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Right ventricular dysfunction is a major determinant of outcome in patients with
complex congenital heart disease, as in tetralogy of Fallot. In these patients,
right ventricular dysfunction emerges after initial pressure overload and
hypoxemia, which is followed by chronic volume overload due to pulmonary
regurgitation after corrective surgery. Myocardial adaptation and the transition to
right ventricular failure remain poorly understood. Combining insights from
clinical and experimental physiology and myocardial (tissue) data has identified a
disease phenotype with important distinctions from other types of heart failure.
This phenotype of the right ventricle in tetralogy of Fallot can be described as a
syndrome of dysfunctional characteristics affecting both contraction and filling.
These characteristics are the end result of several adaptation pathways of the
cardiomyocytes, myocardial vasculature and extracellular matrix. As long as the
long-term outcome of surgical correction of tetralogy of Fallot remains
suboptimal, other treatment strategies need to be explored. Novel insights in
failure of adaptation and the role of cardiomyocyte proliferation might provide
targets for treatment of the (dysfunctional) right ventricle under stress.
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1. Introduction

Tetralogy of Fallot (TOF) is the most prevalent diagnosis in most follow up cohorts of

complex congenital heart disease (CHD) (1, 2). Present day practice of direct early surgical

correction significantly reduced mortality and the average life expectancy has risen to well

above 60 years of age (3, 4). Unfortunately, the growing cohort of survivors with TOF

exhibits a number of late sequelae, e.g., development of heart failure, necessity of re-

interventions and arrhythmogenic vulnerability (5).

Heart failure is the most common cause of death in survivors with CHD and its

prevention in TOF is one the three major focus areas in research (3, 6). Heart failure in

TOF is mostly right ventricular (RV) failure and in many cases associated with chronic

pulmonary regurgitation (PR), a common complication following the surgical intervention

aimed to relieve pulmonary stenosis (7). The development of the RV failure has been

studied extensively in the last decades, albeit mostly in models of acquired RV pressure
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overload and pulmonary hypertension, a disease phenotype with

several major dissimilarities from TOF and chronic PR.

Currently, medical treatment options for RV failure are lacking

(8, 9). The most common treatment for patients with PR is

pulmonary valve replacement. Timing of pulmonary valve

replacement is highly debated, as repeat interventions due to

child growth and valve graft degeneration are major limiting

factors in its application. Furthermore, re-intervention for

pulmonary valve replacement also fails to reduce incidence of RV

failure or death, despite improvement of RV volumes and

symptoms (10, 11).

Identification of novel targets for treatment of RV failure is

necessary, which requires a deeper understanding of the shift

from adaptive remodeling to failure. To be able to develop

strategies to predict, detect, treat, or prevent heart failure and

other late sequelae in TOF, a thorough understanding of the

myriad of drivers of disease progression is needed. The drivers of

other late sequelae, e.g., malignant arrhythmia, might overlap

with those of RV dysfunction but will not be specifically discussed.

This narrative review will focus on what is known of the

mechanisms of RV dysfunction in TOF, chronic PR and present

knowledge-gaps. We aim to integrate information from

functional, cellular and molecular studies with clinical data and

explore potential targets for therapy.
2. Sequential loading: abnormal
loading during growth and
development

Patients with TOF experience a unique sequence of abnormal

loading conditions, which affects myocardial adaptation and

ultimately cardiac function. Unlike in the normal heart, there is

no unloading of the RV at birth when separation of the systemic

and pulmonary circulation occurs. Due to right ventricular

outflow tract (RVOT) obstruction, the postnatal RV remains

subjected to pressure overload, as in the fetal circulation, and the

myocardium retains some of its fetal characteristics after birth

(12). In addition, most infants with unrepaired TOF develop

hypoxemia due to ventricular right-left shunting. This

combination of pressure overload and hypoxemia persists and

requires corrective surgery to prevent imminent RV failure (13).

After corrective surgery, repaired TOF (rTOF) patients

experience different degrees of PR inducing volume overload

(Figure 1). This volume overload is introduced in an already

pressure overloaded RV and will affect RV function differently

opposed to introducing isolated PR in an otherwise healthy RV

(14). RVOT structure and function may be altered due to patch

repair and right bundle branch block may eventually predispose

to dyssynchrony. In some cases, residual RVOT obstruction

remains present after corrective surgery. Unloading of volume

and/or pressure overload can occur after pulmonary valve

replacement. For isolated pressure overload, other invasive

treatment options may be required. Limited valve graft durability,

however, often results in recurrence of PR, RVOT obstruction or

a combination of both (15). This might require repetitive
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pulmonary valve replacements, posing a heavy burden on

patients without the guarantee of freedom from adverse events

(10, 11).

Thus, this pattern of sequential loading and hypoxemia gives

rise to a complex physiology. In understanding this response, the

separate mechanisms, their interactions and the time-relationship

should be taken into account.
3. The phenotype of right ventricular
dysfunction

The temporal profile of RV adaptation to RV failure has

multiple features, of which the causality is difficult to define. RV

dilatation and prolonged QRS duration have been first

recognized as hallmarks. Features of (mal)adaptation of the RV

may be categorized into three groups: factors affecting ventriculo-

arterial interactions (systolic function, PR), factors affecting atrio-

ventricular interactions (e.g., impaired relaxation, atrial

dysfunction), and factors affecting interventricular interactions

(e.g., dyssynchrony, septal shift) (Figure 2).
3.1. Systolic dysfunction and ventriculo-
arterial interactions

RV dilatation has been recognized as hallmark of RV

dysfunction in pulmonary hypertension (16). In patients with

rTOF with PR, progressive RV dilatation is a response to the PR-

induced volume overload. Although (progressive) RV dilatation

is widely used in guidelines for timing of pulmonary valve

replacement, this strategy does not always ensure a favorable

long-term outcome (11, 17, 18). In addition, longitudinal follow-

up has demonstrated that RV dilatation is an unreliable marker

of adverse events (19–22). Dilatation can contribute to

development of secondary tricuspid regurgitation and the

majority of TOF patients present with at least mild tricuspid

regurgitation when referred for pulmonary valve replacement

(23). Especially in the basal and mid-ventricular portions of the

RV, geometrical changes of the tricuspid valve apparatus cause

leaflet malcoaptation due to annular dilatation and papillary

muscle displacement (24). Tricuspid regurgitation will lead to

additional RV volume overload and might not necessarily regress

after pulmonary valve replacement without concomitant tricuspid

valve intervention (25).

RV dilatation in response to pressure overload, e.g., in

pulmonary hypertension, is a hallmark of decompensation due to

failure of homeometric adaptation (26). According to the law of

Laplace, the larger inner diameter will increase wall stress (and

thus afterload) if wall thickness and transmural pressure remain

constant. In rTOF, RV dilatation can be accompanied by reduced

ejection fraction signaling RV systolic dysfunction (27–29).

However, decreases in RV ejection fraction over time are small

and occur slowly, making it not an ideal marker for disease

progression (19, 21). Maximal elastance, the load-independent

assessment of contractility, remains the gold standard for systolic
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FIGURE 1

A timeline of sequential loading in tetralogy of Fallot with timing of potential interventions. Dashed lines represent potential residual or recurrent overload.
PO, pressure overload; PR, pulmonary regurgitation; PVR, pulmonary valve replacement; rTOF, repaired tetralogy of Fallot; VO, volume overload.
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function, but data from invasive studies in rTOF are scarce and

none of those studies compared rTOF patients to healthy

controls (30, 31). Experimental models of chronic PR show a

decrease in load-independent measures of contractility, such as

maximal elastance and preload recruitable stroke work, which is

an important distinction from the increased contractility

observed in response to pressure overload (32, 33). Additionally,

surgical RVOT scarring due to transannular patching

significantly impairs RV contractility even further, due to RVOT

aneurysm and akinesia (27, 34). Regional dysfunction might also

be attributed to electromechanical dyssynchrony resulting in

mechanical inefficiency of myocardial contraction (35).

Non-invasive markers of systolic function, e.g., RV ejection

fraction, tricuspid annular plane systolic excursion and strain, are

heavily load-dependent and a reflection of ventriculo-arterial

coupling rather than contractility (36). Ventriculo-arterial

coupling is the relation of contractility to pulmonary arterial
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afterload, an increasingly popular concept for assessment of RV

systolic function. In pulmonary hypertension, deterioration of

ventriculo-arterial coupling is a prelude to RV failure (37). As of

date, its role in TOF remains unclear. Invasive assessment of

ventriculo-arterial coupling and contractility has been performed

only by Latus et al. (30). When comparing data of pulmonary

hypertension patients with the study of Latus et al., shown in

Figure 3, it appears that both contractility and afterload are

much lower in rTOF, but the coupling ratio is decreased too (30,

38, 39). Of note, these different studies use different methods, so

direct comparison is impossible. A recent study has published on

ventriculo-arterial coupling in rTOF, non-invasively assessed by

using cardiac magnetic resonance (CMR) derived RV volumes

only (40). The need for pressures in the equation is supposedly

eliminated by forcing the linear regression of the end-systolic

pressure volume relation through the origin. Thereby, this

method is nothing more than a variation on RV ejection fraction.
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FIGURE 2

The syndrome of cardiac dysfunction in repaired tetralogy of Fallot, categorized as atrio-ventricular, ventriculo-arterial and interventricular interactions.
EDFF, end-diastolic forward flow; LV, left ventricle; PA, pulmonary artery; PS, pulmonary stenosis; PR, pulmonary regurgitation; RA, right atrium; RV, right
ventricle.
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3.2. Diastolic dysfunction and atrio-
ventricular interactions

Diastolic dysfunction might be an earlier, more prominent

feature of maladaptation than systolic dysfunction. PR, the main

hemodynamic lesion after corrective surgery, occurs during

diastole (Figure 4). In the healthy RV, 4-dimensional flow

measurements using CMR suggest that the inflow pattern allows

an efficient outflow to the pulmonary artery during subsequent

contraction. In rTOF patients with PR, however, abnormal

diastolic flow patterns were consistently present, whereas systolic

flow remained preserved in the large majority (41). From these

studies it appears that PR flow interferes with normal diastolic

vorticity enhancing RV filling from inflow to outflow, as is

illustrated in Figure 4 (41, 42).

The purpose of diastole is to fill the ventricular cavity. Signs

and symptoms associated with diastolic dysfunction include

increased filling pressures, right atrial (RA) enlargement and

peripheral edema. A general definition is lacking as several

mechanisms may cause of diastolic dysfunction, such as

impaired relaxation, increased stiffness or interventricular

interactions. For this manuscript, diastolic dysfunction will be

defined as the inability of the RV to fill in an energetically

efficient manner. Normal diastolic function requires sufficient

preload and low myocardial stiffness. Whereas preload in rTOF

patients is generally maintained because of PR, it is not clear to
Frontiers in Pediatrics 04
what extent myocardial stiffness is affected. Invasive

measurements in rTOF patients demonstrate increased RV end-

diastolic pressures in half of the patients (43, 44). One study

grouped pediatric and adult rTOF patients according to their

indexed end-systolic volumes (cut-off 34.7 ml/m2) and found

that patients with lower indexed end-systolic volumes also had

higher myocardial stiffness, measured as load-independent end-

diastolic elastance (31). In animal models of chronic PR,

however, findings on end-diastolic elastance are conflicting,

although a significantly higher stiffness was found in animals

with pressure load-induced RV hypertrophy preceding the

induction of PR (14, 45–47). In pressure overload, this increased

stiffness as a result of reactive interstitial fibrosis is found only

in more severe RV dysfunction (48). In isolated volume

overload, however, interstitial fibrosis is not as commonly found

(14, 46, 47, 49–51). Apart from fibrosis, myocardial stiffness is

also determined by intrinsic stiffness of the cardiomyocytes,

which mainly includes titin expression, its isoforms and

phosphorylation, but also other sarcomeric and cytoskeletal

proteins (52). Ex vivo studies on RV myocardium of rTOF

patients demonstrated that myocardial and passive myofilament

stiffness was not affected when compared to control samples

(49, 53), which is in accordance with the observation that titin

expression, isoforms and phosphorylation were unchanged in

TOF patients (53–55). Other proteins have been associated with

RV stiffness in TOF, mainly those involved in sarcomeric
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FIGURE 3

Comparison of contractility, afterload and ventriculo-arterial coupling in patients with pulmonary arterial hypertension and repaired tetralogy of Fallot. Ea,
effective arterial elastance; Ees, end-systolic elastance; PAH, pulmonary arterial hypertension; rTOF, repaired tetralogy of Fallot. Spruijt et al. (39); Hsu
et al. (38); Latus et al. (30).
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structure and calcium signaling, such as Z-disc proteins,

tropomyosin-1 and phospholamban (54).

Unfortunately, demonstrating presence of diastolic dysfunction

is complicated by the lack of reliable markers. Common measures

of RV filling based on tricuspid inflow/annular velocity (E/A, E/e’)

do not correlate with RV end-diastolic pressure, and do not take

the contribution of PR filling and increased diastolic vorticity

into account (44, 56). Presence of end-diastolic forward flow

during atrial contraction has been suggested to indicate reduced

myocardial compliance during diastole, also referred to as

“restrictive physiology”. Its role as a marker of dysfunction or

poor prognosis is contested however (57–63).

Atrial function relates closely to diastolic ventricular function.

Atrial functional measurements may therefore provide insights in

the mechanisms of diastolic dysfunction and may serve as a

disease marker, since robust alternatives are lacking. Increased

RA pressures predict adverse cardiovascular events (64). RA

phasic function has found to be altered in rTOF, with

abnormalities in reservoir, conduit and pump function

(Figure 4) (62, 65, 66). Load-independent atrio-ventricular

coupling has not yet been investigated in TOF, but was found to

be impaired in a model of early LV diastolic dysfunction and

could serve as an early disease marker (67).
3.3. Interventricular interactions

In the assessment of RV systolic function, the role of the

interventricular septum (IVS) is often underexplored relative to

the RV free wall. The presence of the ventricular septal defect

(VSD) divides the deep myocardial layer of the IVS, resulting in

a reduction of longitudinally oriented myofibers (68, 69). Since

80% of the RV function is derived from longitudinal shortening,

VSD-induced IVS dysfunction could add to global RV

dysfunction. This type of dysfunction has received little attention

(70). Interestingly, patients with isolated VSD show signs of
Frontiers in Pediatrics 05
impaired RV function late after VSD closure, but to what extent

the IVS contributes to this dysfunction has yet to be determined

(71, 72).

In recent years, it has become apparent that LV function is also

affected in rTOF. LV diastolic dysfunction is commonly the result

of geometrical changes and increased RV diastolic pressure,

causing a leftward shift of the IVS hindering LV filling (46, 62,

73, 74). LV systolic dysfunction is found in 20% of rTOF

patients and is independently associated with adverse outcomes

(75, 76). Isolated PR does not seem to affect LV contractility per

se, but electromechanical and interventricular dyssynchrony have

been demonstrated as potential relevant mechanisms of

biventricular dysfunction (77–79).

In summary, the phenotype of RV dysfunction can be regarded

as a syndrome encompassing disturbed filling, dyssynchrony, and

perhaps disturbed ventriculo-arterial coupling (Figure 2). The

combination of abnormal diastolic flow patterns and reduced

myocardial relaxation may lead to significant kinetic energy loss

in diastole. In systole, lower contractility and dyssynchrony

impairs efficient flow from the RV inlet into the pulmonary

artery (41, 80, 81). A deeper understanding of the temporal

relation and interactions between all these mechanisms is

necessary to design specific treatments and preventive strategies.
4. Histopathology: what do we know?

Studies on histopathology of TOF are scarce. Consequently,

much of what is known is derived from historical observations,

mostly from patients corrected at what is presently regarded as

“later stages”, e.g., more than 6 months of age or at death after

uncorrected survival into adulthood (82–86). Hence, results may

be affected by survival and selection bias, particularly in the

group of patients studied during re-do surgery.

Most commonly described histopathological features are

myocyte hypertrophy, fibrosis and altered capillary density. The
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FIGURE 4

The cardiac cycle in tetralogy of Fallot. In early diastole, both right atrial conduit flow and pulmonary regurgitant flow contribute to right ventricular filling,
resulting in increased flow vorticity. Decreased active relaxation and passive stiffness may be present. During atrial contraction, it is hypothesized that the
stiff right ventricle may not be able to accommodate the additional blood volume, which gets displaced into the pulmonary artery. This phenomenon is
referred to as end-diastolic forward flow. Right atrial contraction may be affected. In systole, decreased right ventricular contractility, dyssynchrony and
outflow tract dysfunction can contribute to systolic dysfunction. Atrial reservoir filling is impaired if apical tricuspid movement is reduced. Red arrows,
direction of blood flow; black arrows, movement of cardiac tissue (contraction or relaxation); dashed arrows, impaired flow or movement; equal sign,
absent movement. rTOF, repaired tetralogy of Fallot.
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degree of hypertrophy increases with age, likely initially as an

adaptive response until a point of no return is reached with

onset of maladaptive features (87–89). In a single-center study

comparing biopsies obtained at primary repair between 4 months

and 168 months of age, the degree of hypertrophy correlated

with RV function, assessed as global strain. The recovery of RV

strain after corrective surgery was reduced in the group of

patients corrected after 1 year of age, suggesting irreversible

remodeling if repair surgery is postponed (89). The hypertrophy

is not homogenous; a postmortem study identified larger

endocardial cardiomyocytes in the infundibulum as compared

with other regions of the RV (90). In biopsies taken at a younger

age less cardiomyocyte hypertrophy was found, which might be

explained by the shorter exposure to overload (87–89).

Alternatively, cardiomyocyte proliferation may be increased,
Frontiers in Pediatrics 06
enhancing RV adaptation. After birth, cardiomyocyte

proliferation capacity is lost in mammals as a result of several

postnatal processes, such as changes in oxygen levels and the

transition from placental to enteral nutrition (91). However,

recent studies have shown that cardiomyocytes retain the

potential to proliferate after birth when under stress (12, 92).

Cardiomyocyte proliferation promotes adaptation to pressure

overload better than cellular hypertrophy (92–95). Stimulating

proliferation in mature cardiomyocytes or prolonging

proliferative capacity after birth is therefore an attractive

treatment target to preserve function of the overloaded RV. From

cultured cardiomyocytes, isolated from biopsies of TOF patients,

Liu et al. reported a high proportion of binucleated

cardiomyocytes. This indicated that proliferation was initiated

under adverse loading, but arrested in the cytokinesis stage. The
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authors demonstrated that failure of cytokinesis is mediated by

beta-adrenergic signaling and that beta-adrenergic blockade can

increase cell division by rescuing cardiomyocytes from

cytokinesis failure. Additionally, this was confirmed in a neonatal

mouse model of myocardial infarction (96). Although a previous

randomized controlled trial (RCT) of beta-blockade in adult

rTOF patients could not demonstrate a clinical benefit, a new

RCT is being conducted to investigate its effects on

cardiomyocyte proliferation in infants before repair surgery

(ClinicalTrials.gov Identifier: NCT04713657) (9). Cell cycle

activity can also be stimulated by administration of neuregulin-1.

In both mature and weaning rats with RV pressure overload,

neuregulin-1 attenuated maladaptive remodeling, with improved

systolic and diastolic RV function (92, 94, 95). It is important to

note that postnatal cardiomyocyte proliferation requires high

oxidative energy metabolism (97). If proliferation was to be

stimulated in an already metabolically demanding environment,

this could exacerbate the energy deficit.

Myocardial fibrosis in rTOF has been associated with the risk

of RV dysfunction, ventricular arrhythmia and sudden death

(98–100). Recently, CMR studies in TOF have shown that

increased late gadolinium enhancement, suggesting increased

fibrosis, is a risk factor for late mortality (22). In this study, a

composite fibrosis score was used, irrespective of location or type

of fibrosis. Interstitial fibrosis, reactive to adverse loading, should

be distinguished from replacement fibrosis following scarring,

patch material and myocardial ischemia. Interstitial fibrosis has

been shown in RV biopsies taken at the time of correction and

appears to increase with the age of patients (83, 85, 87–89). Yet,

according to RV samples of TOF patients younger than 9

months of age, collagen content is not significantly different

from controls (101). These results suggest that neonatal RV

pressure overload does not necessarily cause appreciable fibrosis

in the first months of life, i.e., collagen production is still part of

a beneficial adaptation process. Excessive collagen production

being a feature mainly in patients older than 12 months at

biopsy in the study of Xie et al. further supports this (89).

Additionally, a greater amount of fibrosis was seen in patients

with more functioning hypoxia inducible factor 1α (HIF1α)

alleles, a mediator of the response to hypoxemia (102).

Intriguingly, not all tissue biopsy studies of rTOF patients

identified increased fibrosis (49, 87, 103). Assessing fibrosis in

rTOF patients late after repair should be done in the context of

sequential loading. Irrespective of the duration and degree of PR

or residual RVOT obstruction, every rTOF patient was subjected

to a period of neonatal pressure overload and underwent

corrective surgery with aortic-cross clamping. Prolonged

exposure to pressure overload can result in increased reactive

fibrosis (48). Prolonged aortic-cross clamping time carries the

risk of myocardial injury which will also result in fibrosis, but of

the replacement type (104). Unlike in pressure overload, reactive

interstitial fibrosis in response to isolated volume overload is

much less pronounced or even absent (14, 34, 46, 47, 51, 105).

In an older rTOF population with larger RV volumes,

Yamamura et al. found that median collagen content of patients

undergoing pulmonary valve replacement was 7.1%, which is
Frontiers in Pediatrics 07
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myocardium (103, 106). A subpopulation in the uppermost

quartile of fibrosis in Yamamura’s study had a median collagen

content of 17.9%. In this small sample, the increased amount of

fibrosis was associated with longer cross-clamp time as well as

post-operative retention of larger RV end-systolic volumes, RV

mass and RA area (103). In a younger, more contemporary

managed rTOF population, fibrosis was not significantly different

from control tissue samples (49). From these observations, it may

be hypothesized that interstitial fibrosis presented in rTOF

patients with PR is predominantly the remnant of pre-repair

pressure overload and perhaps ischemic remodeling due to

hypoxemia and aortic-cross clamping. The association between

fibrosis and outcome may suggest a causal relationship, yet,

inhibition of reactive fibrosis to either pressure or volume

overload did not improve RV dysfunction (107, 108). In

addition, interfering with fibrosis in cardiac tissue may have

detrimental effects as fibrosis also has a cardioprotective effect

(109). In line with this protective function, patients with more

functional HIF1α alleles and more fibrosis benefited with less

progression of PR, preservation of RV volumes and systolic

function and greater freedom from re-interventions (102). These

findings suggest that aforementioned adverse outcomes in rTOF

patients could be related more to maladaptive fibrosis induced by

triggers other than adverse loading. Reactive fibrosis, resulting

from pressure and/or volume overload, appears to be merely a

marker and not a targetable substrate. Further studies are

necessary to identify the nature and optimal balance of adaptive

and maladaptive fibrotic remodeling. At present, prevention of

fibrosis by early repair and limiting formation of replacement

fibrosis, e.g., by optimizing surgical technique and myocardial

protection, seem superior to the use of anti-fibrotic treatments.

In addition to hypertrophy and fibrosis, increased capillary

density has been demonstrated, both in tissue obtained during

initial repair and in human heart specimens (86–88). The

increased capillary density measured was attributed to an

increased smaller number of vessels, with upregulation of pro-

angiogenic factors. These findings indicate angiogenic sprouting

to preserve the aerobic metabolic demand, although these vessels

have been suggested to be immature and may not be conducting

blood (87, 88). In contrast, in many (but not all) experimental

models, RV pressure overload is associated with capillary

rarefaction and a decrease in angiogenesis has been found to

mark the transition from compensated to decompensated RV

hypertrophy (110, 111). Based upon these observations, the

increased angiogenic response in TOF is different from what is

seen in acquired pulmonary hypertension, where cardiomyocyte

hypertrophy exceeds the capacity for new capillary formation.

Although the vasculature in TOF may not be completely

functional, increased angiogenesis seems to be an adaptive

feature. A role of hypoxemia and HIF1α in this process is likely,

which is supported by the cardioprotective effects of the amount

of functioning HIF1α alleles (102, 112). Several studies found

increased mRNA expression of angiogenic factors, e.g., vascular

endothelial growth factor (VEGF), in TOF patients at the time of

repair when compared to healthy and VSD controls (87, 88,
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102). However, cyanosis in TOF patients was associated with

reduced VEGF expression when compared to those without

cyanosis, complicating the interpretation of these angiogenic

signals (55). Furthermore, a transcriptomic study demonstrated

higher levels of apoptosis associated genes and decreased

expression of genes associated with contractility and calcium

handling in cyanotic patients (113). In order to preserve

adequate oxygen delivery, myocardial vessel formation could be

stimulated by targeting angiogenesis. Therapeutic options for

promoting angiogenesis in the RV have recently been reviewed

elsewhere (114).

In short, the main histopathological findings are cardiomyocyte

hypertrophy and increased fibrosis, the severity increasing with

older age at repair. Although cardiomyocyte proliferation is

temporarily sustained in neonatal models of pressure overload,

there is no concrete evidence of increased proliferation in TOF

patients. This might suggest that by the time of repair, the

adaptive response favors cardiomyocyte hypertrophy rather than

proliferation. Late after repair, increased reactive fibrosis due to

adverse loading is not necessarily a sign of maladaptation and

may not be a suitable target for treatment. A remarkable

distinction from pulmonary hypertension and isolated pressure

overload is the increased, but potentially incomplete

angiogenesis, which requires further investigation.
5. Is there a molecular signature in the
right ventricle of tetralogy of Fallot?

Identification of pathways involved in RV remodeling is

perhaps one of the most important steps in the search for

specific treatments. Stimulation of adaptive features and

inhibiting maladaptive remodeling might be key in preventing or

delaying progression to RV failure. Unfortunately, a

comprehensive analysis of patients tissue characteristics is

complicated, as tissues may generally only be harvested at initial

repair or at pulmonary valve replacement and are compared with

different control groups. Intriguingly, there is little overlap in

responses described in the studies aiming to elucidate adaptative

pathways, as is illustrated in Figure 5, which shows a

comparison of the studies investigating differential expression of

mRNA between RV tissue samples of TOF patients and healthy

controls (88, 115–117). Functional protein association network

analysis of all the genes reported in these studies reveals several

clusters, the largest encompassing extracellular matrix (ECM)

proteins, fibroblasts and angiogenesis (118). Other clusters

comprise protein synthesis, mitochondrial metabolism, second

messengers, contractile apparatus and cell cycle associated

proteins (see Supplementary Figure S1 and Table S1). There is

ongoing debate on the contribution of inflammation in the

development of heart failure (119). The majority of studies report

changes in ECM proteins, which is linked to inflammatory

pathways, yet, specific evidence of increased inflammation in the

RV of TOF patients is lacking (49, 55, 87, 88, 113, 115–117, 120,

121).
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Expression levels of ECM proteins vary between studies in

tissue samples taken at the time of repair (54, 121). At the time

of pulmonary valve replacement, however, no changes in ECM

protein levels were found when comparing to healthy age-

matched controls, although mRNA expression of several proteins

involved in ECM are increased (49). Similarly, protein and

mRNA expression of the ECM proteoglycan lumican was

decreased at initial repair, but at the time of pulmonary valve

replacement protein levels were unaltered despite increased

mRNA expression (49, 121). Interestingly, in an animal model of

PR, expression of ECM components also undergo a change in

expression, from being initially downregulated to becoming

upregulated in the chronic phase (105).

Proteins associated with calcium handling and the contractile

machinery of the sarcomere have been found to be affected in

uncorrected TOF patients when compared to isolated VSD

patients (54). This is also evident from experimental PR models,

with myosin heavy chain isoform switch as part of the fetal gene

reactivation and altered expression of cardiac muscle actin and

Xin actin binding protein for example (105, 122). Whether

protein changes in the contractile apparatus are relevant in

chronic volume overload late after TOF repair is questioned by

the study of Brayson et al. (49). They found that in RV tissue

taken at the time of pulmonary valve replacement, myofilament

contractility and calcium sensitivity was comparable to non-

diseased RV tissue. Enhancement of contractility could be

managed by administration of myosin modulators. Omecamtiv

mecarbil increases the amount of time in contraction and is

investigated extensively in LV failure (123). Studies on its effects

in the RV are still scarce however (124, 125). Interestingly, a rat

model of chronic aortic regurgitation demonstrated that

treatment with omecamtiv mecarbil significantly reduced wall

stress in the LV (126). If this also applies to the RV, omecamtiv

mecarbil could counteract adverse remodeling in TOF patients

with PR. Although controversial, it is important to keep in mind

potential side effects of these inotropic treatments. A metabolic

burden could be imposed on the myocardium by increasing its

oxygen consumption, while reducing myocardial perfusion by

decreasing the time spent in diastole (127–130).

Cardiac metabolic inflexibility is the reliance on glycolysis

alone for energy production instead of utilizing several different

substrates. It has been suggested as a maladaptive phenomenon

in a protein analysis study of RV tissue of TOF patients

compared to other CHD diagnoses (121). This metabolic shift,

with downregulation of beta-oxidation in favor of less efficient

glycolysis, is already known from experimental RV pressure

overload studies, but has also been observed in a model of

chronic PR (105, 131, 132). Accommodating a higher metabolic

demand requires optimizing myocardial energetics in the

dysfunctional RV to prevent progression to failure. The

metabolic shift towards inefficient glycolysis can be (partially)

reversed. As an example, dichloroacetate enhances glucose

oxidation, thereby restoring mitochondrial function and reducing

myocardial apoptosis. Treatment in experimental models of

pulmonary hypertension resulted in improved RV systolic

function and reverse remodeling (133–135). Similar beneficial
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FIGURE 5

A Venn diagram to illustrate the overlap in differentially expressed genes in right ventricular myocardium from studies comparing tetralogy of Fallot
patients to controls (88, 115-117).
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effects were observed during treatments to either increase or

partially inhibit fatty acid beta oxidation, the latter in order to

favor glucose oxidation (136, 137).

A recent study aimed to generate a circRNA-miRNA-mRNA

network in TOF. They analyzed three datasets available in GEO

databases comparing profiles and identified 29 miRNA, 13

circRNAs and 88 mRNAs (138). Interestingly, a comparison

between overlapping miRNA profiles in four other studies yielded

two miRNAs that were identified in all 4 studies and 5 miRNAs

that were identified in at least 3 of the 4 studies (Table 1) (139–

142). MiR-222, also identified in the network by Kan et al. has
TABLE 1 Heat map of overlapping differentially expressed microRNA in tetra

Hsa-miR nr. Abu Halima et al. (139) Liang et al.
222 −2.16 2.05

194 −2.49 1.24

93 1.23

155 2.02

381 −1.28
30 −2.15 −1.32
151 −2.20 1.11
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been associated with exercise-induced myocardial adaptation,

atrial fibrillation, is involved in function of L-type calcium

channels and is a target of angiogenesis and proliferation via

ERBB4 and HIF1α (138, 143–146). MiR-194 has been linked to

the p53 pathway and may be involved in pulmonary angiogenesis

(147). For disease markers as well as therapeutic targets, these

pathways may be worthwhile to explore, albeit that these have not

been described in experimental models mimicking TOF.

Generally, experimental studies show that many molecular

mechanisms of RV adaptation are similar in pressure and

volume overload, albeit that the latter exhibits a milder
logy of Fallot patients, as fold change compared to controls.

(140) O’Brien et al. (141) Zhang et al. (142)
3.49 2.14

2.16 1.84

1.65 2.55

1.68 2.37

−0.16 2.32

1.65

1.14
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phenotype with slower disease progression (50, 148). In addition,

most clinical studies are too heterogeneous to compare in order

to derive a disease-specific molecular signature. Also, the relation

between tissue expression patterns and serum biomarkers is

difficult to determine. A comprehensive analysis of serum

biomarkers associated with adverse outcomes could provide

additional insights in adaptation of the overloaded RV, but is

beyond the scope of this review (149).
6. Current and future strategies

6.1. Treatment of right ventricular
dysfunction

Currently, attempts for medical support of the failing RV in

rTOF have been futile (3, 150). A widely accepted treatment

regimen, including cornerstone medication, resynchronization

and exercise for cardiac rehabilitation, as described in patients

with heart failure due to LV dysfunction, is therefore absent.

Guidelines on medical therapy are limited to diuretics, merely for

relieving symptoms of RV decompensation (151). Furthermore,

the lack of robust clinical markers to assess RV dysfunction and

outcomes in rTOF patients complicates the decision regarding

the initiation of treatment.

As a cornerstone of heart failure therapy, renin-angiotensin-

aldosterone system (RAAS) inhibition lowers systemic afterload

and blood volume status, whilst having antifibrotic and

antihypertrophic effects in the myocardium itself (152). Several

RCTs on RAAS inhibition have been conducted in TOF, but

none could demonstrate a beneficial effect on RV function (8,

153). Although there is evidence of RAAS activation in the

setting of RV pressure overload, its mechanisms in TOF have yet

to be elucidated (108, 154, 155). The novel valsartan-sacubitril

combination drug inhibits the angiotensin receptor-neprilysin

pathway and might be promising in the treatment of RV

dysfunction (156). Currently only a case report of the use of

valsartan-sacubitril in TOF is available, but in a small cohort of

patients with a systemic RV improvement of echocardiographic

markers and reduction of NT-pro-BNP was observed over six

month follow-up (157, 158).

Sodium-glucose cotransporter-2 (SGLT2) inhibitors are

increasingly used in the treatment of LV failure. Even though the

mechanism of action is still unclear and there are no myocardial

SGLT2 receptors, they lower cardiovascular mortality

independent of patient diabetic status (159). From experimental

studies in rats with monocrotalin induced pulmonary

hypertension, it appears that SGLT2 inhibitors lower pulmonary

pressure by attenuating pulmonary vascular remodeling (160,

161). When regarding effects on the RV itself, however,

dapagliflozin treatment did not result in any improvements in

myocardial function or remodeling (162). Clinical data on

primary RV dysfunction is lacking except for a case report in

systemic RV (163).

Rather than ameliorating adverse loading, enhancing

myocardial contractility is another potential treatment path.
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Phosphodiesterase 5 (PDE5) inhibitors are known for their

pulmonary vasodilatory effects in the treatment of pulmonary

hypertension. Recently, they have been found to also increase RV

contractility (133, 164). In RV pressure overload models, PDE5

becomes upregulated in remodeled RV myocardium and PDE5

inhibition has resulted in a multitude of effects, independent of

afterload (165). Besides its RV specific inotropic effects,

improvement of diastolic dysfunction and dilatation have been

observed in sildenafil-treated rats with pulmonary artery banding

(166). The improvement in diastolic function might be explained

by the increased phosphorylation of titin to its more distensible

form (167). As discussed earlier, however, the involvement of

titin in diastolic dysfunction in rTOF has yet to be demonstrated.

Important gain of function can be achieved by improving the

efficiency of RV contraction in TOF. Electromechanical

dyssynchrony and right bundle branch physiology hinder a

properly coordinated contraction, which makes rTOF a

“synchronopathy” (35). The studies of Janousek et al. on cardiac

resynchronization therapy of the RV in CHD demonstrated

improved mechanics of contraction in both acute and chronic

phases (78, 168). Patch material and scarring in the RVOT and

VSD, however, remain akinetic regions where loss of energy and

efficiency are bound to occur. Removal of dysfunctional RVOT

tissue at the time of pulmonary valve replacement did not seem

to have benefits over isolated pulmonary valve replacement (169).

Tissue engineering might be able to overcome the problems

arising from the electromechanical disconnection of patch

material and the surrounding scar formation. Patches could be

biological scaffolds incorporating cardiomyocytes or endothelial

cells to become functional myocardium or vessel respectively

(170). With tissue engineering, other opportunities may arise,

like implantation of contractile bands to enhance RV

biomechanics (171).
6.2. Preventing right ventricular
deterioration

Patients with CHD are usually in follow-up from birth. This

provides a major opportunity for implementing preventive

strategies early on in the disease process, in contrast to acquired

heart failure which is only diagnosed and treated in a

symptomatic stage.

The obvious solution to prevent RV dysfunction would be the

relief of adverse loading as soon as possible. Neonatal correction

minimizes the duration of pressure overload and hypoxemia, but

at the cost of a higher risk of more severe residual lesions (i.e.,

PR and RVOT obstruction) and worse event-free survival (172).

Furthermore, the impact on RV function and histological

changes is limited if correction is performed before the first year

of age (87, 89). This justifies an early, but not neonatal, repair

strategy to address the repercussions of loading on remodeling.

Chronic PR will probably remain a culprit for as long as it takes

for growing tissue valves to become available. Until then,

treatment strategies could/should focus on reinforcing adaptive
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processes of RV remodeling in order to better accommodate

adverse loading (92, 96).

In addition, exercise training could aid in strengthening the

RV. Exercise training has already proven to be useful in the

treatment of left-sided heart failure (173, 174). Intriguingly,

recent experimental studies have shown that exercise also induces

cardiomyocyte proliferation (175, 176). In the treatment of RV

dysfunction in CHD, studies have demonstrated the safety of

exercise therapy and applicability even in young children (177–

182). Although significant improvements in cardiac function

have not yet been confirmed in rTOF cohorts, several

investigations are ongoing and looking into optimal training

regimens (177, 178, 181, 182).
7. Summary

TOF is characterized by a unique sequential loading pattern.

Histopathology reflects these different stages of loading, but at

present does not provide a targetable substrate for therapy. There

is little to no consensus regarding specific adaptation

mechanisms due to the wide variation in studies, but it seems

likely there is no unifying molecular pathway leading to

dysfunction. Knowledge of the distinctive physiology in TOF

explains the lack of success of current treatment strategies.

Cardiac dysfunction can be described as a combination of

impaired ventricular kinetic energy and a disturbed filling

pattern. The potential for future strategies is in optimizing RV

biomechanics, kinetic energy and treatments to improve

myocardial relaxation. In addition to novel drug targets, other

promising options include resynchronization therapy, tissue

engineered grafts and strategies aimed to strengthen the RV.
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