imaging, with some
studies identifying more frontal activation (95, 96) and increased
activation in atypical areas (96, 101) which may represent an
attempt to compensate for difficulty with phonologic tasks. The
differences in task-based activation during reading-related tasks
may guide future connectivity studies as nodes or ROIs for analysis.

A resting state ROI-based fMRI study revealed increased
connectivity in PT between the left cerebellum and the bilateral
IFG (Broca’s area and the right sided homologue). Increased
connectivity to frontal regions and activation in frontal regions
has
performance of difficult tasks (102). Phonologic processing is a

been theorized to represent increased strain during
crucial foundational skill for reading and an area in which PT
commonly exhibit deficits (26, 27, 29). PT may overcome deficits
in areas such as phonological processing with increased effort
requiring recruitment of bilateral and diffuse regions or
alternative pathways compared to TC, which may explain the
patterns seen in these studies. Interestingly, though, the left
cerebellum was implicated in PT, in accordance with a structural
connectivity study implicating left cerebellum as related to
reading in younger children (79). As language and reading
functions are typically left lateralized in TC, the increased
connectivity related to the left cerebellum in PT is an unexpected
finding that may speak to a more diffuse and less lateralized
reading network in PT.

While not as commonly used as fMRI, MEG is a powerful tool
to assess function supporting reading in PT. We identified only one
study that used MEG in this review, yet the outcome measure of
number of dipoles and settings used render interpretation
difficult (97). The finding of greater NOD in prefrontal regions
in high-risk preterm children who are good and average readers
is thought to indicate increased frontal control required in good
readers who are at risk. Likewise, the findings in poor readers in
the high-risk preterm group of lower NOD in canonical left
NOD right-sided

homologues is suggested to represent decreased lateralization and

sided language regions and higher in

possibly increased strain related to reading.

4.3. Fundamental issues and problems

The literature surrounding connectivity related to reading
outcomes in PT children has several shortcomings and remains
limited, particularly as related to functional connectivity. One
issue involves study design, as most of these studies are not
longitudinal; thus, direct comparisons between studies cannot be
made. The findings discussed represent a snapshot in time and it
is difficult to determine if the differences seen between PT and
TC represent a delay in maturation, alternate development, or
simply variation between methodologies. Among diffusion
studies, there is one longitudinal study with imaging at 6 and 8
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years with consistent association patterns on dMRI, though not
compared directly, but the relaxometry data with findings in PT
was not followed serially (57). Thus, there are limited studies
which might answer the question of whether the findings
reported change over time as children develop and advance in
their reading ability. Likewise, the functional imaging studies
involve various subsets of a longitudinal cohort but varying tasks
and populations prevent longitudinal analysis.

There is considerable heterogeneity in terms of population,
neuroimaging method, and behavioral metrics used to evaluate
reading ability. Several of these studies involve cohorts of
children with wide age ranges from 9 to 17 years (86, 87, 89, 90).
Some argue reading attainment occurs in 3 phrases—reading
acquisition from age 3-6, reading refinement from age 6-14, and
reading maintenance from age 14-21 (38). Thus, these broad
cohorts may include children at various stages of reading
development and the tract profiles could vary based on age.
Additionally, cohorts studied include wide ranges of gestational
age in the PT group, with several studies including any child less
than 36 weeks, though late preterm infants are far less likely to
have cognitive issues than VPT or especially EPT (86, 87, 89,
90).
specifically, who are the most prone to reading difficulty (21, 26,

There are no studies investigating findings in EPT

103). Finally, most of the studies employ small sample sizes
which limits the significance of the results obtained.

Aside from small sample sizes and population heterogeneity,
there are relatively few cohorts evaluated. Most of the available
studies regarding reading-related connectivity in PT compared to
TC stem from 3 cohorts—2 different cohorts analyzed at Stanford,
including an older cohort from a study of long-term cognitive
outcomes of prematurity (86-90) and a newer cohort to
investigate the neural basis of reading (57, 77, 78, 79), and the
follow up cohort of the Multicenter Indomethacin IVH Prevention
trial (44, 47, 85, 92, 95, 101). Of the 22 studies evaluated in this
review, 14 stem from one of these 3 cohorts, as do all the case
reports mentioned. The remaining 8 studies include 3 from a
single Australian cohort (80, 81, 91), 2 from a Houston cohort
(84, 97), and 3 individual studies unrelated to other cohorts (82,
93, 96). It is possible that the results obtained thus far will not
generalize given the relatively limited number of children studied.

Additionally, the studies reported use a wide range of metrics
to assess reading. There are myriad tools that can be used to
assess a variety of reading-related metrics, including sight
reading, rapid naming, decoding, phonological awareness, and
reading efficiency, fluency, and comprehension in both oral and
silent reading. It is difficult to completely parse out the skills
being assessed in many of the studies, especially as reading
ability also encompasses language skills (vocabulary and verbal
comprehension) in addition to executive function related skills
such as attention.

Related to structural connectivity, most of the diffusion
imaging studies use FA as the primary metric. FA is difficult to
interpret when there are crossing fibers or branching axons as
the averaged direction of diffusion in the voxel may not fully
reflect the underlying tracts. In particular, analysis with measures
other than FA are needed to assess the corpus callosum, as
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interhemispheric pathways containing interdigitated fibers are
not be well assessed by this metric. Similarly, large axonal
diameters may have increased perpendicular diffusion and may
not be reflected by increasing FA. The studies involving DTI
acknowledge these potential pitfalls, as DTI makes inferences
about white matter integrity as a proxy for strength of
connections but does not measure quantitative connectivity.

To combat this, some studies have employed advanced
diffusion metrics to address the issues with using FA. Two
studies used NODDI, which is theorized to account for axon
density and dispersion that may cause FA to be unreliable (91).
Another study used relaxometry, or measurement of the inverse
of the time constant (R1), which is a myelin water fraction
related metric, and found different results between tracts in PT
and TC using FA and using R1 (57). In theory, myelin water
fraction imaging should most accurately reflect underlying
myelin content of tracts based on histologic measurements (56,
104). Myelin water fraction imaging has not been extensively
used to evaluate myelin content as related to reading skill in PT
but has been used to investigate differences between term typical
readers and children with dyslexia (59). Higher-order, tensor-free
techniques for the analysis of diffusion MRI data may also
provide improved characterization of underlying myelin content
by providing a quantitative measure of diffusion that is sensitive
to crossing fibers and has been used in some studies assessing
language in PT (49). Advanced diffusion imaging represents a
burgeoning area of study which may provide more reliable
metrics to assess white matter integrity and structural
connectivity in future studies. However, diffusion imaging has
limitations despite improving metrics and in some cases,
functional imaging may be a more ideal method to analyze
processes that require rapid integration of information from
multiple areas of the brain such as reading.

Task-based fMRI studies can assess the areas of the brain that
activate during specific reading tasks in order to better characterize
functional connectivity, instead of surmising which tracts may be
important based on data obtained from TC (or even term-born
adults) about the reading network. A downfall of the existing
studies is the reliance of connectivity analysis based on pre-
selected ROIs, which limits the analysis to areas known to be
involved in reading based on prior studies and may miss atypical
pathways harnessed by PT outside the ROIs. Resting state fMRI
connectivity studies may also provide important information
about intrinsic connectivity. However, the number of studies
available are quite limited. There are also no studies evaluating
functional connectivity metrics in cohorts of PT children in the
emergent literary phase reading development and a single study
in the early literacy phase. There are extremely limited studies
using MEG to evaluate reading-related connectivity in PT

children of any age.

4.4. Research gaps

In terms of study design, development of the reading pathway
in preterm children would ideally be evaluated by serial imaging
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and cognitive assessments throughout the development of reading
ability, beginning pre-literacy and following into the reading
maintenance stage. Unfortunately, such longitudinal cohort
studies with serial testing of a population over time are difficult
to accomplish and do not currently exist. Our review identified a
series of fMRI studies performed at different ages but in various
subsets of the follow up cohort of the Multicenter Indomethacin
IVH Prevention Trial, so longitudinal analysis was not possible.
There are a series of articles on 2 different cohorts analyzed at
Stanford, one aged 9-17 and one cohort with scans at age 6 and
repeat testing at age 8, but to date there has not been
longitudinal, serial imaging in these groups. Though time
intensive and challenging, longitudinal studies are needed to
better define development of the reading network in PT children
and allow direct comparison regarding whether the differences
seen in connectivity vs. TC are due to delayed maturation or
alternative development.

Additionally, there are no studies restricting to EPT children.
Based on our knowledge of cognitive outcomes, these children
are at highest risk for poor reading and should be an area of
focus. Most studies assess high functioning children and often
exclude those with significant brain injuries. While this approach
provides important information about a relatively pure effect of
prematurity on development, there is likely much to be learned
about compensatory mechanisms in children with significant
IVH, ventriculomegaly, or PVL, especially in those who achieve a
normal or near normal cognitive outcome. Several case reports
from children excluded from cohort studies for high grade IVH,
ventriculomegaly, or missing pathways reveal interesting findings
that may indicate compensatory pathways (105-107). One case
report discusses a child with an absent SLF and AF bilaterally,
dorsal pathways thought to be crucial for phonologic processing
and verbal repetition, who achieved average scores on language
and reading testing with therapy (108). Reports of preterm
children who suffered brain injury have the power to enhance
our knowledge of development and suggest compensatory
pathways. Ultimately, PT with history of brain injury are at
highest risk for developmental delay in areas such as reading and
may benefit the most from early identification and interventions.
It is important to extend studies to this population in large
enough sample sizes to draw conclusions.

Finally, identification of the ideal method to evaluate
connectivity in PT remains elusive. DTI, while widely available,
may not be the most accurate method of characterizing the
underlying white matter tracts. Advanced diffusion imaging, such
as NODDI, and myelin water fraction imaging may also provide
better estimations of myelin content and white matter integrity,
allowing improved assessment of white matter microstructure
and structural connectivity especially in combination with other
methods. More functional connectivity studies are needed.
fMRI  has
resolution and the benefit of being able to track activation data

Regarding functional imaging, excellent spatial
during tasks, but suboptimal temporal resolution. MEG has
excellent temporal resolution though poorer spatial resolution
and is not as widely available or as commonly used. No studies

exist that combine structural and functional connectivity analysis.
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Multimodal studies that combine various neuroimaging methods
may help to further elucidate how findings vary between groups.

4.5. Future directions

Advanced, tensor-free analytical models may overcome some
of the existing issues with DTI. Combination of these approaches
lead
connectome that underlies reading in PT. Studies that use

may to improved understanding of the structural
multiple modalities, such as diffusion imaging combined with
functional imaging with fMRI or MEG, may help further clarify
the variability in structural and functional connectivity seen in
PT and TC. MEG has not been widely used to date to evaluate
reading-related connectivity in PT, though there are a series of
studies using fMRI-constrained MEG to assess functional
connectivity of language in this population (48, 50, 51). These
studies use a data-driven approach to connectivity analysis by
harnessing areas of fMRI activation during language tasks as
nodes to guide the connectivity analysis in MEG. This approach
capitalizes on the relative strengths of each modality by
combining the excellent spatial resolution of fMRI with the
unmatched temporal resolution of MEG. This model may be
ideally suited to evaluate related networks, such as reading, in
which alternative connectivity is suspected as the analysis is not
limited by a priori defined networks, and could be combined
with assessments of structural connectivity.

As we have noted above, in order to assess the development of
reading networks over time, longitudinal studies of larger cohorts
are needed that perform serial imaging in the same children.
Such studies should include at-risk populations such as ELBW or
EPT children and PT with brain injury who have often been
excluded. Ideally, imaging would begin in the pre-literacy phase,
or even in the immediate postnatal period, and be obtained
serially with cognitive assessments to track development of the
reading network. Recent studies in PT suggest that white matter
differences at term-corrected age in the AF and ILF are related to
language outcome at age 2 (109, 110). Continued research may
ultimately be used to guide early intervention. This could be
extended to reading networks and pathways as children develop
these skills.

The existing literature surrounding reading disability and
difficulty in preterm children acknowledge the coexistence of
reading difficulty with other deficits such as in executive
function, attention, or other specific learning disabilities, such as
mathematics (13, 18). Though we focused in this review on
outcomes specifically related to reading, we acknowledge that
reading ability is related to other skills and these relationships
will be important to tease out in future studies. Executive
function skills may modulate reading ability (111). Further
characterization of the networks and skillsets crucial to reading
in PT may help lead to interventions that optimize reading
ability. For example, phonological awareness is a skill that is
crucial to future reading (27, 29). An exploratory study involving
working memory training in PT preschoolers resulted in a short-
term improvement in executive function and phonological
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awareness (112). It is possible that reading outcome may be
improved by interventions both for skills classically associated
with reading, such as phonological awareness, and for related
skills such as executive function, attention, and working memory.
In addition, important information about the home environment,
language exposure, and cognitive stimulation should be obtained
to assess the role of the environment in development of reading
in PT, especially as some have emphasized the importance of
maternal education, which can be seen as a marker of home
cognitive stimulation (47). The home environment, including
early language exposure, cognitive stimulation, and digital media
use, has been shown to be critical in the development of reading
in TC and may to be an important factor for PT as well (62,
113, 114).

5. Conclusion

As survival of premature infants has improved, focus has
shifted to neurodevelopmental impairments and interventions
which may improve outcomes. Reading and literacy are crucial
skills for academic achievement and social functioning, with poor
reading associated with many adverse outcomes (62). Given PT
are at increased risk for language and reading difficulty (26),
neuroimaging using TC as a comparison may help identify the
underlying mechanisms of the persistent reading delays exhibited
in PT. Studies of structural and functional brain connectivity
related to reading outcomes in PT have revealed differences in
reading-related pathways, which may represent delayed
maturation of typical pathways or the development of alternative
mechanisms for reading. Longitudinal studies are needed using
fMRI, and MEG to better

characterize the connectome underlying reading in PT and

advanced diffusion imaging,

identify compensatory mechanisms. The goal of these future
longitudinal studies involving multimodal imaging would be to
identify the components of the reading network in PT, to
elucidate biomarkers of resiliency that can be recognized before
children have attained reading proficiency, and - perhaps most
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