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Centile reference curves of the
ultrasound-based characteristics
of the rectus femoris muscle
composition in children at 4–11
years old
Yesenia García-Alonso1 , Alicia M. Alonso-Martínez1 ,
Antonio García-Hermoso1 , Gaizka Legarra-Gorgoñon1 ,
Mikel Izquierdo1,2 and Robinson Ramírez-Vélez1,2*
1Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA,
Pamplona, Spain, 2CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid,
Spain

Quantitative diagnostic ultrasound has been proposed as a way to characterize
muscle structure, but there is a lack of normative data for children. This study
aims to establish age-specific normal ranges for echo-intensity (EI), cross-
sectional area (CSA), muscular thickness (MT), and subcutaneous adipose
thickness (SAT) values of the rectus femoris muscle in typically developing
children. The study recruited 497 children (288 boys and 209 girls) aged 4–10.9
years (mean age 7.39 years), and muscle parameters were measured using 2D
B-mode ultrasound. Percentile values and reference curves were calculated
using the Lambda, Mu, and Sigma method (LMS). The results showed small
variation between measurements for boys compared to girls, with the most
significant difference in EI, CSA, and MT values. EI decreased with age, with the
most pronounced curve in boys. SAT increased in both sexes, with a slightly
higher increase in girls after the age of 9.0 years. This study provides the first
age-specific reference norms for the rectus femoris muscle architecture in
children, and further research is needed to validate these curves and determine
their clinical utility.
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1. Introduction

Ultrasound (US) has become the preferred first-line imaging modality for children due

to its noninvasive nature, low-cost, and easy accessibility (1). The concept of muscle quality

has emerged as a useful construct to explore skeletal muscle function beyond age-related

declines in lean body mass (1). Muscle quality and body composition are crucial factors

in clinical outcomes (2). While muscle size plays a role in strength and physical

functioning, physiological adaptations can occur separately in response to strength

training and chronic disuse (3). However, US imaging is operator dependent, requires

significant operator training, and has a limited field of view that necessitates detailed

anatomical knowledge of the imaged area (4).

Different US parameters such as cross-sectional area (CSA), muscular thickness (MT),

and echo-intensity (EI) can be used to quantify muscle quality. Fukumoto et al. (5)

reported that MT of the knee extensor and muscle quality assessed from EI measured
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using this method independently contribute to isometric knee

extension strength in middle-aged and elderly women (51–87

years of age). These parameters provide insight into glucose

metabolism, oxidative damage, protein metabolism,

intramuscular adipose tissue, capillary density, structural

composition, contractility, and fatigability. Muscle quality has

been significantly associated with metabolic health (5, 6), risk of

cardiovascular events (7), and overall mortality (8). Multiple

factors can influence muscle quality, including composition,

metabolism, fat infiltration, fibrosis, and neural activation. Poor

muscle strength, rather than low muscle mass, has been

identified as a major determining factor for functional decline.

Obesity and physical inactivity are independent risk factors for

poor muscle strength (9). A higher percentage of muscle mass

and better muscle quality in quadriceps, i.e., lower EI values, are

strongly associated with adverse clinical outcomes (10).

Therefore, understanding the factors that influence muscle

quality and assessing it using US parameters can have important

implications for clinical outcomes in children.

Previously, studies have evaluated the quality of skeletal muscle

using computer-aided gray scale analysis, showing that EI is

associated with muscle strength independently of age or muscle

size in middle-aged and older adults (11). Lower EI values (12)

and increased intramuscular fat (13) have been linked to

impaired strength and physical function in various conditions,

from injury to aging to metabolic disease (14). Lower EI values

have also been associated with reduced activation of quadriceps

muscles in older adults (15). Muscle mass not only affects muscle

strength and mobility, but also overall survival and prognosis

related to underlying diseases (15).

Given the rapidly growing population at risk in Spain (16) and

the strong association between muscle US parameters and

conditions such as sarcopenia or pediatric dynapenia (17),

assessing muscle quality is critical for disease prevention (18). In

this line, García-Alonso et al. (19) observed a relationship

between physical fitness components and muscle US parameters

in prepubertal children’s rectus femoris muscle. With regard to

subcutaneous adipose tissue (SAT) Point. Chmid-Zalaudek et al.

(20) studied SAT measured via US in children and adolescents

demonstrated that those with excess adiposity, as determined by

DXA (%body fat), had significantly higher levels of cardio-

metabolic risk factors. In this context, quantitative

musculoskeletal diagnostic US has been proposed as a viable

method for characterizing muscle structure (21). Reference data

is necessary, as a first step, to identify individuals with low

muscle quality and/or high SAT across the age spectrum. While

use of the US device has become routine practice in adults, the

question remains of whether both the technique and the

diagnostic cutoff values for adults can be applied to youth.

Moreover, published muscle quality data from healthy youth

remain scarce (22). Beyond the size of a peripheral muscle, the

EI of the muscle is also of great interest, since increased EI,

which results from intramuscular fat and interstitial fibrous

tissue, is associated with impaired physical functioning (23).

Nevertheless, population-specific data are valuable in reducing

the risk of misclassifying the muscle quality phenotype among
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children, as sociodemographic, genetic, and lifestyle factors

influence body composition.

Accordingly, the purpose of the present study was to establish

age-specific reference norms of EI, CSA, MT, and SAT values in

children aged between four and eleven years of age without

underlying metabolic disease. These reference values may assist

in identifying target populations for primary prevention and

guiding population health programs, policies and priorities.
2. Materials and methods

2.1. Study design and simple

Using a cross-sectional study design from the “Observatorio de

Actividad Física en escolares, https://observatorioactividadfisica.

es”, we examined muscle US parameters in Spanish children. The

sample included 497 children aged 4.0–10.9 (288 boys and 209

girls, mean age 7.39 years). Participants were enrolled from four

interested schools (a private school, Santa María la Real-Maristas;

and three state schools, San Juan de la Cadena, El Lago de

Mendillorri and Garcia Galdeano), two sports centers (a private

sports center, S.C.D.R Anaitasuna; and a football club, Gazte

Berriak C.F), and a health center (C.S Iturrama) from the

Metropolitan Region of Pamplona (Navarra), Spain. This sample

of the population was chosen due to the lack of muscle US

parameters studies (independently of anthropometric values).

Parents/guardians of children were informed of the study

objectives during meetings and were invited to review the study

protocol. Exclusion criteria included injury/surgery in the last

month and/or any medical limitation/restrictions on physical

ability testing. Informed consent was obtained from the parents/

guardians and the children. Evaluations took place from

December 2021 to June 2022. The study protocol was completed

in accordance with the Helsinki Declaration and was approved

by the Ethics Committee of the Universidad Pública de Navarra

(ID # CENEDUCA1/2019).
2.2. Measurements

The data collection staff had a background in physical fitness

and physical activity assessment and were trained by research

staff from the coordinating center (e-FIT UPNA Research

Group). Age and sex were assessed using a self-report

questionnaire. Anthropometric measures (height, weight, and

waist circumference) were collected following the CDC-NHANES

survey protocol (24), by two members of the research team.

Height was measured in the Frankfurt position using a

stadiometer (SECA, model 213, GmbH & co. Hamburg,

Germany) with 1 mm precision. Body mass was measured in

light clothing and bare feet using a TANITA device scale

(TANITA DC-430MAS®, Tokyo, Japan) with 100 g precision.

The waist circumference measurement was taken midway

between the tenth rib and the iliac crest and was recorded to the

nearest millimetre. A non-elastic flexible tape measure was
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employed with the subject in a standing position (Seca 201, Seca

GmbH & co. Hamburg, Germany). Body mass index (BMI in kg/m2)

was subsequently derived, and BMI z-scores were calculated using

age- and sex-specific reference data from the World Health

Organization (25). The waist-to-height ratio was calculated as

waist circumference/height in cm.

The muscle architecture and echo intensity of rectus femoris

was measured by real-time two-dimensional B-mode US (Esaote

MyLabTM50, Genova, Italy). Participants were asked to lie supine

on a bed with extended knee joints and rest completely during

the image acquisition. To ensure body fluid shift stabilization,

participants were given five minutes of rest in this position. A

mark was drawn at 50% of the distance between the anterior

superior iliac spine and the mid patella point. The images were

obtained by an expert operator (YGA) using a multi-frequency

linear transducer (4–15 MHz). To ensure proper probe

placement and consistent image capture location, a dotted line

was drawn transversely and sagittal along the surface of the skin

from the aforementioned location. All measures of muscle

morphology were obtained using fixed settings that remained

constant throughout the examination of each participant. This

approach was employed to minimize any potential bias in the

instrumentation, to optimize spatial resolution, and to ensure

consistency in the measurement of muscle morphology. Image

gain was set at 55 decibels (dB), dynamic range was set at 72,

and image depth was set at 45–50 mm. Any optional

postprocessing available within the software was switched off and

time gain compensation buttons were kept in their neutral

positions. Transmission gel (Ultrasound GEL® Ref: 33273, Gima

s.p.A Laboratories, Inc., Gessate, MI, Italy) was used for all scans

to improve acoustic contact, and minimum pressure was applied

to partially visualize the muscle border. Still images were

captured in both sagittal and transverse planes, followed by

complete images captured with the panoramic function. Rectus

femoris architecture parameters were estimated in four ways: (i)

EI was determined by tracing the maximum region of interest

(ROI, Figure 1B) representing the rectus femoris CSA, followed

by calculating the mean level of gray within the ROI in 8-bit

resolution images (gray levels from 0 to 255, where black = 0 and

white = 255) using ImageJ software (ImageJ, National Institutes

of Health, USA, version 1.45s). Higher scores indicated increased

intramuscular fat and interstitial fibrous tissue (21). The mean

and standard deviation (SD) of each histogram were computed.

The inner outline of the rectus femoris was manually traced to

calculate CSA by a movable cursor on a frozen image, identified

by its hyperechoic appearance (Figure 1B). The MT was

quantified using the line tool at the midpoint of the horizontal

distance between the anterior and posterior sides of the rectus

femoris. MT was measured as the minimum distance between

the inferior border of the superficial aponeurosis and the

superior border of the deep aponeurosis. MT value is highlighted

in blue (Figure 1C) and recorded in mm. The SAT thickness

was quantified using line was drawn perpendicular to the

epithelium and the superior border of the superficial

aponeurosis, and the resulting distance was calculated (26). Data

were reported in mm, using internal software on the Esaote
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MyLabTM50. This analysis was similar to previously established

methods (21, 27), and anatomical measurement sites are

described in detail in Figures 1A–C.
2.3. Statistical analyses

Sample were categorized according to sex into eight age

categories, from 4 to 11 years. Outlier analysis was performed to

verify that all values were within a physiologically possible range.

Smoothed age-specific and sex- specific percentiles and curves

were developed by Cole and Green (28).The least mean squares

(LMS) technique estimates 3 parameters: median (M), coefficient

of variation (S), and power in the Box‒Cox transformation (L).

These three parameters vary as a function of independent

variables, and worm plots were used to assess goodness of fit.

Normality was assessed using Kolmogorov–Smirnov tests. We

included in the analysis smoothed LMS curves for the 3rd, 10th,

25th, 50th, 75th, 90th and 97th percentiles of all parameters. All

data are presented as the mean 95% CI. Student’s t-test was used

to determine whether significant differences were found between

the descriptive characteristics using IBM SPSS version 26.0

statistical software (IBM Corporation, Armonk, NY). The level of

statistical significance was set at p < 0.05.
3. Results

Table 1 shows the anthropometrics characteristics and US

measurements of the participants, consisting of 288 boys and 209

girls aged 4–10.9 years, with a mean age of 7.39 (IC95% 7.22–

7.56) years. BMI and waist-to-height ratio were similar in both

groups (p > 0.05). Age, height, body mass, and waist

circumference, was significantly higher in boys than in the girls’

group (p < 0.05). The EI and SAT (captured in the sagittal and

transverse planes) were significantly greater with the girls than

with the boys’ group (p < 0.05). We observed no significant

differences in the MT or CSA between sex groups (p > 0.05).

The LMS reference curves, which provide information on the

distribution of EI, CSA, MT, and SAT for boys and girls based

on the 3rd, 10th, 25th, 50th, 75th, 90th and 97th percentiles, are

summarized in Figures 2, 3, and Supplementary Tables S1–S5.

We found that there were small variations between the US

measurements (e.g., percentiles 90–97) and least fit (e.g.,

percentiles 3–10) for boys when compared to girls, particularly

for EI, CSA, and MT values. For both sexes, EI decreased as age

increased, with the most pronounced curve observed in boys

(Figures 2A,B). The percentile curves for CSA and MT were

similar for boys and girls across all ages, with differences

increasing with age (Figures 2C–F). In boys, the age-related

increase in CSA and MT values tends to stabilise from age 8.0

years onwards (Figures 2C–E). Similarly, SAT, as captured in the

sagittal and transverse planes (Figures 3A–D), increased in both

sexes, with a slightly greater increase observed in girls from age

9.0 years onwards.
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FIGURE 1

Illustrative representation of ultrasound parameters of the rectus femoris. US images were acquired at lengths equivalent to the 50% levels of the thigh
length measured from the anterior superior iliac spine and the mid patella point. The transducer was positioned at the intersection points between the
sagittal and transversal planes. Panel (A) EI was then defined as the mean level of gray within the ROI (yellow line) using the grayscale histogram function
(e.g., pixels expressed as a value between 0 = black and 255 =white). Panel (B) The inner outline of the rectus femoris was manually traced to calculate
CSA by a movable cursor on a frozen image, identified by their hyperechoic appearance. The MT (blue line) was defined as the distance between the
superficial fascia and the deep fascia. Panel (C,D) The SAT (green line) was captured in the sagittal and transverse planes and defined as the distance
between the dermis and fascia of the rectus femoris muscle using internal software on the Esaote MyLabTM50. The figure shows the area of echo
intensity (yellow) SAT (green) and MT (blue). SAT was quantified using the straight-line function at three sites (medial, midpoint, lateral scan) from the
skin to the superficial aponeurosis and calculated as the average of the three values. The histogram displays the EI (mean) of each image. “a.u” as a
unit for EI is arbitrary units.
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4. Discussion

The accuracy of US in assessing skeletal muscle and its

potential to predict clinical outcomes has been postulated in

previous studies (29, 30). Our study highlights the use of US-

based characteristics of the rectus femoris muscle composition in

elementary school children, for evaluating peripheral muscle size

and EI and may be helpful in monitoring muscle quality. This
Frontiers in Pediatrics 04
study should be considered as a first step, and these values can

guide pediatricians who wish to apply the technique and can also

be a valuable resource in the clinical assessment of muscle

function and for comparisons with studies from other countries,

as recommended by the European Working Group on

Sarcopenia in Older People (EWGSOP2) (31), the SARCUS

study (SARCopenia through UltraSound) (32), and on its

possible role in diagnosing pediatric dynapenia.
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TABLE 1 Anthropometrics characteristics and US measurements of the
participants.

Variables Full sample
(n = 497)

Boys
(n = 288)

Girls (n = 209)

Anthropometrics parameters
Age (years) 7.39 (7.22;7.56) 7.64 (7.41;7.88) 7.04 (6.81;7.28)b

Height (cm) 124.87
(123.70;126.04)

126.63
(125.03;128.23)

122.46
(120.78;124.13)a

Body mass (kg) 27.24
(26.51;27.96)

28.19
(27.21;29.16)

25.94
(24.87;27.00)a

Body mass index
(kg/m2)

17.08
(16.87;17.28)

17.19
(16.92;17.46)

16.93 (16.61;17.25)

Body mass index
(z-score)

−0.00
(−0.08;0.09)

0.04 (−0.06;0.16) −0.05 (−0.06;0.16)

Waist
circumference (cm)

58.30
(57.67;58.92)

58.90
(58.08;59.73)

57.47
(56.52;58.42)a

Waist-to-height
ratio

0.46 (0.46;0.47) 0.46 (0.46;0.47) 0.47 (0.46;0.47)

Muscle ultrasound parameters
Transverse measurements

EI (au) 44.82
(43.61;46.03)

43.13
(41.45;44.81)

47.15
(45.48;48.82)a

CSA (cm2) 5.36 (5.25;5.46) 5.38 (5.24;5.53) 5.32 (5.17;5.48)

MT (mm) 13.00
(12.77;13.23)

13.14
(12.83;13.48)

12.81 (12.48;13.15)

SAT (mm) 6.44 (6.17;6.72) 6.01 (5.68;6.34) 7.04 (6.59;7.49)b

Sagittal measurements

SAT (mm) 6.80 (6.56;7.04) 6.36 (6.04;6.68) 7.37 (7.02;7.72)b

Values are means and 95% CI. Unpaired t-tests were utilized to compare the

differences between the sex groups.

EI, echo-intensity; SAT, subcutaneous adipose tissue; MT, muscular thickness; CSA,

cross-sectional area.
aP < 0.05.
bP < 0.01.
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US has the potential to become an imaging-based tool for

screening and diagnosing skeletal muscle US parameters,

comparable to computed tomography and magnetic resonance

imaging, which quantify body composition on the tissue level,

and dual-energy x-ray absorptiometry, which assesses the

chemical level. Among qualitative measures, muscle EI provides

helpful information about the presence of inflammation, fibrosis,

and adipose tissue infiltration (33). Previous studies have

increasingly integrated the concepts of muscular strength, peak

force and body size to assess muscle performance and provide an

estimate of muscle quality (34). In older adults, there appears to

be a correlation between EI and muscle strength, gait speed, and

sit-to-stand test (35). Among children, Garcia-Alonso et al. (19)

shown that there are associations between physical fitness

components and muscle US parameters in prepuberal children.

In addition, muscle architectural characteristics including MT,

muscle volume, EI, and CSA are strongly correlated with the

maximum muscle strength and power (33, 35).

In our study, we found that boys in the 50th percentile have

muscle EI values of 52.13 a.u. in the age range of 4.0–4.9 years,

which decreases to 32.15 a.u. in the age range of 10.0–10.9 years.

For girls, the 50th percentile, muscle EI values start at 50.32 a.u.

in the age range of 4–4.9 years and decrease to 39.56 a.u. in the

age range of 10.0–10.9 years. The relationship between age, CSA,
Frontiers in Pediatrics 05
and MT was found to be curvilinear, which is consistent with

previous studies that have shown age-related changes in muscle

mass, CSA, and muscle strength (36–38). During early

childhood, there is a consistent pattern of sexual dimorphism

and muscle mass quantity which is in line with previous findings

from ethnically diverse populations and likely due to hormonal

influences (39). We also found gender differences in SAT, which

are similar to those observed in adults. In the girls group, we

found an increase in SAT percentage as they age, from 5.94 mm

in the 4–4.9 age group to 8.69 mm in the 10–10.9 age

group (40). These gender differences seem to start from an early

age and vary for upper and lower extremity muscle groups.

Furthermore, we observed an age-related increase in EI mean

values in children, and it is known that, in women, muscle tissue

develops increased fatty infiltration, leading to increases in EI

(32). Therefore, tracking the development of lean mass during

adolescence can be a useful tool in identifying potential

interventions for metabolic diseases associated with sarcopenia

early in life (13).

Although our analyses were robust, there are several limitations

that should be taken into account. Apart from sex differences, other

factors, such as nutritional status, environmental factors, or

ancestral differences, can influence muscle growth. To address

this issue, we included only children living in the city of

Pamplona (Spain) to minimalize cultural differences between

ancestral groups (e.g., beliefs and traditional food) and living

circumstances (e.g., housing, possibility of schools, access to

sports clubs). However, it would be interesting to consider these

factors in further studies or studies with older children.

Additionally, our study design did not involve following up with

the same group over time, so we cannot confirm if the observed

trends will persist over time. Moreover, the lack of data on

dietary patterns limits our ability to interpret the contribution of

diet to body composition development. There is no clear

criterion for muscle EI value, and the results cannot be readily

generalized for different US devices, as EI is influenced by US

system hardware and software. Therefore, our normative EI

values can only be used with the same ultrasound device and

settings, and new values must be established for other cases.

However, the measurement of CSA or MT does not depend on

equipment settings, so normative data of muscle size presented

in this study can be applied in other centers. On the other hand,

the reliability of MT, CSA and SAT measurements has been

investigated in previous studies (43–45). The coefficient of

variation examining the intra and inter-experimenter reliability of

the US imaging technique ranged from 0.6 to 2.7%, even by

minimally trained or untrained professionals. Based on these

results, the experimenters concluded that US is a valid and

reliable tool to assess large muscle quality parameters.

Despite these limitations, our study contributes to our

understanding of how muscle parameters varies by sex and age

in children. This measure can offer valuable insights regarding

muscle quality of the normal rectus femoris muscle, which plays

a key role in for assessing body composition in all age groups

(21). Measuring muscle size and composition from magnetic

resonance imaging or computed tomography is expensive and may
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FIGURE 2

Reference curves age-specific and sex-specific of EI, CSA and MT in boys and girls.
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not be accessible for youth at the population level. Since US imaging is

a more accessible and less expensive technique that provides valuable

information about muscle function, muscle composition testing and

monitoring will provide valuable insights into the health status of

youth at individual and group levels. Although there is no

established cut-off for defining healthy quality muscle mass in the

pediatric population, the lowest CSA and MT percentiles computed
Frontiers in Pediatrics 06
in our study (3rd and 10th percentile), or higher EI percentiles

computed in our study (90th and 97th percentile), could be used as

an indication of the worsening lean mass phenotype. Investigating

the correlation between these muscle US parameters and early

adiposity rebound could provide an effective marker of obesity in

children and help tailor nutritional and exercise interventions to

improve the treatment of metabolic diseases associated with
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FIGURE 3

Reference curves age-specific and sex-specific of SAT in boys and girls.
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sarcopenia in early life (41). Future studies combining these

percentiles with functional data (e.g., muscle strength) are required

for defining dynapenia and/or low-quality muscle mass among

children and adolescents (13).

In situations where resources are limited and longitudinal

follow-up is difficult, ultrasonographic measurements of the rectus

femoris muscle can serve as a preliminary alternative. Additionally,

the LMS analysis is a popular method for obtaining smoothened

centile curves for cross-sectional data (42). Thus, our charts can

provide valuable information to researchers studying adolescents

in this geographic region and can assist healthcare providers in

identifying abnormalities in body composition development during

youth. In summary, we have presented age- and sex-specific

reference data for normal rectus femoris muscle US parameters

that are unique to children. These data allow for the identification

of the risk of low-quality mass and the provision of targeted

treatments, such as nutritional and exercise interventions, as well

as the initiation of sports programs in schools through public
Frontiers in Pediatrics 07
policies. These measures can prevent associated outcomes, such as

pediatric dynapenia, and promote healthy development in children.
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