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Introduction: Embryo and fetus grow and mature over the first trimester of
pregnancy in a dynamic hypoxic environment, where placenta development
assures an increased oxygen availability. However, it is unclear whether and how
oxygenation changes in the later trimesters and, more specifically, in the last
weeks of pregnancy.
Methods: Observational study that evaluated the gas analysis of the umbilical cord
blood collected from a cohort of healthy newborns with gestational age ≥37
weeks. Umbilical venous and arterial oxygen levels as well as fetal oxygen
extraction were calculated to establish whether oxygenation level changes over
the last weeks of pregnancy. In addition, fetal lactate, and carbon dioxide
production were analyzed to establish whether oxygen oscillations may induce
metabolic effects in utero.
Results: This study demonstrates a progressive increase in fetal oxygenation levels
from the 37th to the 41st weeks of gestation (mean venous PaO2 approximately
from 20 to 25 mmHg; p < 0.001). This increase is largely attributable to growing
umbilical venous PaO2, regardless of delivery modalities. In neonates born by
vaginal delivery, the increased oxygen availability is associated with a modest
increase in oxygen extraction, while in neonates born by cesarean section, it is
associated with reduced lactate production. Independently from the type of
delivery, carbon dioxide production moderately increased. These findings
suggest a progressive shift from a prevalent anaerobic metabolism (Warburg
effect) towards a growing aerobic metabolism.
Conclusion: This study confirms that fetuses grow in a hypoxic environment that
becomes progressively less hypoxic in the last weeks of gestation. The increased
oxygen availability seems to favor aerobic metabolic shift during the last weeks
of intrauterine life; we hypothesize that this environmental change may have
implications for fetal maturation during intrauterine life.
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1. Introduction

Oxygen is thought to play a major role in modulating embryo

and fetus growth, although embryonic development occurs under

anaerobic conditions and the fetus thrives in a very-low oxygen

environment (1). Before the 10th week of human gestation,

placental oxygen is less than 20 mmHg (approximately 2% O2),

similar to the level detectable within the non-pregnant uterus (2,

3). This hypoxic environment affects the metabolic adaptation of

the embryo and fetus by stimulating glycolytic metabolism

through an increased uptake of glucose, which instead to be used

for mitochondrial oxidative phosphorylation, is converted to

lactate, similarly to what is observed in cancer cells (the so-

called Warburg effect) (4).

The intrauterine low oxygen tension is known to inhibit tissue

differentiation (5, 6), but promotes human trophoblast cell

proliferation (7) and embryo vascularization through the

upregulation of hypoxia-inducible factors that activate a plethora

of proangiogenic cytokines (8). Therefore, during the first weeks

of pregnancy, low oxygen environment promotes placental

development that in turn induces three-fold increase of placenta

oxygenation to around 60 mmHg (approximately 8% O2) during

the second trimester of gestation (2). Oxygen transfer from the

mother to the fetus occurs by simple diffusion via the placenta.

However, several structural obstacles tend to reduce the oxygen-

diffusing capacity of the placenta, as demonstrated by the fact

that the partial pressure of oxygen (PaO2) of the umbilical

venous blood, which transfers oxygen from the placenta to the

fetus, is significantly lower than maternal arterial PaO2 (9).

Therefore, the tripled placental oxygen content during the

transition from the first to the second trimester of gestation

favors an increasing oxygen availability to the feto-placental unit

and explains why the environment where the embryo/fetus grows

and matures can be considered a dynamic habitat where hypoxia

gradually decreases.

Extrapolations from animal studies suggest that human fetal

arterial PaO2 is approximately 20 mmHg (10), while in humans,

umbilical venous PaO2 is approximately 28 mmHg during the

third trimester of pregnancy (11). Data on fetal oxygenation with

advancing gestation suggests a progressive reduction toward the

near-term of pregnancy (12–16). However, little is known about

the trend of fetal oxygenation during the last weeks of pregnancy

and in particular from the thirty-seventh week to term, although,

in a recent study, umbilical vein oxygenation has been reported

to increase over the last weeks of pregnancy supporting an

increased placental transport efficiency for oxygen as a primary

determinant of fetal growth (17).

Umbilical-cord blood gas sampling is the most reliable

indicator of fetal metabolic condition and arterial/venous cord

blood samples can be collected for all births whenever possible

(18). In the present study, umbilical-cord blood gas samples have

been analyzed in order to establish whether oxygenation level

changes during the last weeks of pregnancies in newborns with

gestational age (GA) ≥37 weeks. The possibility that changing

oxygenation may induce metabolic effects in utero, i.e., impacting

the Warburg effect, has been also analyzed.
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2. Methods

The study was conducted in the University Hospital of Pisa,

Italy, with approximately 1,700 births per year. All the neonates

born between January 1st, 2019, and December 31st, 2019 were

enrolled. Their umbilical-cord blood samples were collected at

about 60 s after birth following delayed cord clamping. Samples

collected from preterm newborns (<37 weeks) or gestations with

fetal or maternal intrapartum complications (i.e., fetuses with an

abnormal intrapartum cardiotocography that required emergency

cesarean section, operative vaginal delivery involving application of

forceps or a vacuum extractor, meconium-stained amniotic fluid,

cord prolapse, placental abruption, chorioamnionitis, maternal

sepsis, hemorrhage, convulsions, uterine rupture, cord avulsion)

were excluded from the study. Umbilical-cord blood samples with

missing values or suggestive of severe acidosis at birth (pH≤ 7.00

and/or BE≤−12 mmol/L) (19, 20) were excluded from the analysis.

In accordance with recent studies, values of umbilical (venous

and arterial) parameters < or >3 SD from their respective means

were individually evaluated and (i) corrected if probably mis-

entered, (ii) retained unchanged if considered plausible, and (iii)

excluded if considered implausible (17). We excluded from the

analysis cord blood gas whose results did not fulfill the following

criteria: (i) arterial pH < the venous pH (by at least a difference

of 0.022) and (ii) arterial partial pressure of carbon dioxide

(PaCO2) > the venous PaCO2 (by at least a difference of

5.3 mmHg) (21). Finally, the remaining umbilical (venous and

arterial) PaO2, PaCO2, pH, and lactate values <0.5th percentile

and >99.5th percentile were additionally excluded, to remove

extreme values potentially reflective of pronounced intrapartum

events (e.g., fetal asphyxia, maternal hyperventilation) (17).

An approximate 20 cm segment of the cord was isolated and cut

between a set of two clamps. Cord blood was collected by blood gas

syringes containing spray-dried calcium-balanced lithium heparin.

First, a minimum of 0.2 ml of blood was withdrawn from the

artery, and then a second syringe was used to obtain a venous

sample. The samples were labeled and identified as arterial or

venous and analyzed as soon as possible after their collection,

using an automatic blood gas analyzer (GEM® Premier 4000,

Instrumentation Laboratory, Lexington, MA, USA). The pH,

PaCO2, PaO2, and lactate were measured, whereas base excess was

calculated using the formula described by Siggaard- Anderson: (1–

0.014 ×Hb)×[HCO3
− −24.8 + (1.43 × Hb + 7.7)×(pH−7.4)] (22).

Oxygen content was calculated using the formula [(1.34 × Hb ×O2

saturation/100) + (0.0031 × PaO2)]. Fetal oxygen extraction was

calculated as the difference between umbilical venous and arterial

blood oxygen contents divided by umbilical venous oxygen

content. Fetal lactate and CO2 productions were calculated,

respectively, as the difference between arterial lactate or blood CO2

and venous contents, divided by the respective venous content.

Institutional protocols for pain and anesthesia management

included epidural analgesia or anesthesia for all healthy parturient

women and performed by ropivacaine or levobupivacaine in

combination with sufentanil. General anesthesia was indicated for

emergency cesarean sections. Maternal oxygen supplementation was

reserved for the management of abnormal fetal heart rate tracings only.
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2.1. Statistical analysis

Categorical data were described by absolute and relative (%)

frequency, and continuous data were summarized by means and

standard deviations. To compare delivery type with categorical

and continuous factors, chi-square test and t-test for independent

samples were performed, respectively. Furthermore, GA was

compared with several outcomes such as venous or arterial PaO2,

oxygen extraction, venous or arterial lactate, lactate production,

venous or arterial PaCO2, and PaCO2 production by simple

linear regression, and the beta coefficient was also calculated. A

p < 0.05 was considered significant. Statistical analysis was done

with SPSS 28.0 program (IBM SPSS Statistics for Windows,

Version 28.0 Armonk, NY: IBM Corp.).
2.2. Ethical approval

The present study was performed following the ethical

principles for medical research involving human subjects adopted

by the Word Medical Association General Assembly (Declaration

of Helsinki) and its later amendments. The study was approved

by the Pediatric Ethical Committee for Clinical Research of

Tuscany region (number 291/2022).
3. Results

Out of 1,709 neonates born in 2019, 233 newborns with GA

<37 weeks and 8 with GA≥ 42 were excluded from the analysis.

Thirty patients with acidosis at birth, and 90 patients in which

umbilical-cord gas analyses were not performed, grossly
FIGURE 1

Flow chart illustrating patient enrollment of this retrospective observational c
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incomplete, or unreliable were excluded. Of 1,348 newborns

enrolled, females were prevalent (700/1,348, 51.9%). 947

newborns were born from vaginal delivery (70.2%), but this

percentage widely varied during the study period (Figure 1).

In Table 1, the demographic and gas analytical parameters of

all newborns are shown. Neonates born by spontaneous delivery

showed higher values of PaO2 and lactate, and lower values of

PaCO2 and base excess both in venous and arterial cord

samplings. Neonates born by cesarean section exhibited an

oxygen extraction significantly higher than neonates born by

spontaneous delivery. Newborns showed comparable Apgar

scores throughout the analyzed period, regardless of GA

progression (Supplementary Figure S1). To evaluate whether

oxygen tension changed with the progression of pregnancy, data

of venous and arterial PaO2 as well as oxygen extraction were

evaluated in function to the progression of pregnancy (Figure 2).

Values from umbilical venous samples showed a progressive,

linear increase in PaO2 levels from 37 to 41 weeks (on average

an increase of about 1 mmHg per week) (Figure 2A), while

arterial PaO2 increased with a lower slope (Figure 2B). Overall,

oxygen extraction slightly increased from 37 to 41 weeks, in

parallel with an increased oxygen availability (Figure 2C).

Supplementary Table S1 shows numerical data stratified by

weeks of gestation.

The type of delivery was demonstrated to influence significantly

the gas analysis results, mostly oxygenation (Table 1). To assess

whether this influence was due to labor itself, data on neonates

born by cesarean section were disaggregated according to the

presence of labor. Neonates born with previous labor were 83

(20.7%), and without labor were 318 (79.3%). The results showed

no significant differences between the newborns without or with

labor: mean venous PaO2 was 22.4 ± 7.2 mmHg in neonates born

without labor vs. 24.2 ± 7.2 mmHg in neonates born after labor
ohort study.
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TABLE 1 Umbilical-cord blood gas analysis in all enrolled term newborns and separately analyzed by the type of delivery.

All term newborns n = 1,348 Vaginal delivery n = 947 Cesarean section n = 401 p value
GA, weeks, mean (SD) 39.7 (1.2) 39.7 (1.2) 39.6 (1.1) 0.169

Birth weight, g, mean (SD) 3,334 (978) 3,370 (1,125) 3,248 (462) 0.036

Male, n (%) 648 (48.1) 465 (49.1) 183 (45.6) 0.169

Apgar score at 5 min, mean (SD) 8.9 (0.5) 9.0 (0.4) 8.9 (0.5) 0.507

Umbilical venous cord sampling
pH, mean (SD) 7.318 (0.07) 7.319 (0.07) 7.315 (0.06) 0.304

PaCO2, mmHg, mean (SD) 39.9 (8.3) 38.4 (8.3) 43.6 (7.5) <0.001

PaO2, mmHg, mean (SD) 25.9 (7.7) 27.4 (7.5) 22.8 (7.3) <0.001

BE(B), mmol/L, mean (SD) −5.4 (3.1) −6.0 (2.9) −4.0 (3.2) <0.001

Lactate, mmol/L, mean (SD) 3.6 (1.5) 4.0 (1.5) 2.3 (1.3) <0.001

Umbilical arterial cord sampling
pH, mean (SD) 7.238 (0.089) 7.232 (0.07) 7.246 (0.07) <0.001

PaCO2, mmHg, mean (SD) 52.4 (11.4) 52.0 (11.8) 53.4 (10.8) 0.045

PaO2, mmHg, mean (SD) 16.7 (7.8) 18.9 (7.6) 12.0 (6.0) <0.001

BE(B), mmol/L, mean (SD) −5.9 (3.6) −6.5 (3.1) −4.7 (4.3) <0.001

Lactate, mmol/L, mean (SD) 4.0 (1.6) 4.4 (1.6) 2.7 (1.4) <0.001

Veno-arterial O2 difference, mmHg, mean (SD) 9.5 (7.1) 8.8 (7.3) 11.1 (5.7) <0.001

Fetal oxygen extraction, %, mean (SD) 35.9 (24.3) 30.3 (24.1) 48.0 (19.8) <0.001

GA, gestational age; PaO2, partial pressure of oxygen; PaCO2, partial pressure of carbon dioxide; BE, base excess.

FIGURE 2

Scatter plots with regression lines and 95% prediction intervals representing umbilical-cord oxygenation status [venous PaO2, panel A (n= 1,233); arterial
PaO2, panel B (n= 1,181); fetal oxygen extraction, panel C (n= 1,158)] of the whole study population.
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(p = 0.065), and oxygen extraction was 48.2 ± 24.6% vs. 47.5 ± 22.8%

(p = 0.553). There was no statistical difference between the newborns

without or with labor either regarding venous PaCO2 (43.8 ± 7.9 vs.

42.9 ± 6.4 mmHg; p = 0.302), arterial PaCO2 (53.5 ± 11.1 vs. 52.8 ±

9.3 mmHg; p = 0.632), venous base excess (−4.0 ± 3.2 vs. −4.3 ±
2.9 mmHg; p = 0.430), or arterial base excess (−4.7 ± 4.4 vs. −4.6 ±
3.8 mmHg; p = 0.745). Conversely, mean venous lactate was

significantly lower in neonates born without labor (2.2 ± 1.1 vs.

2.6 ± 1.6 mmol/L; p = 0.047), while mean arterial lactate (2.6 ± 1.3

vs. 2.9 ± 1.5 mmol/L; p = 0.109) did not reach statistical significance.

Therefore, umbilical-cord oxygen values (venous, arterial, and

oxygen extraction) were analyzed separately according to the type

of delivery (Figure 3). Results confirmed a progressive and linear
Frontiers in Pediatrics 04
increase in umbilical venous PaO2 from the 37th to the 41st week,

both in neonates born from vaginal delivery (Figure 3A) and

cesarean section (Figure 3B). The increase of arterial PaO2 was less

striking if compared with venous PaO2 (Figures 3C,D). Overall,

the increase in oxygen extraction was modest and significant only

in neonates born by vaginal delivery (Figures 3E,F). Numerical

data stratified by weeks of gestation are shown in Supplementary

Table S2.

The modality of delivery influenced significantly also the values

of lactate. Newborns born by vaginal delivery exhibited higher

values of lactate both in venous and arterial samples (Table 1).

To evaluate whether lactate level was also affected by the

progression of GA, results were analyzed separately according to
frontiersin.org
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FIGURE 3

Scatter plots with regression lines and 95% prediction intervals representing umbilical-cord oxygenation status [venous PaO2, panel A (n= 860)—panel B
(n= 373); arterial PaO2, panel C (n= 811)—panel D (n= 370); fetal oxygen extraction, panel E (n= 795)—panel F (n= 363)] stratified by modality of delivery.
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delivery modality. Both in neonates born by vaginal delivery and by

cesarean section a progressive, linear decrease in lactate levels was

observed, either in venous (Figures 4A,B) or in arterial samples

(Figures 4C,D), from the 37th to the 41st week. Fetal lactate

production seemed to be stable throughout the period considered

in neonates born by vaginal delivery, (Figure 4E), but decreased

in neonates born by cesarean section (Figure 4F). Numerical

data stratified by weeks of gestation are shown in Supplementary

Table S2.

Table 1 demonstrates that the type of delivery affected also

venous PaCO2 levels, suggesting the opportunity to analyze CO2

production separately in newborns born by vaginal delivery or

cesarean section. The results demonstrated that the umbilical-

cord content of CO2 followed an opposing trend if compared

with the trend of oxygen, with a linear progressive decrease both

in venous (Figures 5A,B) and arterial samples (Figures 5C,D).

However, the CO2 production seemed to increase progressively

per gestation progression independently from the type of delivery

(Figures 5E,F). Again, numerical data stratified by weeks of

gestation are shown in Supplementary Table S2.
4. Discussion

It is broadly accepted that physiologic hypoxia plays an

important role in embryonic development (23). In hypoxic

environment, before placenta development, embryonic stem cells

maintain their pluripotency and hypoxia promotes their

proliferation (24). In fact, cytotrophoblast proliferation requires a
Frontiers in Pediatrics 05
very-low oxygen tension to maintain an undifferentiated state (25).

However, a series of considerations suggest that physiological

intrauterine hypoxia is dynamic. In particular, the progressive

remodeling of spiral arteries in which maternal vascular smooth

muscle cells and endothelial cells are replaced by embryonic

extravillous trophoblasts (26) allows the establishment of the

placental circulatory system, which permits an increased oxygen

delivery to the rapidly growing fetus (27). The chick embryo

model makes it possible to directly study the effects of varying

fetal oxygenation levels on prenatal growth, demonstrating the role

of oxygen as a developmental morphogen. Indeed, an increased

oxygen availability increases the growth of the chick (28–30). This

is indicative of the possibility that the progressive increase in

oxygen availability ensured by the complete development of the

placenta is functional to the growth and maturation of the

embryo/fetus during the first trimester of pregnancy. While in the

subsequent trimesters, a pathological reduction in fetal

oxygenation leads to restricted fetal growth and well-being (31), it

is not clear whether variations in environmental oxygenation

participate to the physiological fetal growth.

Previous findings from the analysis of human umbilical-cord

arterial and venous blood samples obtained via cordocentesis

demonstrate a decreased fetal PaO2 and O2 saturation between

second and third trimester of gestation (12–16) thus in apparent

contradiction with the present results demonstrating instead an

increased oxygenation during the last weeks of gestation, as also

shown by Richardson et al. (17). However, the comparison of

such results is questionable because, on the one hand, studies

based on cordocentesis depict a more physiological state over a
frontiersin.org
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FIGURE 4

Scatter plots with regression lines and 95% prediction intervals representing umbilical-cord lactate levels [venous lactate, panel A (n= 893)—panel B
(n= 284); arterial lactate, panel C (n= 909)—panel D (n= 283); fetal lactate production, panel E (n= 889)—panel F (n= 278)] stratified by modality of
delivery.

FIGURE 5

Scatter plots with regression lines and 95% prediction intervals representing umbilical-cord carbon dioxide levels [venous PaCO2, panel A (n= 934)—panel
B (n= 388); arterial PaCO2, panel C (n= 943)—panel D (n= 396); fetal CO2 production, panel E (n= 932)—panel F (n= 385)] stratified by modality of
delivery.

Filippi et al. 10.3389/fped.2023.1140021
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wide GA range before the peripartum period but did not take into

account the last weeks of pregnancy; on the other hand, these

studies were obtained from pregnancies complicated by maternal

infections, fetal structural anomalies, or various prenatal

pathologies (12–16). Although studies in healthy fetal animals

report no significant changes in blood gas and acid-base

variables during gestation (32–39), their findings are difficult to

be translated to human intrauterine gestation. For example, sheep

maintain the same umbilical gas status throughout the latter half

of pregnancy due to their high umbilical flow rate, while human

fetuses rely on increased oxygen extraction or more efficient

placental diffusion capacity as pregnancy progresses (40). In

addition, in many animals including rodents, several anatomic

structures are still immature at birth (41–43) and their

maturation is associated, at least chronologically, with an increase

in oxygen exposure after birth. This is particularly evident in the

retina, where the superficial vascular plexus reaches its

maturation postnatally during the first week after birth (42) or

even later (44), thus suggesting that an increased oxygen tension

may be determinant in the extrauterine maturation process. In

contrast, fetal human retinas complete vascularization during the

final weeks of intrauterine life (45), suggesting the progressive

increase in oxygen tension during this time may contribute to

this process.

To determine whether the oxygenation status changes over the last

weeks of pregnancy requires the analysis of a large series of umbilical-

cord samples that represents a safe, non-invasive approach to obtaining

suggestive information (46), even though they were exclusively

obtained during the peripartum period. Despite this evident

limitation, the simplicity of the method, its low cost, and its non-

invasiveness, made it possible to have a high number of

examinations available to assess the state of fetal oxygenation.

As shown by the present results (Figure 2), fetal oxygenation

linearly and progressively increases from the 37th to the 41st

week of gestation. This finding, however, could be questioned by

the modality of delivery as the oxygen content measured in

neonates born by cesarean section is significantly lower than in

neonates born by vaginal delivery (Table 1). To verify if the fetal

oxygenation level increases with gestation independently from

the type of delivery, umbilical-cord gas analytic data have been

analyzed separately between neonates born from vaginal delivery

or cesarean section (Figure 3). The data, despite their wide

variability, confirm an increase of venous PaO2 availability as GA

increases, independently of delivery modality. This increase is

progressive but slight, statistically appreciable only thanks to the

large sample size. The effect of the delivery modality on fetal

oxygenation does not seem to be dependent on the occurrence of

labor as in neonates born by cesarean section, the effect of labor

on the PaO2 level does not reach statistical significance. However,

this result might depend on the sample size, and therefore this

aspect deserves further analysis in future studies. On the

contrary, the different fetal oxygenation depending on the

delivery modality may be related, regardless of the clinical

conditions that recommended cesarean section, to a disparity in

the placental flow. In fact, compared to vaginal delivery, cesarean

section is usually characterized by a lower umbilical transfusion
Frontiers in Pediatrics 07
force because of the position of the newborns on the mother’s

abdomen with a gravity gradient that may prevent the cord

blood flow from the placenta to the newborn (47). In addition,

maternal hypotension (48) or reduced uterine contractile force

that are common among women subjected to cesarean sections

due to uterine incision and anesthesia (49, 50) may explain the

higher oxygen extraction possibly due to the need to guarantee

fetuses with comparable oxygen availability. The oxygen

extraction calculated in neonates born by vaginal delivery

(around 30%) is very similar to the value recently measured by

MRI in human fetuses in utero at 36 ± 1 weeks of GA (51),

indicating that the blood gas measurements performed in

neonates born by vaginal delivery may be more representative of

intrauterine conditions. The reduced umbilical flow due to the

fetus position above the placenta might also limit the diffusion of

CO2 from the fetus to the mother, explaining the higher PaCO2

values in neonates born by cesarean delivery. In addition, the

modality of delivery also significantly influences the values of

lactate, as demonstrated by its higher concentration in neonates

born by vaginal delivery. This increased concentration might be

related to the contribution of the lactate produced by the fetus

during the second stage of labor (52). This is also suggested by

the present study demonstrating higher values of lactate in

neonates born by cesarean section with previous labor.

As shown by the present results, between the 37th and the 41st

week, a progressive increase in oxygen availability coincides with a

progressive reduction of lactate (Figure 4) and CO2 delivery

(Figure 5) from the placenta to the fetus, associated with an

increased fetal CO2 production and a reduced lactate production,

which was only observed in neonates born by cesarean section

likely due to the lack of lactate production during fetal expulsion.

Therefore, the reduced lactate production found in cesarean

births may provide a picture more representative of the

intrauterine condition and could be potentially generalized to all

fetuses over the last weeks of pregnancy. These findings suggest

for fetuses at term a progressive and linear shift from a

metabolism predominantly anaerobic, typical of intrauterine

embryonic life (Warburg effect) and characterized by a

considerable extrusion outside the cells of lactate (4, 53), toward

a growing aerobic metabolism (54).

The increase of oxygen availability to fetuses during the last

weeks of gestation is probably more relevant than that estimated

here because in late gestation the hemoglobin concentration is

higher compared to early or mid-pregnancy (55), and the

percentage of fetal hemoglobin molecules decreases as adult

hemoglobin (which has lower affinity for oxygen) begins to rise

(56). The fact that oxygen extraction is only slightly increased

irrespectively of the increased oxygen availability is in line with

previous findings (17). In this respect, the disproportion between

the increased oxygen availability and the modest increase in fetal

extraction suggests that growing oxygenation would not be able

to ensure greater oxygen consumption but would rather

represent a signal capable of inducing cellular metabolic shift. In

this line, an MRI study has recently demonstrated that fetal

oxygen consumption remains substantially unchanged between

33 and 38 weeks despite increased oxygen extraction (40).
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Although much work has been focused on the role of hypoxia

in maintaining the stemness traits or in promoting

dedifferentiation, the possibility that maturation or differentiation

is driven by increasing concentrations of oxygen has been less

emphasized (1, 57–59). As shown by the present findings, slight

but progressive increase in fetal oxygenation, largely attributable

to an increased oxygen transfer from the placenta to the fetus,

occurs over the last weeks of pregnancy presumably due to

structural changes of the aging placenta that favors an increase of

the oxygen diffusing capacity (60).

Although it is not possible to attribute with certainty a biological

role to this progressive increase in oxygenation over the last weeks of

pregnancy, the idea that oxygen modulates cellular differentiation is

widely accepted, even if tissue-specific (58). In some anatomic zones,

as in the rat central nervous system, hypoxia promotes the

differentiation of stem cells into differentiated cells (61), in other

districts including the neuroretina (62), pancreatic β-cells (63), or

keratinocytes, stem cell differentiation is triggered by increased

oxygenation (64). Therefore, it is reasonable to speculate that the

intrauterine environment, which physiologically becomes more

hypoxic from mid-gestation to near-term and then less hypoxic

until term, ensures a tissue-specific fetal maturation and cellular

differentiation depending on oxygen tension. In the retina, for

instance, hypoxia induces astrocytes to differentiate, to stop their

migration, and to produce VEGF (65), while the differentiation of

endothelial cells requires a more oxygenated environment (59).

This unlike differentiation induced by different oxygen

concentrations might explain why some organs, such as the retina,

vascularize after birth in rodents while within the uterus in humans.

Among the myriad of mechanisms that can be activated by

oxygen dynamics during intrauterine life, oxygen-sensing

mechanisms induced by catecholamines have been suggested to

actively participate in the fetal growth (17). In the β-adrenoceptor

(β-AR) family, recent studies have demonstrated a close

relationship between oxygen levels and the expression of its last

cloned receptor, the β3-AR (66). Under hypoxic conditions, β3-

AR is significantly up-regulated in human pregnant myometrium

where it is the predominant β-AR subtype that contributes to

inhibiting spontaneous contractions (67, 68), as confirmed by the

induction of preterm delivery after the administration of β3-AR

antagonists in pregnant mice (69). Interestingly, β3-AR is actively

involved in cancer and embryonic stem cell metabolic

programming (70), differentiation (71), and in the induction of

fetal immune tolerance (72), suggesting the idea that this receptor

plays an important role during fetal development. In the

meantime, recent studies have demonstrated that β3-AR is rapidly

down-regulated upon exposure to a more oxygenated environment

(73) confirming the strict dependence of β3-AR expression on

oxygen levels. The relevant functional role of β3-AR during fetal

life together with its close correlation with oxygen levels explains

why it is important to know how oxygen levels change during

physiological pregnancies, and at the same time suggests the

possibility that its precocious down-regulation after premature

birth might affect the newborn health (74).

Finally, the finding that oxygen levels vary according to

gestational age has important implications for the emerging
Frontiers in Pediatrics 08
artificial placenta technology which is currently being developed

and being tested on animals (75). In this regard, it would be

important to know what oxygenation levels (and other gas

parameters) need to be reached at each point in gestation to

support normal physiologic growth and maturation of the fetus

while in the artificial placenta technology.
4.1. Limitations

The main limitation of the present study is the use of

umbilical-cord samplings as indirect indicators of the real

intrauterine condition. While gas analytic values after vaginal

delivery are affected by fetus engagement through the birth canal

and the reduced blood flow during uterine contractions (76),

values after cesarean section are conditioned by non-

physiological management including cardiovascular effects of

anesthesia, maternal ventilation, and maternal position (77, 78).

Beside sampling or test execution errors, gas values can be

influenced by hypoxic-ischemic suffering during labor, the effects

of which may depend on labor duration (79, 80). In addition,

umbilical-cord sampling does not include additional parameters

such as the umbilical blood flow rate, which plays a key role in

oxygen delivery (81), thus we assumed that umbilical flow

remained stable or increased over the last weeks of gestation.

In this study, the umbilical-cord blood samples have been

collected approximately 60 s after birth. Overall, this procedure does

not significantly affect the cord blood acid-base and gas values,

even though samples collected after delayed cord clamping show

arterial PaO2 values approximately 1 mmHg lower than samples

collected immediately after delivery (early cord clamping) (82).

Such difference is not negligible, because it roughly corresponds to

the variations in oxygenation measured weekly in our study.

Although additional data from premature newborns would have

provided a better understanding of the dynamics of fetal

oxygenation, the pooling of data obtained from term newborns

with those from preterm newborns would not have been

methodologically correct, as umbilical-cord blood samples in

neonates born prematurely are usually performed by blood

collected after early cord clamping. However, other studies

performed on a homogeneous cohort of preterm infants are needed

to evaluate the oxygenation trend before the 37th week because the

results of the present study are apparently conflicting with previous

studies, performed in fetuses from mid-gestation to near-term, in

which a progressive reduction of fetal oxygenation has been

reported (12–16), suggesting a biphasic trend of oxygenation during

intrauterine life.

The fact that the oxygenation in the blood collected after delayed

cord clamping is lower than in samples collected immediately after

delivery (82) reduces the possibility that spontaneous respiration

may have played a role in umbilical gas status. Consequently, also

the hypothesis that the increased PaO2 and the reduced PaCO2

observed in newborns with higher GA might be influenced by a

different lung maturity or respiratory strength seems unlikely, as

confirmed also by the comparable Apgar scores regardless of GA

progression (Supplementary Figure S1).
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5. Conclusion

This study confirms that in the last weeks of gestation,

intrauterine hypoxia is dynamic and therefore potentially capable

of modulating differentiation processes. Understanding the

physiological dynamics of oxygen during intrauterine life

assumes even greater importance now that mechanisms, which

link oxygen-associated transcription factors to their transactivated

proteins are available: this means that the way to

pharmacologically mimic the effects of oxygen oscillations is

open. More detailed knowledge of the fluctuations in oxygen

levels starting from conception and throughout pregnancy, their

biological effects during intrauterine life, and the mechanisms

through which oxygen regulates cell differentiation might help to

identify specific time windows on which to intervene to

reproduce the effects of oxygen oscillations when, for example,

the pregnancy results in a premature birth. Such a perspective

would restore the benefits of intrauterine life from which

premature infants have been deprived (74).
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