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Purpose: Retinopathy of prematurity (ROP) is the leading cause of preventable
childhood blindness worldwide. Although interventions such as anti-VEGF and
laser have high success rates in treating severe ROP, current treatment and
preventative strategies still have their limitations. Thus, we aim to identify drugs
and chemicals for ROP with comprehensive safety profiles and tolerability using
a computational bioinformatics approach.
Methods: We generated a list of genes associated with ROP to date by querying
PubMed Gene which draws from animal models, human studies, and genomic
studies in the NCBI database. Gene enrichment analysis was performed on the
ROP gene list with the ToppGene program which draws from multiple drug-
gene interaction databases to predict compounds with significant associations
to the ROP gene list. Compounds with significant toxicities or without known
clinical indications were filtered out from the final drug list.
Results: The NCBI query identified 47 ROP genes with pharmacologic annotations
present in ToppGene. Enrichment analysis revealed multiple drugs and chemical
compounds related to the ROP gene list. The top ten most significant
compounds associated with ROP include ascorbic acid, simvastatin,
acetylcysteine, niacin, castor oil, penicillamine, curcumin, losartan, capsaicin, and
metformin. Antioxidants, NSAIDs, antihypertensives, and anti-diabetics are the
most common top drug classes derived from this analysis, and many of these
compounds have potential to be readily repurposed for ROP as new prevention
and treatment strategies.
Conclusion: This bioinformatics analysis creates an unbiased approach for drug
discovery by identifying compounds associated to the known genes and
pathways of ROP. While predictions from bioinformatic studies require
preclinical/clinical studies to validate their results, this technique could certainly
guide future investigations for pathologies like ROP.
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Introduction

Retinopathy of prematurity (ROP) is a disorder characterized

by the aberrant proliferation of retinal blood vessels within the

incompletely vascularized retinas of premature infants (1, 2).

Today, the pathophysiology of ROP is understood as a biphasic

phenomenon initially manifesting as delayed retinal vasculature

development in Phase 1 due to the relative hyperoxia of the

immature retina (3). As the partially avascularized retina

becomes increasingly metabolically active during perinatal

development, the resulting relative hypoxia then triggers a

compensatory secretion of angiogenic factors causing

neovascularization in Phase II (4). While at times successful

revascularization of the retina occurs, this condition can also

progress to uncontrolled vasoproliferation into the vitreous which

causes retinal scar formation or retinal detachment leading to

permanent vision loss or blindness. Today, ROP is a leading

cause of blindness in American children affecting 31.3% of all

legally blind children treated at centers participating in the IRIS

(Intelligent Research in Sight) Registry, a comprehensive clinical

registry for eye disease in the US (5). As the survival rates of

premature infants improved, ROP is also currently the leading

cause of preventable childhood blindness worldwide, but its

incidence is still expected to grow without future improvements

in screening and treatment (1, 2, 6).

At present, the best preventative measure against ROP is

preventing premature birth. Several targetable pathways for

therapy have been identified with the oxygen-induced

retinopathy (OIR) model, a hypoxia-driven angiogenesis model

with similar mechanisms underlying the disease process of ROP,

but the efficacy of some of these therapies have fallen short in

clinical studies (7, 8). Decades of clinical trials have shown that

while optimizing oxygen delivery during the perinatal period can

reduce the risk of ROP development, there is still room for

growth toward identifying a generalizable target oxygen

saturation (SpO2) that balances infant mortality against ROP

incidence (3). The Neonatal Oxygenation Prospective Meta-

analysis (NeOProM) Collaboration observed in five randomized

clinical trials that while a lower SpO2 target range reduces the

risk of ROP in very preterm infants, it does so at the cost of

increased risk of mortality (9). Alternative oxygen protocols have

since arisen—notably a biphasic approach of adjusting oxygen

saturations from a lower target range to a higher range as the

infant matures, and one recent study noted decreased incidence

and severity of ROP without elevated mortality using this

method compared to conventional static oxygen standards (10).

Given the absence of a truly preventative therapy, the impetus

falls on an experienced ophthalmologist to provide appropriate

screening. Current evidence suggests that timely laser

photocoagulation therapy or intravitreal anti-VEGF injections are

effective therapies for preventing adverse retinal structural

outcomes and improving visual outcomes (11, 12); however,

these options unfortunately also have their own undesirable side

effects (13). Laser photocoagulation reduces the risk of retinal

detachment, but has also been associated with development of
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myopia (14–17). Additionally, there are notable concerns about

the systemic absorption of intravitreal injections with anti-VEGF

agents which have unknown effects on developing organs.

Nevertheless, a randomized trial of intravitral injections with the

anti-VEGF bevacizumab found no effects on neurodevelopmental

scores at higher dosages (18), and ranibizumab in a separate trial

was not associated with structural abnormalities (19) although

ranibizumab notably has higher rates of reactivation than

bevacizumab (20). One recent meta-analysis did however find a

low risk of associated severe neurocognitive impairment

associated with bevacizumab, but the current quality of evidence

in the literature is limited (21). There is thus still a demand for

novel therapies aimed at both prevention and treatment that may

safely extend to all premature infants.

For a multifactorial pathology like ROP with numerous

aberrant biological pathways at play, there may not be just one

drug, one gene, one pathway, or one target. As even a single

genomic variance can disrupt the protein-protein network, the

interplay of multiple biochemical pathways should be studied.

Systems medicine examines the interaction of distinct genetic

and pharmacologic networks to identify novel targets for therapy.

Previously, this method has identified potential drug targets for

other complex pathologies including cancers, refractory epilepsy,

Alzheimer’s, and even other ocular conditions (22–28).

The creation of any novel drug for clinical applications is an

expensive and time-consuming procedure, but this is a dilemma

of drug discovery that network medicine can overcome by

identifying already-approved pharmaceuticals and repurposing

them for novel uses. By studying drugs and compounds with

known safety profiles and pharmacokinetic/pharmacodynamics

data, future clinical testing for an alternate indication is made

less challenging as well. Prior studies on the OIR model have

provided a wealth of knowledge on key pathway and genomic

biomarkers to further the strength of this bioinformatics

approach. We hypothesized that we could identify novel

therapeutics for ROP using data on the existing genetic and

proteomic biomarkers through this network-centric method.
Methods

Literature search and data extraction

We queried the NCBI database (https://www.ncbi.nlm.nih.gov/

gene/) to identify genes with annotations for ROP (as of Dec 2022)

based on previously published PubMed studies of ROP animal

models, human studies, and genetic association studies. Only

studies that demonstrated a significant association between ROP

and their proposed pathways and genomic biomarkers were used,

and articles which reported a negligible relationship were

excluded in order to curb the frequency of false-positive findings.

To make sure that the substance of chosen publications

supported the conclusions, we carefully read through their entire

texts. For this analysis, the genes that were found to be strongly

related with ROP in the corresponding studies were used. Ethics
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approval was not necessary because neither humans nor animals

were employed in this study.
Discovering potential ROP therapeutic
targets via enrichment analysis

To find possible pharmacological therapies for ROP, the degree

of association between compounds and candidate ROP target

genes/molecules was analyzed based on the theory that drugs

with a greater association to corresponding disease genes will

function with greater efficacy (29, 30). Compounds that strongly

interact with the ROP genes found using gene enrichment

analysis of multiple chemical-gene association databases could

therefore possibly be used as therapeutic targets one day.

To perform gene set enrichment analysis (GSEA), we input the

gene dataset from our PubMed query into the ToppFun function of

the ToppGene Suite (http://toppgene.cchmc.org/). ToppGene

aggregates 22,832 genes and a total of 77,146 drug annotations

from 5 distinct databases including CTD, Drug Bank, Stitch,

Broad Institute CMAP up, and Broad Institute CMAP down to

produce a Pharmacome for predicting drug-gene interactions.

ToppGene constructs a representative profile from the entered

gene set and compares it to its annotated 22,832 test set genes in

order to identify the drugs with the greatest associations. A

hypergeometric distribution with the Bonferroni adjustment is

used to assess statistical significance. Drugs with a false discovery

rate (FDR) adjusted P-value of 0.05 were accounted for in this

analysis.
Selection of drugs/chemicals useful in ROP

The final list of compounds is filtered for chemicals like ethanol

and asbestos which are associated to the ROP gene list but devoid

of any known clinical indications as well as drugs like tacrolimus

and cyclophosphamide which have clinical indications but have

significant toxicities to human neonates. The final analysis also

includes repeat drugs identified by the different databases used to

construct the Pharmacome. The compound with the highest P-

value amongst the repeats is preserved in the final analysis.
Visualization of the networks

We used Cytoscape to visualize the connections between the

enriched pharmaceutical drugs and the select list of ROP genes.

The drug-gene network is captured using a prefuse-directed

layout based on the edge betweenness centrality measure (31). In

this graphical representation, gene nodes are displayed in green

while the colors of drug nodes correlate to their respective drug-

classes. This prefuse-directed layout uses closeness centrality to

visualize hub nodes which are nodes with significantly more

connections to other nodes. Closeness centrality is a measure of

the average shortest distance to all other nodes and is

represented by the size of the nodes as well as centrality. Thus,
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the largest nodes have the greatest closeness centrality and are

the most interconnected points within the network. Only genes

with three or more drug associations are visualized in the network.

The functional enrichment of the ROP genes also led to the

creation of a gene-pathway network. Using the Lynx database

system, enrichment analysis was performed for Gene Ontology

(GO), disease, and pathway databases (32). The top ten most

significant pathways from the enrichment study by P-value were

selected for visualization along with their associated ROP genes

to create a gene-pathway network. With a prefuse-directed layout

based on edge betweenness and nodal size expressing proximity

centrality, we visualized and analyzed the network once more

using Cytoscape (31). In this network, the drug nodes are again

colored green whereas the pathway nodes are colored blue.
Results

We identified 51 unique genetic and proteomic markers

associated with retinopathy of prematurity from prior human

studies, animal models, genomic studies cited in PubMed. The

ToppGene software recognized 47 genes out of the 51 as having

significant annotations in the drug-gene-target databases of CTD,

Stitch, Drug Bank, Broad Institute CMAP. Out of the 47 genes, 9

of these genes (Casp8, Atf4, Lgals1, Sema3A, Mir223, Malat1,

TEAD4, Arg2, Sucnr1) were identified from animal studies of

OIR models that noted a possible association to ROP. While

there are no published genome-wide association studies (GWAS)

for ROP to date, the remaining 38 genes are generated from

human gene expression data. A review of literature revealed that

10 of the 38 genes (VEGFA, NOS3, IGF1, TNF, IL6, ACE, EPO,

ANGPT1, C3, C5) associated to ROP are derived from studies of

human vitreous and/or retinal tissue. Within the ToppGene

drug-gene-target databases there are 77,146 annotated drugs and

compounds, and our enrichment analysis of the select 47 genes

identified 6,603 chemical compounds with an FDR adjusted P-

value cutoff of 0.05. As this drug Pharmacome for ROP is

generated from multiple drug databases utilized by ToppGene,

there are a number of repeat chemicals depending on the

database’s drug-gene annotations. Additionally, there are a

number of drugs with significant toxicities or compounds

without any clinical indications that are in theory associated with

genes related to ROP. Thus, we manually filtered out the

redundant drugs and crafted a list of the top 50 significant

compounds without deleterious effects to humans.

The most common class of drug within the top 50 significant

compounds are antioxidants which guard against oxidative stress

generated by reactive oxidants. This includes dietary

micronutrients such as ascorbic acid, curcumin, and omega-3s as

well as drugs with antioxidant effects such as N-acetylcysteine

and penicillamine. We identified ascorbic acid (P = 7.76 × 10−21)

or vitamin C, an antioxidant and essential nutrient in humans

utilized as a cofactor for many enzymatic reactions, as the

compound with the strongest association to ROP genes by

significance. Ascorbic acid is functionally associated with 21 of

the 47 disease causal genes which is the greatest number of genes
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out of all potential compounds. Additional antioxidants include

polyphenol micronutrients including curcumin (P = 3.74 × 10−14),

the biologically active ingredient in turmeric, which affects 18 of

the 47 ROP genes and apigenin (P = 3.60 × 10−10), a compound

found in chamomile plants, celery, and parsley, which affects 9

of the 47 ROP genes. Niacin (P = 4.25 × 10−14), otherwise known

as vitamin B3, and alpha-lipoid acid, an omega-3 fatty acid, were

also highly significant to ROP genes associating with 11 and 10

genes, respectively. Drugs approved for medical use with anti-

oxidative effects include N-acetylcysteine (P = 1.60 × 10−17), an

antidote for acetaminophen overdose via antioxidant formation,

and penicillamine (P = 2.04 × 10−14), a chelating agent.

Other top drug classes currently used for indications approved

by the US Food and Drug Administration (FDA) include anti-

diabetics, non-steroidal anti-inflammatory drugs (NSAIDs), and

cardiovascular drugs. Top compounds from the anti-diabetics

class include metformin (P = 4.30 × 10−14), which is the most

commonly prescribed drug for type II diabetes and affects 14 of

the 47 ROP genes, and thiazolidinediones such as troglitazone (P

= 4.94 × 10−10), rosiglitazone (P = 7.58 × 10−10) and pioglitazone

(P = 3.75 × 10−9) which activate peroxisome proliferator-activated

receptors (PPAR) for various effects and affect 17, 18, and 8 of

the ROP genes, respectively. NSAIDs include ibuprofen (P =

6.13 × 10−11), diclofenac (P = 1.27 × 10−9), celecoxib (P = 4.11 ×

10−9), and aspirin (P = 8.88 × 10−9) which associate with 12, 12,

9, and 12 of the ROP genes. Cardiovascular drugs identified in

the top 50 most significant compounds include nifedipine and

hydralazine which are calcium channel blockers (CCBs), losartan

and telmisartan which are angiotensin II receptor blockers

(ARBs), and enalapril and quinapril which are angiotensin-

converting enzyme (ACE) inhibitors.

We also separately identified possible clinical compounds

associated to the 38 genes distinguished from human studies. The

top 10 compounds associated to human ROP genes include vitamin

C, simvastatin, enalapril, curcumin, vitamin B3, acetylcysteine,

penicillamine, nifedipine, phenylephrine, and metformin. As human

genes compromised 80% of the total ROP biomarkers identified

from the NCBI database, this independent enrichment analysis

using only the human genes yielded largely the same top drug

classes and compounds as the comprehensive list in Table 1.

Out of the 47 biomarkers deemed significant to ROP, there

were several genes considered “hub” genes which means they

were nodes in the network with a particularly high degree of

connection to the top compounds identified from the analysis.

These key genes with high closeness and betweenness centrality

in the drug-gene interaction network include TNF, VEGFA, IL6,

NOS3, IGF1, CASP8, HIF1A, KDR, and FLT1 (Figure 1). These

hub genes are most associated with “vasculature development”

which refers to the creation of vessels from endothelial

precursors, “response to decreased oxygen levels”, and

“angiogenesis” per their associated GO terms for biological

processes (Table 2). The GO terms “vascular development” and

“angiogenesis” are independently identified in which the former

refers to the creation of vessels from ehdothelial precursors while

the latter refers to the formation of new vessels from existing

vessels.
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Top pathways associated with the development of ROP using

the Lynx Enrichment tool include “HIF-1 signaling pathway,”

“PI3K-Akt signaling pathway,” “angiogenesis,” “allograft

rejection,” “SHP2 signaling,” and “Signaling events mediated by

VEGFR1 and VEGFR2” (Figure 2). Within the drug-pathway

network, the genes which hold the highest degree value include

IL6, TNF, VEGFA, CASP8, IGFR1, IGF1, and KDR. The

pathway with the highest closeness centrality and greatest degree

of gene connections is “PI3K-Akt signaling pathway, “ and the

top pathway by significance is “HIF-1 signaling pathway.” These

pathways are associated with the aforementioned 7 top genes in

addition to 8 others including EPO, FLT1, HIF1A, ANGPT1,

ANGPT2, NOS3, PRL, and BDNF. These 15 genes comprise the

principal targets for the top drugs found in our ROP

Pharmacome (Figure 1). Gene ontology terms associated with

these top 15 genes include “response to hypoxia”, “regulation of

blood vessel endothelial cell migration”, and “vasculature

development” (Table 2).

The complete list of biomarkers, compounds, and gene-drug

correlation are available in Supplementary S1 which will be

publicly available once the manuscript is accepted for publication.
Discussion

Screening and management for ROP continues to evolve as

new technologies for imaging, machine learning, and high-

throughput analyses emerge. The determination of biomarkers is

one key avenue of exploration that can advance our

understanding of ROP development, disease progression, and

possible targets for therapy (33). One possible approach for

identifying potential biomarkers utilizes network medicine—an

integration of distinct biological networks like protein-protein

interactions, metabolic pathways, and gene regulatory networks

to understand the mechanisms of disease and to discern novel

targets and candidate compounds for investigation. As biological

networks are closely entangled, even a single pathological

disruption can elicit a cascading effect to alter an otherwise

carefully balanced system. Norrie’s disease and familial exudative

vitreoretinopathy (FEVR) are retinal conditions, which present

similarly to ROP engendered, engendered by a single genetic

variant many of which overlap with ROP including NDP, FZD4

TSPAN12, and LRP5 from our analysis. Thus, a network

medicine approach can identify the tie-ins between multiple

pathways to gain an understanding of larger biological

relationships that otherwise wouldn’t be understood by

conventional reductionist approaches of “one drug-one target-

one gene.” In this study, we take a network medicine approach

to clarify the relationships between the known genes of ROP and

current pharmacologic compounds to predict medical drugs

targets.

For decades, oxidative stress has been hypothesized to play a

major role in the pathogenesis of ROP (34, 35). As neonates,

particularly premature neonates, lack appropriate levels of

antioxidants to eliminate ROS, they are especially susceptible to

oxidative stress and sensitive to ROS-activated signaling pathways
frontiersin.org
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TABLE 1 Top 50 filtered drugs targeting ROP genes predicted by toppGene database in order of P-value.

Filtered
Position

Unfiltered
Position

Name Source P-value q-value FDR
B&H

Hit Count in
Query List

Hit Count
in Genome

1 1 Ascorbic Acid CTD 7.76 × 10−21 1.30 × 10−16 21 626

2 4 Simvastatin CTD 1.44 × 10−18 5.79 × 10−15 19 581

3 7 Acetylcysteine CTD 1.60 × 10−17 3.83 × 10−14 20 780

4 13 Niacin CTD 4.24 × 10−15 5.37 × 10−12 11 139

5 14 Ricinelaidic acid Stitch 4.48 × 10−15 5.37 × 10−12 10 95

6 17 Penicillamine CTD 2.04 × 10−14 2.01 × 10−11 10 110

7 18 Curcumin CTD 2.74 × 10−14 2.41 × 10−11 18 850

8 19 Losartan CTD 2.88 × 10−14 2.41 × 10−11 11 165

9 20 Capsaicin CTD 3.00 × 10−14 2.41 × 10−11 15 488

10 22 Metformin CTD 4.30 × 10−14 3.28 × 10−11 14 400

11 27 Enalapril CTD 1.21 × 10−13 7.53 × 10−11 10 131

12 36 Thioctic Acid CTD 1.04 × 10−12 4.84 × 10−10 10 162

13 37 Furosemide CTD 1.17 × 10−12 5.23 × 10−10 10 164

14 43 U0126 Stitch 2.55 × 10−12 9.96 × 10−10 13 430

15 44 Genistein Stitch 2.80 × 10−12 1.07 × 10−9 18 1,117

16 49 Betamethasone-d5 Stitch 5.35 × 10−12 1.81 × 10−9 19 1,340

17 57 Minocycline CTD 1.00 × 10−11 2.94 × 10−9 8 88

18 61 Phenylephrine CTD 1.91 × 10−11 5.25 × 10−9 13 505

19 63 Telmisartan CTD 2.22 × 10−11 5.91 × 10−9 8 97

20 77 Melatonin CTD 5.84 × 10−11 1.27 × 10−8 10 243

21 78 Ibuprofen CTD 6.13 × 10−11 1.32 × 10−8 12 437

22 79 Nifedipine CTD 7.14 × 10−11 1.51 × 10−8 8 112

23 81 Glutathione CTD 7.33 × 10−11 1.52 × 10−8 11 339

24 87 Valsartan CTD 1.16 × 10−10 2.24 × 10−8 8 119

25 91 hydralazine Stitch 1.39 × 10−10 2.54 × 10−8 9 186

26 92 Atorvastatin
Calcium

CTD 1.39 × 10−10 2.54 × 10−8 9 186

27 94 Triamcinolone Stitch 1.47 × 10−10 2.60 × 10−8 7 73

28 102 Dantrolene CTD 2.37 × 10−10 3.88 × 10−8 6 41

29 105 quinapril CTD 2.53 × 10−10 4.04 × 10−8 5 18

30 111 Apigenin CTD 3.60 × 10−10 5.45 × 10−8 9 207

31 117 troglitazone CTD 4.94 × 10−10 7.08 × 10−8 17 1,329

32 120 LMWH Stitch 5.45 × 10−10 7.58 × 10−8 13 663

33 133 rosiglitazone CTD 7.58 × 10−10 9.56 × 10−8 18 1,571

34 138 Isoproterenol CTD 9.70 × 10−10 1.18 × 10−7 15 1,015

35 144 Diclofenac CTD 1.27 × 10−9 1.48 × 10−7 12 570

36 146 candesartan Stitch 1.37 × 10−9 1.58 × 10−7 8 162

37 157 Rutin CTD 1.96 × 10−9 2.09 × 10−7 7 105

38 161 Propolis CTD 2.56 × 10−9 2.66 × 10−7 6 60

39 164 Etiocobalamin Stitch 2.77 × 10−9 2.82 × 10−7 8 177

40 165 Nitroprusside Stitch 2.78 × 10−9 2.82 × 10−7 9 261

41 166 Amlodipine CTD 2.83 × 10−9 2.86 × 10−7 6 61

42 178 Pioglitazone CTD 3.75 × 10−9 3.52 × 10−7 8 184

43 180 Sulforafan CTD 3.87 × 10−9 3.60 × 10−7 11 494

44 187 Deferoxamine CTD 4.09 × 10−9 3.66 × 10−7 8 186

45 188 Celecoxib Stitch 4.11 × 10−9 3.66 × 10−7 9 273

46 191 Fenofibrate Stitch 4.52 × 10−9 3.97 × 10−7 9 276

47 198 Galangin CTD 5.53 × 10−9 4.68 × 10−7 6 68

48 208 Tempol CTD 7.20 × 10−9 5.80 × 10−7 6 71

49 215 Aspirin CTD 8.88 × 10−9 6.93 × 10−7 12 678

50 216 Nitroglycerin Stitch 9.11 × 10−9 7.07 × 10−7 8 206

Xie et al. 10.3389/fped.2023.1151239
when transferred from a hypoxic intrauterine condition to a

normoxic or even hyperoxic environment with supplemental

oxygen at birth (36, 37). Thus, antioxidants as preventative

therapies have long been viewed as promising agents that can

mitigate the damage from oxidative stress. Vitamin E, vitamin C,

zeazanthin, ubiquinone (CoQ10), and alpha lipoid acid, an
Frontiers in Pediatrics 05
omega-3 fatty acid, are all potent antioxidants identified from

our analysis that also been tested in both animals and humans;

however, the promising results from animal models for these

antioxidants often failed to translate in human studies (33, 38).

Ascorbic acid (AscA) or vitamin C, the most significant

compound in our analysis, has been linked to ROP and retinal
frontiersin.org
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FIGURE 1

Force-directed graph of drug-gene interactions. Node size and edges are represented based on centrality metrics analysis. Drugs are in red, and genes
are green with respect to color.

TABLE 2 Most significant gene ontology description of genes associated with genes related to ROP.

ID Name P-value q-value FDR B&H Hit Count in Query List Hit Count in Genome
GO:0001944 vasculature development 1.46 × 10−25 5.62 × 10−22 30 1,239

GO:0036293 response to hypoxia 9.97 × 10−23 1.92 × 10−19 22 547

GO:0035239 tube morphogenesis 4.52 × 10−22 3.48 × 10−19 29 1,467

GO:0035295 tube development 1.38 × 10−21 8.87 × 10−19 31 1,880

GO:0001525 angiogenesis 4.62 × 10−21 2.22 × 10−18 24 873

GO:0072359 circulatory system development 6.15 × 10−21 2.63 × 10−18 31 1,977

GO:0051240 regulation of multicellular organismal process 7.32 × 10−20 2.82 × 10−17 30 1,950

GO:0014070 response to organic cyclic compound 3.88 × 10−17 9.97 × 10−15 26 1,628

GO:0048660 regulation of smooth muscle cell proliferation 4.63 × 10−17 1.12 × 10−14 14 223

GO:0033002 muscle cell proliferation 4.45 × 10−16 9.51 × 10−14 15 334
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angiogenesis as plasma AscA levels were lower in premature infants

who developed ROP (39). Unfortunately, there is no evidence that

AscA supplementation has any significant benefits for protecting

against ROP in premature infants (40). Additionally, other

antioxidant therapies like zeaxanthin and omega-3 fatty acids

supplementation have also shown equivocal results in preventing

ROP clinically, and vitamin E trials have largely been abandoned

due to increased risks of neonatal morbidities like sepsis and

intraventricular hemorrhage (41–44).

Curcumin and N-acecylcysteine (NAC) are two major

antioxidants identified amongst the most significant compounds

in our analysis. While they exhibit anti-oxidative effects, they

have also been shown to suppress pathological angiogenesis by

inhibiting expression of angiogenic factors and/or apoptotic

factors like NOS3, VEGF, IL-6, IGF-1, and TNF which are hub

genes in our analysis that encode for factors that are normally
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elevated in the serum and vitreous of ROP infants (45–50). As

recent studies have identified VEGF as one of, if not the most

significant, angiogenic factors responsible for ROP (34), VEGF

inhibitors are the principle agents of therapy despite potential

drawbacks (12, 51). One recent study demonstrated that

curcumin administered during hypoxia can reduce retinal

neovascularization and VEGF mRNA expression in oxygen-

induced retinopathy mice in a dose-dependent manner, and in

vitro experiments showed that curcumin decreased VEGF protein

and mRNA levels similar in degree to ranibizumab, an anti-

VEGF drug used to treat ROP (52, 53). Of note, neither

curcumin nor NAC have adverse effects in infants (54, 55), and

both already have strong evidence in preclinical studies towards

protecting against retinal disorders (56, 57). Although curcumin

exhibits poor bioavailability which limited human studies in the

past, novel formulations like Longvida curcumin have arisen that
frontiersin.org

https://doi.org/10.3389/fped.2023.1151239
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 2

Force-directed graph of drug-gene interactions. Node size and edges are represented based on centrality metrics analysis. Pathways are in blue, and
genes are green with respect to color.

Xie et al. 10.3389/fped.2023.1151239
accumulate in the retina and are currently being trialed in retinal

conditions like AMD (58). Meanwhile, NAC has already shown

promise for retinitis pigmentosa, another retinal disorder related

to oxidative stress, as a phase 1 clinical trial in adults

demonstrated improved macular cone function and reduced

oxidative damage with oral NAC therapy (59). While NAC has

never been studied in the context of ROP models, NAC

treatment in diabetic rat models showed decreased levels of ROS

contents in the retina and also attenuated VEGF expression in

retinal blood vessels and signs of retinopathy under microscopy

(60). Both curcumin and NAC are promising candidates to be

studied to repurpose as ROP therapy thanks to their safety in

infants as well as anti-oxidative and anti-angiogenic effects, but

further studies will be necessary in the future.

Our study also identified several anti-diabetics including

metformin and various thiazolidinediones (TZD). TZDs have

well-documented anti-angiogenic properties via their PPAR-y

agonism which induces suppression of VEGF expression in the

retina as seen in vitro and in vivo studies (61), and retinal

vascular tissues are one of the few sites where PPAR-y receptors

are abundantly expressed (62). Furthermore, rosiglitazone,

wnfhich we identified amongst the top 50 most significant
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compounds, has been shown to delay the onset of proliferative

diabetic retinopathy possibly due to its anti-angiogenic activity in

a review of longitudinal medical records (63). Metformin has

similarly exhibited anti-angiogenic effects in mouse oxygen-

induced retinopathy (OIR) models by reducing the expression of

VEGF receptors (64). Due to an array of neuroprotective, anti-

angiogenic, and anti-proliferative effects, metformin has been

identified in various preclinical and clinical studies as a drug

with strong repurposable potential for neurodegenerative

disorders (65), various cancers like glioblastoma (66, 67), and

also retinal pathologies like AMD (68). Studies have also

suggested that metformin exhibits anti-inflammatory effects by

reducing the production of NO, prostaglandins, and pro-

inflammatory cytokines (IL-6, TNF-a) which are normally

elevated in ROP via inhibition of NF-KB (69, 70). Today,

metformin is widely prescribed for pregnant patients with

polycystic ovarian syndrome and gestational diabetes mellitus

with proven safety and tolerability (71–73), but neonatal

outcomes of metformin use in pregnancy remain unclear (74,

75). While metformin is untested in children under the age of 2,

its safety will be studied in infants affected by hypoxic ischemic

encephalopathy (76).
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Common cardiovascular agents including ACE inhibitors and

ARBs are top candidates in our analysis. The renin-angiotensin

system (RAS) mediates the homeostatic control of fluid balance,

tissue perfusion, and arterial pressure. Today, ACE inhibitors and

ARBs are used to target different steps in this system to control

blood pressure and improve heart and kidney function. Recent

studies have reported on the existence of an ocular renin-

angiotensin system as evidence points to the expression of RAS

components—renin, angiotensinogen, and angiotensin-converting

enzyme (ACE)—in the eye of humans and animals with RAS

playing a possible role in the early stages of vascularization in

rats (76–78). One study found a multifold increase in the

expression of RAS components including ACE and HIF-1a—hub

genes identified from our analysis—within the human vitreous of

ROP patients and the retina of OIR rats (79). As RAS is induced

by hypoxia, there is a possibility that pharmacological

intervention of RAS could also arrest or reduce the progression

of ROP development. Lisinopril and telmisartan which were both

identified in our analysis blocked the up-regulation of VEGF and

HIF-1a in the retina of OIR rat pups as much as bevacizumab,

an anti-VEGF agent, and suppressed retinal functional changes

on ERG (80). Interestingly, ACE inhibitors have been suggested

to attenuate erythropoietin (EPO) activity, a key biomarker that

is elevated in the vitreous of stage 4 ROP patients (81, 82).

While ACE inhibitors are commonly used for pediatric

cardiology patients, they are contraindicated in pregnancy and

should be considered with caution, especially for preterm infants

(83). One recent study observed Enalapril-use in both preterm

and term infants without structural heart disease in the neonatal

intensive care unit and found that the most common side effects

include hyperkalemia (13%), elevated serum creatinine (5%), and

hypotension (4%); nonetheless, there may be still potential for

repurposing these drugs in ROP therapeutics (84).

Inflammation has long played a key role in ROP pathogenesis

and has always been considered an important pharmacologic

target. Of note, cyclooxygenase (COX)-2 seems to play a hand in

neovascularization via the generation of prostaglandin E2 and

activation of prostaglandin EP3 receptors (85). Inhibition of

COX-2 in the retina also decreased neovascularization in an ROP

mice model by 37% (86). Indeed, an early preliminary report of

ophthalmic ketorolac reduced the risk of severe ROP in preterm

neonates without adverse effects (87). Since then NSAIDs have

been tested with other promising therapies like caffeine, which

was also identified in our study but outside the top 50

candidates, in order to target both oxidative stress and

inflammation with notable success in OIR models (88). Larger

studies are certainly still necessary, however, as the effectiveness

of prophylactic NSAIDs and caffeine still requires further

validation from future clinical studies (89).

There are inherited retinal conditions including NDP and

FEVR which manifest similarly to ROP with abnormal

angiogenesis and incomplete vascularization of the retina (90).

The drug-gene Pharmacome constructed for ROP in this study

suggests that there are several overlapping key genes associated

with not only FEVR and Norrie’s disease but also with ROP

including NDP, FZD4, TSPAN12, and LRP5 (90–94).
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Unfortunately, these shared genes represent only a small subset

of the overall drug-gene network for ROP and lack significant

associations with the top drugs identified in this study. Similarly,

the primary biological pathway—the WNT signaling pathway—

associated to both FEVR and Norrie’s disease was not identified

in this study as a targetable pathological network to ROP despite

the presence of key genes affecting WNT signaling in our drug-

gene Pharmacome (95). While it’s unlikely that the drugs we’ve

discussed relate significantly to Norrie’s disease or FEVR based

on the current evidence, these are pathologies that may similarly

benefit from our network medicine methodology in drug

discovery as our understanding of their genetic basis grows.
Limitations

While this study attempts to create a drug-gene network to

identify pharmacological targets for ROP, the model is still far

from perfect. ROP pathogenesis is a growing field in need of

novel, predictive biomarkers, and our study utilizes only the

known genomic and proteomic biomarkers derived in part from

animal models that may not adequately translate to preterm

humans. Because genomics-based predictions are built upon pre-

existing research to pinpoint drug-gene interactions, a predicted

computational model for rare, ocular pathologies like ROP is not

going to be as robust when compared to more prevalent

pathologies like cancer or diabetes because there’s less data and

identified biomarkers. Similarly, less commonly used drugs and

more niche compounds have less toxicogenomics data. Thus, the

more ubiquitously prescribed drugs may appear over-represented

in enrichment analyses due to a greater number of known drug-

gene interactions. Another constraint is that we did not account

for the specific impact of the genes as either a protective or risk

variant on gene progression; we gave equal value and emphasis

on all genes identified from our NCBI query. Finally, there are

intrinsic issues in databases like CTD and Drug Bank which

partially rely on algorithms to make predictive drug-gene or

gene-disease inferences that may contain false-positives.

Ultimately, this research design mimics a meta-analysis of earlier

studies, and it is necessary to take into consideration variations

in standards of practice and experimental design amongst

different studies.
Conclusion

Our investigation into biomarkers of ROP uncovered many

potential pharmacological therapies for this disorder. We

identified several compounds untested for ROP such as NAC and

curcumin that have known safety and tolerability profiles in

preterm infants and are therefore prime candidates for

repurposing. Other top drugs within our analysis include anti-

diabetics like metformin and TZDs as well as cardiovascular

agents like ARBs and ACE inhibitors which are FDA-approved

for various indications but have unclear or unknown side effects

in neonates. Of course, there is also a slew of other compounds
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including various NSAIDs and antioxidant nutrients which

traditionally have been tested as ROP prophylactic therapy, and

hopefully will continue to be tested with larger clinical studies.

For a complex, multifactorial disease like ROP, multiple drug

classes may be necessary to synergistically combat ROP’s

intricate pathogenesis. Thus, combination therapies are also

valuable options to explore in future studies. While there are still

drawbacks to using a bioinformatics approach, this model of

utilizing open-source algorithms and databases as a method of

investigation undoubtedly gives an unbiased insight into drug

discovery. As our understanding of ROP risk factors and

biomarkers grows with the explosion of new, innovative

technologies and artificial intelligence, the accuracy of using a

systems biology approach to predict drug-target-relationships will

only improve. We believe that this computational system biology

study can provide direction for future preclinical and clinical

studies to elucidate the relationships between ROP and the

significant drugs we’ve identified, and we are hopeful that this

approach of using bioinformatics to investigate drug discovery

can apply to other irremediable pathologies in the future as well.
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