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Preterm birth is defined as delivery at <37 weeks of gestational age (GA) and
exposes 15 million infants worldwide to serious early life diseases. Lowering the
age of viability to 22 weeks GA entailed provision of intensive care to a greater
number of extremely premature infants. Moreover, improved survival, especially
at extremes of prematurity, comes with a rising incidence of early life diseases
with short- and long-term sequelae. The transition from fetal to neonatal
circulation is a substantial and complex physiologic adaptation, which normally
happens rapidly and in an orderly sequence. Maternal chorioamnionitis or fetal
growth restriction (FGR) are two common causes of preterm birth that are
associated with impaired circulatory transition. Among many cytokines
contributing to the pathogenesis of chorioamnionitis-related perinatal
inflammatory diseases, the potent pro-inflammatory interleukin (IL)-1 has been
shown to play a central role. The effects of utero-placental insufficiency-related
FGR and in-utero hypoxia may also be mediated, in part, via the inflammatory
cascade. In preclinical studies, blocking such inflammation, early and effectively,
holds great promise for improving the transition of circulation. In this mini-
review, we outline the mechanistic pathways leading to abnormalities in
transitional circulation in chorioamnionitis and FGR. In addition, we explore the
therapeutic potential of targeting IL-1 and its influence on perinatal transition in
the context of chorioamnionitis and FGR.
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1. Introduction

Chorioamnionitis and fetal growth restriction (FGR) – also referred to as intrauterine

growth restriction (IUGR) – are conditions that complicate the course of pregnancy and

may predispose infants to morbidity and mortality in early life. Chorioamnionitis involves

inflammation of the placenta and fetal membranes (1, 2), whereas FGR is a condition

where a fetus fails to reach its genetic growth potential (3). The pathophysiology of both

is multifactorial and heterogenous; however, inflammation is a common underlying factor.

In a study of 20,091 births (15,710 term and 4,381 preterm), 50.6% of preterm births

were linked to placental mal-perfusion, which was associated with FGR, and 27.3% were

linked to inflammation/infection (4). Hence, the growing preclinical and clinical evidence

for dysregulation of the pro-inflammatory cytokine interleukin (IL)-1 (5–10) in both

conditions is the focus of this mini-review.
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2. IL-1 and its receptors – a brief
overview

IL-1 comprises two distinct proteins and master regulators of

inflammation, IL-1α and IL-1β. Both require protease processing

regulated by inflammasomes to activate their pro-forms (11). One

such inflammasome is the nucleotide-binding oligomerization

domain-like receptor (NLRP)3 inflammasome. Assembly of the

NLRP3 inflammasome is key in the activation of caspase-1, which

cleaves pro-IL-1β, allowing for the secretion of its biologically

active form, IL-1β (12, 13). Thus, production of IL-1α and IL-1β

is controlled by transcription, maturation, and release.

IL-1α and IL-1β are expressed in a wide range of tissues and

immune cells and activate pro-inflammatory transcription

pathways (14–16) by signaling through the same receptor

complex IL-1R1:IL-1R3 (17–19).

The IL-1 receptors contain a cytoplasmic Toll-IL-1-Receptor

(TIR) domain that is common to Toll-like receptors (TLRs),

which are critical for innate host defense (20), including

responses to the intrauterine infections driving preterm delivery

(21–23). IL-1 receptors are expressed by a wide variety of cells,

resulting in a diverse range of responses upon receptor

activation, such as expansion of CD4+ T cells (24), increased

production of neutrophil chemoattractants (25), and increased

permeability of endothelial tissue (26).

Natural counterregulatory mechanisms curtailing IL-1 function

comprise IL-1 receptor antagonist (IL-1Ra), which antagonizes the

binding of IL-1 to IL-1R1 (27), and the decoy receptor IL-1R2,

which transduces no signal upon IL-1α and IL-1β engagement (28).

Blocking IL-1 with its natural adversary IL-1Ra (drug name

anakinra) has an excellent safety and efficacy record in

inflammatory disease, as established by over two decades of use

in adults, children, and infants (29–34). Other trialed strategies

of blocking IL-1 [reviewed in (29)] include soluble IL-1 receptor

(35), neutralizing IL-1β (36, 37) or IL-1R1-blocking antibodies (38).
3. IL-1 and labor onset

In rodent models, IL-1 signaling is not necessary to ensure

fertility and initiate labor, as mice deficient in IL-1β (39),

caspase-1 (40), or IL-1R1 were fully fertile and delivered at term

(41, 42). However, an association between IL-1 and labor has

been established in non-human primate models of preterm labor.

Pregnant rhesus macaques given an intra-amniotic (i.a.) infusion

of IL-1β developed uterine contractions that resulted in preterm

labor. In comparison, only 40% of monkeys infused with TNF

had uterine contractions, and infusion of IL-6, IL-8 or saline (43)

did not result in preterm labor.

In vitro, IL-1 has been suggested to promote labor by

increasing calcium concentrations (44) and prostaglandin

production (45) in human myometrial cells. Increased

prostaglandin abundance has also been observed in the amniotic

fluid of women in preterm labor (correlated with IL-1) (46) and

in porcine fetal membranes stimulated with IL-1β (47).
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Clinical associations between increased IL-1 production and labor

onset have also been observed. At late term pregnancy, cervicovaginal

fluid abundance of IL-1α and IL-1β peaked 4–14 days prior to

spontaneous labor onset, whilst the anti-inflammatory IL-1Ra

decreased (48). IL1B expression was low in gestational tissues from

women not in labor but was present in both maternal and fetal

tissues during labor, regardless of GA or intrauterine infection (49).

Notably, gene expression data on IL1B needs to be interpreted with

caution; unless a further activation step triggers IL-1β protein

production, IL1B mRNA is rapidly degraded.

Even during a healthy pregnancy, the infiltration of leukocytes

such as neutrophils, monocytes and macrophages was observed in

placental tissue preceding spontaneous labor (50–52). Biopsies

from women undergoing cesarean section after the onset of

labor revealed that IL-1β was localized to leukocytes in the

myometrium, cervix, and fetal membranes (53). Moreover, IL-1β

in the amniotic fluid of women at term pregnancy correlated

with the degree of leukocytic infiltration in the chorionic

membrane (54). In addition to IL-1, pro-inflammatory cytokines

IL-6 and IL-8 were rarely found in reproductive tissues pre-labor,

but readily found following labor (49, 53, 54). Notably, IL-6 and

IL-8 are both induced by IL-1. This indicates that inflammatory

processes, especially those driven by IL-1 and originating in

infiltrating leukocytes, play a central role in pregnancy and

parturition [reviewed in (55)] (Table 1).
4. Chorioamnionitis

4.1. Clinical association of IL-1 in maternal
and fetal chorioamnionitis-affected tissues

In chorioamnionitis, IL-1β abundance was shown to be

increased in maternal and fetal tissues (Figure 1 and Table 1),

particularly in the amniotic fluid, placenta, maternal blood as

well as cord blood in some instances.

It is well-documented that chorioamnionitis, possibly due to

the infiltration of leukocytes into the chorion and amnion

(1, 64), is associated with an increased abundance of IL-1 in

amniotic fluid (5, 46, 64–70), in addition to preterm labor

(46, 70) and preterm pre-labor rupture of membranes (PPROM)

(5). Additionally, placental tissues from chorioamnionitis-affected

deliveries presented with a seventeen-fold increase in IL-1

abundance compared to healthy pregnancies, with a

predisposition towards greater placental IL-1β compared to IL-1α

(6). In maternal serum, IL-1β was elevated in preterm

histological chorioamnionitis (71), term clinical chorioamnionitis

(72) and PPROM complicated by chorioamnionitis (73). IL1B

mRNA in maternal blood was elevated in women with

chorioamnionitis complicated by PPROM (74). There is therefore

a strong clinical association between chorioamnionitis and

increased abundance of IL-1, which might be related to an

increased incidence of PPROM and preterm labor.

This relationship between chorioamnionitis and IL-1

abundance in cord blood is less clear. Increased IL-1β was

associated with chorioamnionitis in a select number of studies
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FIGURE 1

Reported activities of IL-1 and IL-1Ra on chorioamnionitis and fetal growth restriction in humans and disease models. Created with BioRender.com.
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(75–77), however other studies reported no difference (78–81).

This discrepancy may be explained by the concurrent presence of

funisitis, an indicator of the fetal inflammatory response, marked

by focal aggregation of polymorphonuclear leukocytes at the

umbilical cord surface (77).

Additionally, there is now ample evidence from amniotic fluid,

cervical secretions, and cord blood (82–85) that IL-1Ra, the natural

IL-1 inhibitor, also positively correlates with chorioamnionitis. At

first glance, elevations of anti-inflammatory mediators seem

counterintuitive in this context; however, increases in the abundance

of anti-inflammatory/regulatory mediators are well-recognized as

part of the immune system’s attempt at regaining homeostasis.

Examples include increased IL-1Ra in autoimmune diseases such as

rheumatoid arthritis (126) or systemic lupus erythematosus (127).

Moreover, as IL-1Ra concentrations increased in maternal serum at

22–24 weeks gestation, so did the risk of preterm birth (56).

Polymorphisms in the gene encoding IL-1Ra (IL1RN) have been

associated with acute deciduitis (86). These findings are consistent

with an involvement of IL-1 in chorioamnionitis and preterm labor.
4.2. IL-1-driven animal models of
chorioamnionitis

Animal studies support the key role of IL-1 during

chorioamnionitis (Figure 1 and Table 1). Intraperitoneal (i.p.)
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injection of lipopolysaccharide (LPS; an endotoxin of Gram-

negative bacteria) to pregnant dams increased expression of the

gene for IL-1β in both sheep chorion (IL1B) (58) and rat placenta

(Il1b) (57), and additionally increased IL-6 and IL-1β in the

maternal serum and amniotic fluid of guinea pigs (60). Moreover,

pregnant rhesus macaques injected with live Group

B Streptococcus (GBS) into the amniotic cavity or choriodecidual

space demonstrated increased abundance of IL-1β and TNF from

13 h post-injection, and concurrently reduced the abundance of

prolactin (7). Very high levels of prolactin in amniotic fluid

suggest an important role in fetal development, and has been

speculated to be involved in the balance of water and electrolytes,

yet there is no consensus on the function of prolactin during

pregnancy (128).

In addition to chorioamnionitis triggering IL-1 production, i.a.

injection of IL-1 was shown to induce sterile chorioamnionitis

similar to endotoxins such as LPS: Rhesus macaques were

injected with either IL-1β or saline 24 or 72 h before preterm

delivery via cesarean section at 80% gestation, i.e., equivalent to

32 weeks GA for a human (8). Monkeys exposed to IL-1β 24 h

before cesarean exhibited infiltration of predominantly

neutrophils into the decidua parietalis, and these decidual

neutrophils produced increased pro-inflammatory cytokines such

as TNF and IL-8, and more frequently expressed anti-

inflammatory IDO (indoleamine 2, 3-dioxygenase) mRNA, than

vehicle-treated controls (8). These effects were short-lasting
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TABLE 1 Effects and associated studies of IL-1.

Preclinical evidence Abundance in humans

Labor Onset
Mice deficient in IL-1β (39), caspase-1 (40), or IL-1R1 (41, 42) are fully fertile and
deliver at term.
Intra-amniotic IL-1β triggers uterine contractions and preterm labor in a pregnant
rhesus macaque model (43).
Increased IL-1β abundance correlates with leukocyte infiltration in the chorionic
membrane (54) and placental tissue (50–52) preceding spontaneous labour.

IL-1β is elevated in myometrium, cervix and fetal membranes during labor (53).
Elevated IL-1α and IL-1β, and reduced IL-1Ra is observed in cervicovaginal fluid 4–14
days prior to spontaneous labor onset (48).
IL1B expression is increased in fetal and maternal tissues during labor (49).
Elevated IL-1Ra in maternal serum correlates with increased risk of preterm birth (56).

Chorioamnionitis
Animal models of chorioamnionitis demonstrate:
• Increases in IL1B mRNA in rat placenta (57), and sheep chorion-amnion (58, 59).
• Increases in IL-1β in maternal serum and amniotic fluid of guinea pigs (60).
• Increases in IL-1β in amniotic fluid of rhesus macaques (7).
Intrauterine recombinant IL-1β induces sterile chorioamnionitis similar to LPS in a
preterm pregnant rhesus macaque model (8).
Anakinra (human recombinant IL-1Ra):
• Protective against GBS-induced fetal inflammatory response syndrome and
neurobehavioral impairment in a rat model of chorioamnionitis (9).

• Attenuates lung inflammation in a fetal sheep model of chorioamnionitis (61).
• Protective against neutrophil infiltration and increased IL-6 and PGE2 abundance in
amniotic fluid in a rhesus macaque model of chorioamnionitis (62).

• Does not ameliorate LPS-induced inflammation in a sheep model of
chorioamnionitis (59).

• Does not prevent the increase of pro-inflammatory T cells in fetal spleen from a
rhesus macaque model of chorioamnionitis (62).

A non-competitive allosteric IL-1Ra (rytvela) reduces IL-1β and CCL2 abundance in
amniotic fluid in a sheep model of chorioamnionitis (63).

IL-1β is elevated in amniotic fluid (5, 46, 64–70), placenta (6), and maternal serum
(71–73) from chorioamnionitis-affected pregnancies.
IL1B mRNA expression is increased in maternal serum (74) during chorioamnionitis.
Conflicting evidence: reports of increased IL-1 in cord blood from chorioamnionitis-
affected pregnancies (75–77) however not in all studies (78–81). May require
concurrent funisitis (77).
IL-1Ra is increased in amniotic fluid, cervical secretions and cord blood (82–85) from
chorioamnionitis-affected pregnancies.
Polymorphisms of IL1RN are associated with acute deciduitis (86).

Fetal growth restriction (FGR)
Animal models of FGR demonstrate:
• Increased IL-1 abundance in murine embryo brain (87).
• Increased Il1 mRNA expression in rat placenta (10), neonatal rat liver (89), and fetal
rabbit kidney (90).

Growth-restricted offspring in a FGR piglet model demonstrate reduced serum IL-1
(91, 92) and compromised cellular immune responses (88).
Treatment of human term placental explants with uric acid crystals induces a pro-
inflammatory profile including increased IL-1β abundance, and these effects are IL-1
dependent, and prevented by treatment with anakinra (93). Administration of these
uric acid crystals to pregnant rats result in FGR (93).
Anakinra ameliorates IL-1β- and TNF-induced suppression of fetal rat metatarsal
bone growth (94).
Anakinra restores fetal growth in malaria-induced FGR in mice (95).

IL-1β is elevated in maternal serum from third trimester pregnancies affected by
placental insufficiency and FGR (96, 97), and in peripheral blood from growth-
restricted or -limited infants (98).
IL1A mRNA expression is increased in placentas from growth-restricted pregnancies
(99).
Polymorphisms in IL1A and IL1B are not significantly associated with FGR (100).
No significant differences in IL-1 abundance are observed in amniotic fluid and cord
blood between growth-restricted and appropriately grown infants (101–103).

Cardiac Dysfunction
IRAK1 deficient mice are resistant to LPS-induced contractile dysfunction (104).
Animal models of intrauterine inflammation demonstrate:
• Reduced neonatal descending aorta and middle cerebral artery blood flow velocities
in rats (105).

• Reduced fetal cardiac output with increased cardiac afterload in mice (106).
• Impaired cardiac development in neonatal lambs and pigtail macaques (107, 108).
• However, the link to IL-1 here is understudied.

Increased ventricular compliance and reduced contractile function are observed in
infants exposed to chorioamnionitis (109, 110).
Histological chorioamnionitis is associated with:
• Higher baseline fetal heart rate and increased periods of low variability (111).
• Increased abundance of IL-1β and IL-6 in cord blood, increased heart rate, and
decreased blood pressure in the first week post birth (76).

Pulmonary Inflammation and Maturation
Increased lung compliance and improved lung functionality are seen in fetal rabbit
and lamb models of chorioamnionitis (112, 113), as well as after intra-amniotic
injection with IL-1α (114).
In murine models, BPD is precipitated by a rise in pulmonary inflammation, and IL-
1β plays a key role in its pathogenesis (115–118).

Chorioamnionitis-exposed infants with respiratory distress exhibit an altered lung
surfactant lipidome compared to unexposed infants (119).
Chorioamnionitis is associated with increased IL-1β in bronchoalveolar lavage fluid
(120, 121) and serum (122) from affected infants.

Patent Ductus Arteriosus (PDA)
No studies identified. Chorioamnionitis predisposes infants to PDA (123).

Late-onset sepsis is associated with a higher rate of unsuccessful DA closure with
treatment (124).
Large PDA is associated with increased pro-inflammatory (IL-1β, IL-8) and anti-
inflammatory (IL-1Ra, IL-10) cytokines (125).

PDA, patent ductus arteriosus; LPS, lipopolysaccharide; GBS, group B streptococcus; PGE2, prostaglandin E2; CCL2, chemokine (C-C motif) ligand 2; FGR, fetal growth

restriction; BPD, bronchopulmonary dysplasia; IRAK1, IL-1 receptor associated kinase-1.
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however and by 72-hours post-dose the neutrophil infiltration and

cytokine production was lower than at 24 h (8). Data on IL-1

blockade in chorioamnionitis are described in Section 7.
5. Fetal growth restriction (FGR)

5.1. The impact of FGR on transitional
circulation

FGR is intimately related to issues in the cardiopulmonary

transition to postnatal life, as placental insufficiency results in

chronic deprivation of oxygen and nutrients, which the fetus

responds to with adaptations in circulation. These adaptations

can be conceptualized as “brain-sparing”, whereby blood flow is

increased to the brain, as measured by middle cerebral artery

Doppler studies (129, 130), whereas flow to the lower body is

reduced. Due to placental vascular bed resistance, the fetal heart

is subject to increased afterload, resulting in bilateral ventricular

hypertrophy and reduced compliance (131, 132). Moreover,

greater coronary artery blood flow, a local response seen in FGR

infants, was not associated with improved cardiac function (133).

As the severity of FGR increases, fetal cardiac dysfunction and

myocardial cell damage increase, and perinatal morbidity

worsens (134–136). Dysmorphic pulmonary vascular growth

increases right to left ductal shunting, further contributing to

cardiac dysfunction (137). Despite extensive research into FGR

and the transitional circulation, little is known of the role of

inflammation and IL-1 in this relationship.
5.2. Clinical association of IL-1 with FGR-
affected maternal and infantile tissues

Knowledge on the clinical association between FGR and IL-1 in

maternal and infantile samples is limited (Figure 1 and Table 1).

Maternal serum abundance of IL-1β was elevated in third

trimester pregnancies affected by placental insufficiency and

FGR, compared to uncomplicated pregnancies (96, 97).

Moreover, on day 14 of neonatal life, IL-1β was increased in

peripheral blood from growth-restricted or -limited infants (98),

and placentas from growth-restricted pregnancies exhibited

higher IL1A mRNA when compared to healthy pregnancies (99).

Polymorphisms in IL1A, namely −889C/T and +4,845G/T alleles,

were associated with altered transcriptional activity and aberrant

production of IL-1α. Females carrying these alleles had an

elevated risk of preterm birth, and bearing of low birthweight

infants, however no significant difference in the risk of FGR was

confirmed (100). These findings suggest that aberrant production

of IL-1α may increase the risk of preterm birth, and thus low

birthweight, but were not directly associated with FGR. No

associations between polymorphisms in IL1B and the risk of

preterm birth, low birthweight, nor FGR were found (100).

When examining amniotic fluid and cord blood, no differences

in IL-1 abundance were detected between growth-restricted and

appropriately grown infants (101–103).
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5.3. Dysregulation of IL-1 in animal models
of FGR

FGR has been linked to dysregulated IL-1 and related pathways

in vivo (Figure 1 and Table 1). Many animal models of FGR have

been used to investigate IL-1, including calorie-restriction (89),

uteroplacental ligation (90), maternal ethanol exposure (87),

bariatric surgery (10) and administration of uric acid (93). These

studies demonstrated increased maternal and fetal protein

production and gene expression of IL-1α and IL-1β in FGR-

affected pregnancies compared to uncomplicated pregnancies.

In FGR piglets, cellular immune responses were compromised

and contributed to an increased incidence of sepsis in the postnatal

period (88). Piglets born FGR were associated with a lower serum

immunoglobulin A and IL-1 when compared to control offspring

(91, 92), potentially via increased expression of HSP70 (heat

shock protein 70) (91, 138). HSP70 is a stress-response protein

which can be induced by hypoxia-ischaemia (139), and thus may

be increased in FGR, as found in one study examining piglet

intestines at birth (140). HSP70 is also a danger signal to the

innate immune system (141), and if overexpressed, can inhibit

cytokine expression (142). Thus, HSP70 overproduction

secondary to FGR may compromise cellular immune responses,

including IL-1 expression (91).
6. Neonatal outcomes

Perinatal inflammation is inversely related to GA and

birthweight, and predisposes infants to cardiopulmonary

dysfunction and morbidity, as well as patent ductus arteriosus.
6.1. Cardiac dysfunction

Exposure to IL-1β has been linked to cardiac depression. IL-1β

depressed rat cardiac myocyte contractile function in vitro (143,

144), and isolated hearts from IL-1 receptor associated kinase-1

(IRAK1) deficient mice were resistant to LPS-induced contractile

dysfunction ex vivo (104).

Whilst a causal relationship between IL-1 in the transitional

circulation and cardiac dysfunction has not yet been established,

excessive inflammation in utero, to which IL-1 signaling

contributes, induced cardiac dysfunction in neonatal rodents and

sheep. The intracervical injection of LPS to pregnant rats on

embryonic day (E)15 and subsequent serial transabdominal

echocardiogram performed on fetuses in utero revealed a blunted

increase in gestation related aortic blood flow velocity (BFC), and

a decreased middle cerebral artery BFC compared to the vehicle

controls (105). Another study administered LPS i.p. to pregnant

mice on E14-15 and after 6 h investigated fetal cardiac

dysfunction and inflammatory changes in the placenta. LPS

exposed animals revealed increased fetal cardiac afterload,

reduced fetal cardiac output, and increased placental expression

of Il1a, Il6 and Tnf (106).
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An association between intrauterine inflammation and long-

term vulnerability to cardiac disease is beginning to be explored.

Lambs exposed to i.a. injection of LPS 48 h before delivery

exhibited impaired cardiomyocyte growth, increased collagen

deposition and remodeling of the left ventricular myocardium,

when compared to saline-treated controls. Affected lambs also

demonstrated increased expression of genes related to cardiac

metabolism and calcium handling, however expression of IL1B

was not significantly increased (107). In non-human primates,

cardiac tissue exposed to intrauterine infection identified reduced

gene expression of pathways involved in cardiac morphogenesis

and vasculogenesis (108). Abundance of IL-6 and IL-8 in cardiac

tissue was increased in intrauterine infection, however IL-1 and

TNF abundance was not significantly different between groups

(108). These studies highlight the long-term implications of

intrauterine inflammation on heart disease, beyond the transition

to extrauterine life.

In humans with sepsis, circulating depressing factors, such as

IL-1β, are speculated to induce myocardial dysfunction (145),

and cardiac dysfunction after inflammation is further evidenced

in human fetuses exposed to pre-labor rupture of membranes

(PROM) or i.a. infections. Affected infants had increased

ventricular compliance and reduced contractile function (109,

110). Cardiotocography during PROM also showed that fetuses

exposed to histological chorioamnionitis exhibited a higher

baseline heart rate and increased periods of low variability (111).

Histological chorioamnionitis has been correlated with increased

cord blood IL-1β and IL-6, increased heart rate and decreased

blood pressure in the first week after birth (76).

Therefore, inflammation in the transitional circulation, as

occurring in chorioamnionitis, precipitates cardiac dysfunction,

and is speculated to be mediated in part by IL-1 (Table 1),

however this needs to be confirmed in future studies.
6.2. Pulmonary inflammation and
maturation

In addition to cardiac complications, chorioamnionitis and

increased IL-1 were associated with pulmonary complications

(Table 1). Early life inflammation had an initial maturing effect

which increased surfactant production from type-2 alveolar

epithelial cells. This increased surfactant production increased

lung compliance and improved lung functionality, in

experimentally-induced chorioamnionitis (112, 113) or i.a. IL-1α

injection (114). Clinically, there is little research on the

relationship between chorioamnionitis and surfactant production.

However, it was reported that infants with respiratory distress

from pregnancies complicated by chorioamnionitis presented with

an altered lung surfactant lipidome compared to those without

chorioamnionitis (119).

Despite the initial maturing effect of chorioamnionitis on the

immature lung, the longer-term outcomes are often poor.

Chronic pulmonary inflammation in mice, induced with

antenatal inflammation and postnatal hyperoxia, disrupted

alveolarization and vasculogenesis, manifesting a lung disease
Frontiers in Pediatrics 06
known as bronchopulmonary dysplasia (BPD). This BPD

phenotype was precipitated by a rise in pulmonary inflammation,

to which IL-1β was established as a key pathogenic factor

(115–118, 146). In humans, infants from pregnancies

complicated by chorioamnionitis have elevated IL-1β in

bronchoalveolar lavage fluid (120, 121) and serum (122). Thus,

somewhat paradoxically, chorioamnionitis was associated with a

reduced incidence of early respiratory distress (147), but an

increased incidence of BPD (148).
6.3. Patent ductus arteriosus (PDA)

PDA describes a persistent opening between the aorta and

pulmonary artery after birth, affecting up to 55% of infants ≤28
weeks’ GA (149) and 31% of infants <1,500 g (150). Patency and

closure of the ductus arteriosus (DA) is a complex area of study

[as reviewed in (151)]. During early fetal development nitric

oxide (NO) is the primary mediator responsible for maintaining

patency (152, 153). Closer to term, this role is filled by

prostaglandin E2 (PGE2) (152, 153). Importantly IL-1β is a

potent inducer of PGE2 expression (154), yet the relationship

between IL-1 and PDA remains understudied (Table 1).

Infection and inflammation increase the risk of PDA, and is

associated with increased cyclooxygenase-1 (155) and 6-

keoprostaglandin F1α (156).

After birth, multiple factors contribute to the closure of the

DA, a process that is ultimately achieved by smooth muscle

constriction (157). Key triggers for this muscular contraction

likely include a drop in circulating PGE2 (158, 159), and

increased calcium activity after acute oxygenation (as is seen in

preterm infants with ventilation) (160–162).

Systematic review and meta-analysis of 23 studies, including

over 17,708 infants, revealed that chorioamnionitis predisposed

infants to PDA (123). Further, another clinical study found that

late-onset sepsis (i.e., sepsis occurring later than ∼72 h of life)

was associated with a higher rate of unsuccessful closure after

treatment with concomitant diuretic and oral paracetamol

treatment (124). Accordingly, inflammation is likely to play an

important role in persistence of the DA. There is very little

research on the relationship between IL-1 and PDA. However,

echocardiography and plasma samples taken on day 3 of life in

53 infants, with a GA at birth below 28 completed weeks,

revealed an association between large PDA (>1.5 mm) and

increased pro-inflammatory (IL-1β, IL-8) and anti-inflammatory

(IL-1Ra, IL-10) cytokines (125).
7. Blockade of IL-1 in chorioamnionitis

Considering the evidence linking chorioamnionitis with

maternal and neonatal morbidity, and the negative effects of

excessive inflammation and IL-1 production, anakinra has been

investigated in a variety of intrauterine inflammation models

(Figure 1 and Table 1).
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Pregnant rats that received GBS i.p. at E19, and subsequently

received three antenatal i.p. doses of anakinra, exhibited

improved gestational weight, reduced IL-1β titer in placentae,

maternal and fetal sera, and improved neonatal neurobehavioral

outcomes when compared with rats exposed to GBS only (9).

Fetal sheep were exposed to i.a. injections of LPS with or

without prior i.a. injection of recombinant human IL-1Ra. IL-

1Ra pre-treatment decreased LPS-induced inflammation, as

assessed by decreased lung neutrophil and monocyte influx, and

decreased lung IL6 and IL1B levels, as well as decreased plasma

IL-8. Blockade of IL-1 signaling in the amniotic compartment

therefore inhibited fetal inflammation in response to

chorioamnionitis (61).

Administration of either IL-1α or LPS i.a. to pregnant sheep

resulted in placental inflammation, increased IL1B, IL6 and IL8

mRNA and IL-8 protein abundance and infiltration of

inflammatory cells into the chorio-amnion (59). However,

pretreatment with anakinra did not ameliorate the LPS-induced

inflammation; most notably C-C Motif Chemokine Ligand 2

(CCL2)-expressing cells in the chorio-amnion were unchanged

(59). In a separate study, i.a. LPS injection to pregnant sheep

increased amniotic fluid CCL2 after 24 h (63). After fetal

intravenous administration of rytvela, a non-competitive

allosteric IL-1Ra, amniotic fluid CCL2 was significantly lower

compared to controls (63). The differences in outcomes between

these studies could be related to dosing or timing of LPS

administration or the mechanism of IL-1 blockade.

Treatment of pregnant rhesus macaques with anakinra prior to

i.a. administration of LPS prevented increased neutrophil

infiltration and increased IL-6 and PGE2 abundance in the

amniotic fluid, as compared to LPS-only controls (163). In a

separate study using the same protocol, anakinra did not prevent

the increase in pro-inflammatory T cells and decreased anti-

inflammatory regulatory T cells, in the spleen of LPS-exposed

fetuses (62).

IL-1R blockade shows promise as a potential therapeutic to

reduce intrauterine inflammation and neonatal morbidity as seen

in chorioamnionitis. However, more research is needed

considering the limited literature.
8. Blockade of IL-1 in FGR

FGR is a multifactorial disease, to which inflammation

contributes as described. Thus, one could speculate that blocking

IL-1 could hold promise as a treatment to improve the outcome or

even prevent FGR. However, blockade of IL-1 in preclinical models

of FGR remains relatively understudied (Figure 1 and Table 1).

To our knowledge, there are only two ex vivo studies

investigating IL-1R blockade in FGR. The first study exposed

fetal metatarsal bones from Sprague Dawley rats to IL-1β and

TNF, leading to reduced bone growth, which was improved by

anakinra in a dose-dependent manner (94). The second study

induced apoptosis via uric acid or IL-1β in human placental

explants, which could be prevented by caspase-1 inhibition or

anakinra treatment (93).
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Interestingly, malaria infection during pregnancy led to FGR in

infants, which was paralleled by placental activation of the NLRP3

inflammasome and increased IL1B expression (95). Antenatal

exposure of pregnant mice to a Plasmodium parasite followed by

a 5-day therapeutic treatment with anakinra commenced within

24 h after infection, restored fetal growth and reduced fetal

resorption (95). Whilst this provides preliminary evidence for

treating malaria-induced FGR with IL-1 blockade, further studies

are needed to determine whether anakinra protects against other

FGR pathologies, including placental mal-perfusion.
9. Conclusion

In normal pregnancies, IL-1 contributes to normal parturition

and birth. However, in inflammation, e.g., in chorioamnionitis,

IL-1 is often increased, and associated with preterm labor.

Exposure of the fetus to increased IL-1 also contributes to

postnatal inflammation, which can negatively affect the neonatal

heart (resulting in myocardial depression) and lungs (increased

risk of BPD and PDA). Therapeutic or prophylactic blockade of

IL-1 signaling pathways in preclinical models of chorioamnionitis

have shown to reduce intrauterine inflammation and improve

fetal outcomes. The evidence on IL-1 blockade as a treatment for

FGR is preliminary, but opens the field for further studies.

Overall, there is good evidence to support the concept of IL-1

blockade for treating perinatal inflammation and to improve

transitional circulation.
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