
TYPE Original Research
PUBLISHED 17 April 2023| DOI 10.3389/fped.2023.1149318
EDITED BY

Alexander Springer,

Medical University of Vienna, Austria

REVIEWED BY

Gilvydas Verkauskas,

Vilnius University, Lithuania

Adam Benjamin Hittelman,

Yale University, United States

*CORRESPONDENCE

Tariq O. Abbas

tariq2c@hotmail.com

SPECIALTY SECTION

This article was submitted to Pediatric Urology,

a section of the journal Frontiers in Pediatrics

RECEIVED 21 January 2023

ACCEPTED 13 March 2023

PUBLISHED 17 April 2023

CITATION

Baray SB, Abdelmoniem M, Mahmud S, Kabir S,

Faisal MAA, Chowdhury MEH and Abbas TO

(2023) Automated measurement of penile

curvature using deep learning-based novel

quantification method.

Front. Pediatr. 11:1149318.

doi: 10.3389/fped.2023.1149318

COPYRIGHT

© 2023 Baray, Abdelmoniem, Mahmud, Kabir,
Faisal, Chowdhury and Abbas. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Pediatrics
Automated measurement of
penile curvature using deep
learning-based novel
quantification method
Sriman Bidhan Baray1, Mohamed Abdelmoniem2, Sakib Mahmud2,
Saidul Kabir1, Md. Ahasan Atick Faisal2, Muhammad
E. H. Chowdhury2 and Tariq O. Abbas3,4,5*
1Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh,
2Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar,
3Department of Surgery, Weill Cornell Medicine-Qatar, Ar-Rayyan, Qatar, 4Urology Division, Surgery
Department, Sidra Medicine, Doha, Qatar, 5College of Medicine, Qatar University, Doha, Qatar

Objective: Develop a reliable, automated deep learning-based method for
accurate measurement of penile curvature (PC) using 2-dimensional images.
Materials and methods: A set of nine 3D-printed models was used to generate a
batch of 913 images of penile curvature (PC) with varying configurations (curvature
range 18° to 86°). The penile region was initially localized and cropped using a
YOLOv5 model, after which the shaft area was extracted using a UNet-based
segmentation model. The penile shaft was then divided into three distinct
predefined regions: the distal zone, curvature zone, and proximal zone. To
measure PC, we identified four distinct locations on the shaft that reflected the
mid-axes of proximal and distal segments, then trained an HRNet model to
predict these landmarks and calculate curvature angle in both the 3D-printed
models and masked segmented images derived from these. Finally, the
optimized HRNet model was applied to quantify PC in medical images of real
human patients and the accuracy of this novel method was determined.
Results: We obtained a mean absolute error (MAE) of angle measurement <5° for
both penile model images and their derivative masks. For real patient images, AI
prediction varied between 1.7° (for cases of ∼30° PC) and approximately 6° (for
cases of 70° PC) compared with assessment by a clinical expert.
Discussion: This study demonstrates a novel approach to the automated, accurate
measurement of PC that could significantly improve patient assessment by
surgeons and hypospadiology researchers. This method may overcome current
limitations encountered when applying conventional methods of measuring arc-
type PC.
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1. Introduction

Congenital penile curvature (PC) is typically caused by abnormalities in genital

development, such as chordee or hypospadias. Approximately 1 in 300 newborn males

exhibit hypospadias (1, 2), with an estimated one-third of individuals also presenting with

notable PC (3, 4). This condition is thought to result from arrested embryological

development of the ventral axis of the penile shaft, often leading to insufficient skin,

abnormally short urethral plate, and ventro-dorsal corporeal disproportion (5–7). In some
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cases, congenital PC may coexist with a normal meatus but

deficient urethra, termed chordee without hypospadias (8). Penile

curvature can also occur even when the urethra is completely

normal, which is thought to affect ∼0.6% of newborn boys (9).

PC may develop in a variety of contexts, although it is more

prevalent and appears earlier in patients with hypospadias,

necessitating early examination and treatment. In situations of

Hypospadias, tiny differences in the degree of PC can significantly

impact surgical decision-making and the ultimate choice of repair

procedure (10, 11). A prior study of pediatric urologists found that

a highly variable fraction chose no intervention when the amount

of PC varied from 10° (69%), to 20° (64%), or 30° (16%) (12). At

the same time, 66% of the urologists used dorsal correction with a

PC of 40°, compared to 47% of respondents for a PC of 50° (13).

Notably, around 37% of readings acquired using a goniometer and

eye assessment alone may result in needless surgical treatments

(14). If not treated properly, PC can persist into adulthood and

cause further complex patient issues (11, 15, 16). In order to

adequately identify the severity of hypospadias, it is of the utmost

essential to assess the degree of PC accurately.

Although PC extent has substantial clinical relevance and

predictive significance, evaluation of this disorder is inconsistent

across surgeons, with no rapid and reliable measurement

techniques available at present (11, 17, 18). Current approaches

typically involve visual assessment upon artificial erection

induced by saline injection (19). However, recent developments

in artificial intelligence (AI) have revolutionized many medical

sectors including radiology, pathology, ophthalmology, and

cardiology (20–24). Numerous urology subspecialties including

endourology, reproductive medicine, stones, hydronephrosis,

malignancies, and pediatric urology have already benefited from

the use of AI applications, which can be used to perform

automatic segmentation, classification, registration, and analysis

of medical images (25–27). In this way, AI can provide highly
FIGURE 1

Penile angle measurement pipeline.
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accurate predictions that inform rapid patient diagnosis and

treatment decisions. AI tools can outperform conventional

statistical methods in terms of prediction accuracy, and if

integrated into relevant guidelines, may completely transform the

way that urologists make clinical decisions (28, 29).

To measure PC, current methods involve unassisted visual

inspection, a goniometer, or mobile app-based angle

measurements. However, due to their high subjectivity and poor

inter- and intra-observer agreement, all of these procedures are

intrinsically flawed (14, 17, 30, 31). During surgery, normal

saline is often injected into the penis to assess curvature, which

must be quantified in real-time to reduce surgery duration and

minimize fluid leakage from the operation site. Considering these

major limitations of PC measurement, Abbas et al. (32),

proposed an automatic quantification method which involved

penile area localization, shaft segmentation, and angle

calculation using a novel AI-based tool. While localization and

segmentation aspects achieved satisfactory results, angle

calculation sometimes failed when applied to non-uniform

masks. To overcome this limitation, here we developed a novel

approach to calculate the axes of the penile shaft using two

pairs of key points that no longer depend on arc area.

Additionally, to better automate angle measurement, we trained

and validated an HRNet-based deep learning model which can

measure curvature angles more precisely, even when applied to

non-uniform real-life anatomy.
2. Method

Our previous pipeline for autonomous measurement of penile

curvature (PC) consisted of three distinct steps: automated

localization of the penile area, segmentation of the penile shaft,

and angle computation. Due to inadequate performance with
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real-world cases, in the current study, we developed an alternative

pipeline in which we incorporate the earlier steps but focused on

detecting key points (as shown in Figure 1). For automated

localization of the penile area, a YoloV5l network was trained to

predict a bounding box around the relevant region and then crop

this to a predefined shape. For the segmentation of the penile

shaft, several UNet models (encoder-decoder) including state-of-

the-art convolutional neural network (CNN) models were used

to create binary masks identifying the penile shaft. For the key

point assignment task, a Deep Learning model, HRNet was

trained and validated to recognize two pairs of crucial points on

the penile shaft (either from cropped pictures or derivative

masks). Finally, the curvature angle was computed using two

vectors drawn through the vertices of these key points. This end-

to-end pipeline automates the whole process of PC measurement

which takes the 2D penile model images as input and gives the

calculated angle as output. Behind the scene, the trained

YOLOv5l model identifies the penile area, the segmentation

model generates the penile shaft mask, the HRNet model

predicts the vectors through the proximal and distal area of the

shaft and the angle between the vectors is calculated

automatically to show the penile curvature angle as an output.
2.1. Dataset description

The dataset employed in this study was previously

described by Abbas et al. (32), and consisted of 913 total

images generated using n = 9 3D-printed penile models with

different curvature angles (ranging from 18° to 86°) as shown

in Supplementary Figure 1. The models were designed by a

3D model developer before resizing the stereolithography

(STL) files to dimensions appropriate for children (1.5 cm wide

and 5–6 cm long). The penile models were then photographed

with a triple-lens iPhone 11 Pro Max mobile camera with a

12-megapixel resolution. The camera was set 20–25 cm away

from each model and moved along the horizontal and vertical
FIGURE 2

Penile area localization and cropping.
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axes (−5°, 5°) and (0°, 20°), respectively. For each model

around 100 pictures were captured at different camera

positions (penile models’ angles and number of images are

listed in Supplementary Table 1).
2.2. Penile area localization

To reduce image complexity, the penile area was localized in

each photograph and images were then cropped to retain only

this area, thereby eliminating the irrelevant background.

Localizing and cropping the penile area also reduced the amount

of input data that required processing in subsequent steps of the

pipeline, thus making the procedure faster and more efficient (an

overview of this process is shown in Figure 2).

We first annotated all 913 images with appropriate bounding

boxes and then automated this process using a YOLOv5 model

(a single-stage object detector consisting of three components: a

Backbone, a Neck, and a Head for making dense predictions).

The YOLO (You Only Look Once) technique for identifying

objects involves first splitting the picture into a grid of cells and

then calculating the probability that an item is located in each of

those cells. For each cell that could hold an object, YOLO

calculates an estimated bounding box and class. The probability

of an object’s presence in a given cell is predicted using a Deep

Neural Network. Once complete, the model was able to process

any raw photograph into an image shaped 256 × 256 pixels

consisting of only the penile area.

All YOLOv5 models are composed of the same 3 components:

CSP-Darknet53 as a backbone, SPP and PANet in the model neck,

and the head used in YOLOv4 (33). There is no difference between

the five YOLOv5 models—nano (n), small (s), medium (m), large

(l), and extra-large (x) in terms of operations used (only the

number of layers varies). YOLOv5 employs SiLU (Sigmoid Linear

Unit) and Sigmoid activation functions. Three outputs are

provided by YOLOv5: the classes of the identified objects, their

bounding boxes, and objectness ratings (the model’s confidence
frontiersin.org
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FIGURE 3

YOLOv5 architecture used for penile area cropping from still 2D images.
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that a particular region in an image contains an object). The class

loss and the objectness loss are then computed using BCE (Binary

Cross Entropy). CIoU (Complete Intersection over Union) is an

improved penalty function, which helps to improve localization

accuracy. Additionally, YOLOv5 employs the Focus Layer to

replace the first three layers of the network, thereby reducing the

number of parameters, floating point operations per second

(FLOPS), and Compute Unified Device Architecture (CUDA)

memory required. YOLOv5 also eliminates Grid Sensitivity by

using a centre point offset range from −0.5 to 1.5 (instead of just

0 to 1) thus allowing the detection of objects in the corners of

images. YOLOv5 is written on Pytorch rather than C, giving

more flexibility to control encoding operations. The overall

architecture of YOLOv5 is shown in Figure 3.

The YOLOv5 architecture is independent of the inference size,

safe for stride multiple constraints. Two variables namely model

depth multiple and layer channel multiple are used for model

scaling, and compound scaling when used jointly. The depth

multiple determines how many convolutional layers are used in

the model, and it is typically set to a value between 0.33

(YOLOv5-n) and 1.33 (YOLOv5-x). For example, if the depth

multiple is set to 0.33, the number of convolutional layers in the

model will be roughly one-third of the default number of layers.

For YOLOv5-l the model depth multiple is set to 1.0. The width

multiple determines the width of the model, which is

proportional to the number of filters in the convolutional layers.

Increasing the width multiple results in a wider and more

complex model with more parameters, while decreasing the

width multiple results in a smaller and simpler model with fewer

parameters. The width multiple is typically set to a value between
Frontiers in Pediatrics 04
0.25 and 1.25, for YOLOv5-l, it is set to 1.0. In total, there are

about 46.5 million parameters in YOLOv5-l.
2.3. Penile shaft segmentation

All cropped images were manually annotated using “labelme”

(34) to mark the penile shaft (example shown in Figure 4). The

images were then divided into train-test sets for the different

segmentation models. We used UNet (encoder-decoder) models

for the segmentation task after considering several cutting-edge

designs, including UNet3+ (35), MultiResUNet (36), and

Ensambled UNet (37). Different backbone networks, such as

ResNet50 (38), DenseNet121 (39), inceptionv3 (40), and

EfficienetNetV2M (41), were employed to assess each of these

models.

In the typical U-Net design, up-sampling blocks and pooling

operators are employed in the expanding decoder route and the

contracting encoder path, respectively. Ensemble UNet introduces

a built-in ensemble of U-Nets of varying depths in UNet++, thus

enabling improved segmentation performance for varying-size

objects. Additionally, in UNet 3+, each decoder layer combines

smaller- and same-scale feature maps from the encoder with

larger-scale feature maps from the decoder, thereby capturing

both fine- and coarse-grained semantics in complete scales. To

incorporate multiresolution analysis, taking inspiration from

Inception family networks, MultiResUNet uses MultiRes block

which replaces the convolutional layer pairs in the original U-

Net. This configuration is derived from incorporating and

factorizing 5 × 5 and 7 × 7 convolution operations into 3 × 3
frontiersin.org
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FIGURE 4

Identifying four key points of the penile shaft on cropped image and generated mask.
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format, then reusing these to obtain results from 3 × 3, 5 × 5 and

7 × 7 convolution operations simultaneously. Moreover, the skip

connections in the UNet network may introduce some disparity

between features as the encoders may offer lower-level features

compared to the decoders. To overcome the semantic gap

between the merged features from the encoder and decoder,

convolutional layers with residual paths are employed. These are

called Res paths that have 3 × 3 filters as convolution layers and

1 × 1 as the residual connection.
2.4. Key-points detection

To estimate penile curvature from 2D images, we tested a new

technique based on identifying four key points on the penile shaft.

The rationale for selecting these four points is discussed in the

following section. We designated four key points for all images

and then used these annotations to train and validate an HRNet

deep learning model.
2.4.1. Defining key-points and annotation
The penile shaft was divided into 3 three distinct zones: distal

shaft, curvature region, and proximal shaft. The curvature zone is

defined as bounded by two curved ventral and dorsal borders,

while both the distal shaft and proximal shaft have borders

defined by ventral and dorsal straight lines. To measure

inclination, mid-axes were drawn through the distal and

proximal shaft zones. The border points of these lines were then

marked as two pairs of key points. The full process is outlined in
Frontiers in Pediatrics 05
Figure 4. This approach was used to annotate all the input

images with the relevant key points (at the same time, the

inclination angle of the annotations was verified to ensure this

didn’t deviate more than 5° from ground truth).

The motivation behind using the 4 dots approach instead of

using the typical 3-dot one is to come up with a generalized

approach for both hinge-type and arc-type penile shafts. As

shown in Figure 5, defining 4 key points works for hinge-type

shafts and is applicable for arc-type shafts. On the other hand,

even though defining 3 points, used in previous studies (11, 31,

32, 42, 43), to measure the curvature angle could work for hinge-

type shafts, it should fail in case of arc-type curvature providing

misleading values.
2.4.2. HRNet model
Penile shaft assessment was performed using the HRNetV2-18

CNN architecture which is designed for landmark detection (44).

HRNetV2-18 is a variant of the HRNet architecture which has

already been used in a variety of computer vision tasks.

HRNetV2 is based on the idea of using multiple parallel

“branches” of convolutional layers, each of which processes the

input image at a different resolution. These branches are then

combined in a “fusion” step, whereby the output of each branch

is concatenated and processed by additional convolutional layers

to produce the final output. This allows the network to learn

features at multiple scales, which is crucial for accurate key point

detection since penile shafts can vary significantly in size and

appearance.
frontiersin.org
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FIGURE 5

Advantage of the 4 key-points approach for hinge-type and arc-type penile shafts.
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Input to the HRNetV2-18 network is first processed via a series

of convolutional layers which reduce the spatial resolution of each

image and extract low-level features. The output of these initial

layers is then fed into parallel branches, where the features are

further refined at different scales. Finally, outputs from the

branches are concatenated and processed using additional

convolutional layers to produce the final output as shown in

Figure 6. Low-resolution representations are rescaled via bilinear

up-sampling to achieve high resolution. Subsets of

representations are then concatenated, resulting in high-

resolution composites that can be used to estimate segmentation

maps/landmark heat maps. Output representations from all four

resolutions are mixed through 1 × 1 convolution to produce a

final 15C-dimensional representation. For each position, the

mixed representation is passed to a linear regressor with mean

square error (MSE) loss to predict segmentation key-point heat

maps. HRNetV2-W18 has previously been shown to achieve

state-of-the-art performance in a variety of landmark detection

tasks, and can accurately localize a wide range of landmarks even
FIGURE 6

HRNetV2 architecture.
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in very challenging scenarios (such as low-resolution images or

pictures with large pose variations).
2.5. Angle estimation

Once the HRNet model has predicted 4 key points denoting the

distal mid-axis dots (DMD) and proximal mid-axis dots (PMD),

we then proceed to calculate two vectors to identify the lines

shown in Figure 7.

HRNet returns 4 key points: DMD_top (x1, y1), DMD_top (x2,

y2), PMD_top (x3, y3) and PMD_top (x4, y4). These landmarks can

then be used to calculate the distal mid-axis vector v1 and proximal

mid-axis vector v2 using the following equations;

v1 ¼ (x1 � x2)iþ (y1 � y2)j

v2 ¼ (x3 � x4)iþ (y3 � y4)j
frontiersin.org
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FIGURE 7

Angle calculation process using 4 predicted key points (distal mid-axis dots, DMD; and proximal mid-axis dots, PMD).
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After calculating the vectors, we determined the angle between

these vectors using the equation below;

u ¼ cos�1 v1 � v2
jv1jjv2j

� �

Each vector was defined by two values in an array, depicting the

components on both horizontal and vertical axes, then Python

was used to perform all subsequent calculations. Instead of

typical slope-based angle calculation, this vector-based approach

yields more reliable results by providing directional information

to avoid confusion when angles approach 90°.
2.6. Experimental setup

For all experiments, the penile area localization and

segmentation steps were performed using 5-fold cross-validation.

As there were a total of 9 plastic model images, for each of the

first 4 folds we had images from two plastic models and for the

last fold we had images from one plastic model. For the model

training, each time one fold was used as testing data and others

as training data. We further split the training data in a random

stratified manner keeping 20% for validation and the rest for

training. For key point detection, we performed 9-fold cross-

validation (7 model image sets were used for training, 1 for

validation, and 1 for testing repeating 9 times). In all cases, to

increase the variety of the training dataset, we randomly applied

various augmentations including random horizontal flip, random

brightness contrast, random gamma, random RGB shift, shift-

scale-rotate, perspective shift, and rotation, thereby increasing the

total number of training images 5-fold.

The YOLOv5 model used included 36 layers with 46,138,294

parameters. SGD (Stochastic gradient descent) optimizer was

used with a learning rate of 0.01. A total of 100 epochs were

trained with batch size 16. For detection, we used predictions

with a greater than 0.75 confidence score to prevent false or

multiple detections.

For the segmentation step, each model was trained in two

separate phases. In the first phase, each UNet (encoder-decoder)

was trained for 200 epochs while the encoder part was untrained

using imagenet (45) pre-trained weights only. A model width of

16 and a model depth of 5 were used for all settings. The
Frontiers in Pediatrics 07
learning rate was 0.0001 and there was patience of 20 epochs

(meaning that training will stop if the validation error doesn’t

decrease for 20 consecutive epochs). In the second phase, the

entire model was trained for 100 epochs, unfreezing the encoder

step with a low learning rate of 0.00005. Patience was set to 10

epochs and the batch size was 4. Binary Cross Entropy was used

as a loss function. The best model was selected based on

validation mean squared error.

In the case of HRNet training, we used 30 epochs with

imagenet pre-trained weights and a batch size of 16. The

optimizer used was “Adam” and the learning rate was 0.0001.
2.7. Testing on real images

The HRNet model was initially trained on masks from penile

model images and then assessed for performance with real

patient cases (using 4 intraoperative lateral penile images

captured under erection test, from publicly available sources).

Images were segmented manually to generate masks and the

HRNet model was used to predict key points on the masks.
2.8. Evaluation metrics

2.8.1. Object detection evaluation metric
The performance of the penile area localization network was

assessed using mean average precision (mAP). AP is the area

under the precision-recall curve, and mAP is the average AP

across all classes. mAP@0.5 indicates that the average AP for IoU

(Intersection over Union) is 0.5, while mAP@[.5:.95] corresponds

to the average AP for IoU from 0.5 to 0.95, with a step size of 0.05.

mAP ¼ 1
n

Xn
i¼1

APi

where n is the number of classes (in this case only one: the penile

area).

2.8.2. Segmentation evaluation metrics
Three assessment metrics—model accuracy, intersection over

union, and dice similarity coefficient—were used to assess the

performance of the shaft segmentation networks. The definitions
frontiersin.org
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of these performance measures are given below.

DSC ¼ 2TP
2TPþ FPþ FN

The counts of true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) pixels.

IoU ¼ TP
TPþ FPþ FN

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

It should be noted that both IoU and DSC provide a quantitative

assessment of the overlap between the segmentation masks used

for prediction and those used for ground truth, with the main

difference being that DSC gives true shaft prediction pixels a 2-

fold advantage over IoU. For this study, we calculated weighted

IoU since both the mask and background had almost equal

distribution in the cropped 256 × 256 pixel images. All three

assessment metrics were evaluated on a per-image basis.

Accuracy, IoU, and DSC were calculated for each mask generated.
2.8.3. Key point detection
NME (Normalized Mean Error) was the primary evaluation

criterion for key point designation on the penile shaft. This

measure calculates the Euclidean distance between ground truth

points and the predicted points, then divides this distance by a

normalized factor. The formula is as follows:

NME(P, P̂) ¼ 1
N

XN
i¼1

jj pi � bpijj2
d

where P and P̂ denote the predicted and ground-truth coordinates

of key points, respectively. N is the number of points, and d is the

reference distance to normalize the absolute errors. In this case, the

reference distance was taken from the top DMD point to the

bottom PMD point.
TABLE 1 YOLOv5l prediction mAP (mean average precision) for each fold.

Fold mAP0.5 mAP50-95
fold_0 0.995 0.693

fold_1 0.991 0.692

fold_2 0.995 0.777

fold_3 0.995 0.713

fold_4 0.995 0.815

Avg. 0.994 0.738
2.8.4. Curvature angle estimation evaluation
metrics

The primary scoring system used for curvature angle

estimation was a mean absolute error (MAE) and is defined by:

MAE ¼ 1
n

Xn
i¼1

j~yi � yij

where n is the total number of examples, ~yi is the estimated

curvature angle averaged over all predictions for one penile

model, and yi is the ground truth value for that same model.

Individual error values were calculated for each image and then

divided by the total number of images to obtain the overall MAE.
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3. Results

Shaft segmentation networks, curvature estimation technique,

and penile localization model were thoroughly evaluated both

numerically and qualitatively as part of the AI framework’s

performance testing.
3.1. Penile area localization

YOLOv5l performed very well in detecting the penile area with

an average mAP0.5 of 99.4% for 5 folds, and a mAP0.5–0.95 value

of 73.8%. The fold-wise results are given in Table 1 and indicate

that the model did not fail in the assessment of any input image

(although small differences in bounding boxes may have caused

minor fluctuations in mAP). Other than fold_1, for all cases, the

model almost perfectly predicted bounding boxes with 50%

overlap in IoU.
3.2. Shaft segmentation

Table 2 provides the segmentation results for all test cases

when using UNetE, UNet3P, and MultiResUNet as decoders, and

DenseNet121, ResNet50, InceptionV3 and EfficientNetV2M as

encoders. For all the encoder and decoder combinations models

were trained and test scores were determined. Among all models,

the combination of Ensambled UNet (UNetE) and DenseNet121

performed the best, with an average IoU of 96.43% for 5 folds.

The DSC score and the accuracy were also superior to other

models, scoring 94.50% and 98.12% respectively. In comparison

to encoders based on other designs, DenseNet encoders displayed

greater levels of performance. This may be due to the broad

interconnectedness afforded by thick layers as well as the

collective knowledge provided by preceding layers. The use of an

ensemble U-Net model architecture may also have improved the

performance of the segmentation network by increasing capacity,

improving generalization, reducing overfitting, and increasing

robustness. By training multiple U-Net models on different

subsets of data, and then averaging the predictions obtained,

Ensemble U-Net could potentially achieve better generalization

with unseen data. In particular, Ensemble U-Net could reduce

overfitting by averaging the predictions of multiple models, as

well as being more resistant to noise and other variations in the

input data (again due to averaging out these effects across

multiple models).
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TABLE 2 Segmentation results including IoU (intersection over union) and
DSC (dice similarity coefficient).

Segmentation
model

Encoder Accuracy IoU DSC

UNet3P DenseNet121 97.88 ± 0.32 96.01 ±
0.60

93.84 ±
0.93

ResNet50 96.70 ± 1.78 93.99 ±
2.92

90.97 ±
3.43

EfficentNetV2M 97.35 ± 0.87 95.09 ±
1.49

92.53 ±
1.69

InceptionV3 97.84 ± 0.30 95.94 ±
0.56

93.74 ±
0.86

MultiResUnet DenseNet121 97.99 ± 0.31 96.20 ±
0.56

94.14 ±
0.80

ResNet50 97.86 ± 0.57 95.97 ±
0.99

93.79 ±
1.24

EfficentNetV2M 97.58 ± 0.91 95.48 ±
1.52

93.08 ±
1.95

InceptionV3 98.01 ± 0.26 96.24 ±
0.47

94.19 ±
0.82

UNetE DenseNet121 98.12 ±
0.31

96.43 ±
0.57

94.50 ±
0.75

ResNet50 97.84 ± 0.52 95.93 ±
0.92

93.74 ±
1.18

EfficentNetV2M 97.53 ± 0.62 95.40 ±
1.07

92.94 ±
1.34

InceptionV3 97.98 ± 0.33 96.18 ±
0.61

94.11 ±
0.84

TABLE 4 Angle prediction results and MAE (mean average error) for
segmentation masks.

Test case Ground Truth Predicted Angle MAE
pModel_1 75 74.15353 ± 3.895762 3.041326

pModel_2 33 33.47152 ± 2.812504 2.156159

pModel_3 82 80.39 399 ±5.277415 4.156524

pModel_4 40 44.77705 ± 2.881157 4.849213

pModel_5 58 58.15946 ± 3.736759 3.004913

pModel_6 50 48.60104 ± 8.772863 4.758214

pModel_7 86 87.01886 ± 4.666506 3.596134

pModel_8 60 62.63402 ± 5.544223 4.609684

pModel_9 18 14.08197 ± 3.026902 4.163569

Overall: 3.813667
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3.3. Key point detection and angle
estimation

HRNet performed very well in the detection of key points on

both penile model images and segmentation masks. The average

test NME (Normalized Mean Error) between ground truth key

points and predicted key points was 0.0708 for the images and

0.0430 for derivative masks. For each fold, the predicted angles

for individual model images were determined and the results are

shown in Table 3. Overall MAE for the angles predicted from

penile model images was approximately 4.5°.

Angle predictions from segmentation masks were superior to

those obtained from penile model images, with an overall MAE

of just 3.8° as shown in Table 4. Figure 8 displays the

improvement in predictions achieved when using masks instead

of original images (as indicated by lower standard deviation and
TABLE 3 Angle prediction results and MAE (mean average error) for penile
model images.

Test case Ground Truth Predicted Angle MAE
pModel_1 75 75.63684±3.908193 3.031769

pModel_2 33 32.88968±3.08491 2.312334

pModel_3 82 77.54307 ±9.729288 6.782767

pModel_4 40 43.14194 ±3.134882 3.503608

pModel_5 58 57.01167 ±4.751162 3.992647

pModel_6 50 48.53089 ±3.796258 3.372716

pModel_7 86 82.17514±7.00086 6.12593

pModel_8 60 64.60267 ±8.151951 7.484112

pModel_9 18 14.52068 ±3.524402 3.925218

Overall: 4.522118
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consistent angle prediction for all images from the same model).

Overall, model performance outperforms the previous study of

penile angle calculation using the same dataset by Abbas et al.

(32). While that study showed an overall MAE of 8.53, we could

achieve as less as 3.81 which is almost 2.24 times better.

Compared with previous studies of penile curvature using plastic

models, the novel pipeline reported here was also more accurate

than Goniometer and/or UVI approaches where the mean error

was up to 13.6 (17).

Finally, we proceeded to test model performance using real

patient masks as shown in Figure 9. Despite having been

trained on masks from penile models, our HRNet-based tool

was able to successfully predict both DMD and PMD

landmarks on the real patient masks. The angle calculations

generated from these masks were also comparable with manual

image assessment by a clinical expert using the mobile application

Angle 360 (Table 5).
4. Discussion

Rapid advances in computational power have ensured that AI

is gaining ever more popularity for the automation of routine

clinical tasks. AI now offers the opportunity to build highly

accurate models that enable precise and timely examination of

medical images. Abbas et al. (32), previously aimed to automate

curvature estimations from 2D images based on localization and

segmentation of the penile shaft, but subsequent angle

calculation displayed several limitations. In the current study,

rather than use a hard-coded approach, we instead developed a

novel deep learning-based algorithm that can robustly calculate

the extent of penile curvature with a high level of accuracy.

Penile curvature (PC) assessment is not standardized and

remains prone to considerable variability and subjectivity (46).

Typical measurement processes are UVI (Unaided Visual

Inspection) or by Goniometer, which have proven distinctly

unreliable. In a previous study by Villanueva et al., the mean

errors for all PC measurement techniques ranged from 3.5° to

13.6°, with no significant difference between UVI and

goniometry procedures (17). Since surgeons cannot reliably

evaluate PC, and there are currently no guidelines for real-time

intraoperative measurement of curvature, there is a clear unmet
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FIGURE 8

Curvature angle estimation performance from penile model images and derivative masks.
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clinical need to develop more robust methods of assessing PC.

Accordingly, Fernandez et al. (43), attempted to standardize

curvature measurement from 2D images in a semi-automated

manner, but the resultant algorithm depended on identifying the

geometric centre of the penile shaft, which can vary significantly

from patient to patient. In addition, this process still required

direct human intervention, hence results could vary markedly

depending on user expertise. Similarly, Villanueva et al. (14),

used an app-based approach to calculate curvature angles from

2D images, but again the same technical limitations prevent

wider application of this method.
FIGURE 9

HRNet key-point detection results using masks manually extracted from real
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In previous work, Abbas et al. (32), proposed a fully automated,

end-to-end application that could predict PC extent from captured

images, but the hard-coded angle calculation step was unreliable

when applied to real-life cases (which displays highly variable

shaft size and shape, unlike the uniform plastic models used in

initial testing). Additionally, the slope-based calculation was

found to give erroneous results when angles approached 90°

(since the tangent value of 90° is undefined). To overcome the

limitations of previous studies, here we developed a new

algorithm in which angle calculation no longer depends on

identifying the curved region or centre point of “maximum”
patient images.
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TABLE 5 Comparison between human expert vs. AI for penile angle
prediction.

Subject Prediction by HRNet Prediction by a medical expert
1 17.75° 23.82°

2 28.30° 29.99°

3 64.43° 69.79°

4 42.73° 44.93°

Baray et al. 10.3389/fped.2023.1149318
curvature. Using deep learning models instead of typical image

analysis approaches, we achieved substantial improvement in

angle predictions and then proceeded to test performance using

shaft masks from real patients. The deep learning process showed

moderate accuracy, indicating potentiality for translation into

real-life scenarios. To achieve this goal, further model

development will require: (1) a large dataset of penile curvature

images from real-life patients, and/or (2) an improved

segmentation step that can predict shaft masks with similar

accuracy in both plastic models and real patients. A few

limitations of this study should also be noted. In particular,

camera angle and picture quality can impact mask generation

and angle calculation, although this process should perform well

for images taken from a lateral view under well-lit conditions.

Also, segmentation of real-life anatomy is more challenging due

to excess dartos, soft tissues, blood etc. Despite these drawbacks,

this study successfully developed a novel and accurate framework

for automated penile curvature measurement in regulated

circumstances.
5. Conclusion

We devised an innovative AI-based approach to perform high-

accuracy automatic measurements of PC. This technique uses deep

neural networks to segment the penile shaft from captured images

and then employs another deep learning network to determine the

curvature angle. These findings are superior to those obtained via

physical examination by urologists and can be accomplished in a

far shorter amount of time. Our findings indicate that AI-based

approaches may provide accurate, reliable, and generally

accessible methods of measuring PC, which might address

several flaws present in current assessment methods. The

approach discussed in this article may not yet be ready for

clinical application, but represents a significant step towards real-

time automated PC monitoring in clinical settings.
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