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Interoperable and explainable
machine learning models to
predict morbidity and mortality in
acute neurological injury in the
pediatric intensive care unit:
secondary analysis of the TOPICC
study
Neil K. Munjal1,2, Robert S. B. Clark2, Dennis W. Simon2, Patrick
M. Kochanek3 and Christopher M. Horvat2*
1Department of Pediatrics, University of Wisconsin—Madison, Madison, WI, United States, 2Department of
Critical Care Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States, 3Safar
Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States

Background: Acute neurological injury is a leading cause of permanent disability
and death in the pediatric intensive care unit (PICU). No predictive model has
been validated for critically ill children with acute neurological injury.
Objectives: We hypothesized that PICU patients with concern for acute
neurological injury are at higher risk for morbidity and mortality, and advanced
analytics would derive robust, explainable subgroup models.
Methods: We performed a secondary subgroup analysis of the Trichotomous
Outcomes in Pediatric Critical Care (TOPICC) study (2011–2013), predicting
mortality and morbidity from admission physiology (lab values and vital signs in
6 h surrounding admission). We analyzed patients with suspected acute
neurological injury using standard machine learning algorithms. Feature
importance was analyzed using SHapley Additive exPlanations (SHAP). We
created a Fast Healthcare Interoperability Resources (FHIR) application to
demonstrate potential for interoperability using pragmatic data.
Results: 1,860 patients had suspected acute neurological injury at PICU admission,
with higher morbidity (8.2 vs. 3.4%) and mortality (6.2 vs. 1.9%) than those without
similar concern. The ensemble regressor (containing Random Forest, Gradient
Boosting, and Support Vector Machine learners) produced the best model, with
Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.91 [95%
CI (0.88, 0.94)] and Average Precision (AP) of 0.59 [0.51, 0.69] for mortality, and
decreased performance predicting simultaneous mortality and morbidity (0.83
[0.80, 0.86] and 0.59 [0.51, 0.64]); at a set specificity of 0.995, positive
predictive value (PPV) was 0.79 for mortality, and 0.88 for mortality and
morbidity. By comparison, for mortality, the TOPICC logistic regression had
AUROC of 0.90 [0.84, 0.93], but substantially inferior AP of 0.49 [0.35, 0.56] and
PPV of 0.60 at specificity 0.995. Feature importance analysis showed that
pupillary non-reactivity, Glasgow Coma Scale, and temperature were the most
contributory vital signs, and acidosis and coagulopathy the most important
laboratory values. The FHIR application provided a simulated demonstration of
real-time health record query and model deployment.
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Conclusions: PICU patients with suspected acute neurological injury have higher mortality
and morbidity. Our machine learning approach independently identified previously-known
causes of secondary brain injury. Advanced modeling achieves improved positive predictive
value in this important population compared to published models, providing a stepping
stone in the path to deploying explainable models as interoperable bedside decision-
support tools.

KEYWORDS
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predictive modeling
1. Introduction

Acute neurological injury is the most common cause of death

in critically ill children admitted to the pediatric intensive care

unit (PICU) (1, 2). Improvements in the quality of care delivered

in PICUs has led to low mortality and shifted attention to

morbidity outcomes including survival without new neurological

morbidity and long-term neurodevelopment (3, 4). Several

studies, primarily in adult and neonatal patients, have

demonstrated the burden of neurological morbidity following

ICU hospitalization (5–8). Some predictive models have

advanced the prediction of mortality in all PICU patients (9);

others have focused on a single disease, such as predicting

outcomes after severe traumatic brain injury (10). However, there

remains a need to predict morbidity and mortality among

patients admitted to the PICU with concern for acute

neurological injury by all causes.

Machine Learning (ML) approaches have been widely studied

in medicine over the past decade (11). They are particularly

useful in data-rich environments, which has led to a large

amount of investigation in ICU care (12). For patients with

acute neurological injury, this approach can leverage newer

data sources, such as the use of serum biomarkers of brain

injury (13–15). Logistic regression (LR) is the most-used

statistical method to model dichotomous outcomes and is a

useful technique albeit with some limitations (16). One

significant limitation is the difficulty in modeling complex

non-linear and non-independent relationships between input

variables. Another limitation is the memoryless nature of these

models. Approaches to solve the former include Bayesian

networks, boosting, support vector machines (SVM), random

forest (RF), and neural networks (NN) (16). The latter has

been primarily approached with recurrent neural networks and

related models. These paths have met with significant success,

though their complexity brings about new challenges and

sometimes subtle pitfalls that must be carefully addressed in

model design (17, 18).

Several validated models have been published to assign

mortality risk to patients in the general PICU (19, 20). There are

multiple uses for these models: representing severity of illness,

monitoring and standardizing quality of care across sites, and

acting as surrogates for morbidity and mortality in clinical trials.

The incorporation of mortality risk prediction models into a

Clinical Decision Support (CDS) tool is often discussed but has
02
not yet been widely adopted. Major reasons for this include the

heterogeneity of diseases, the lack of positive predictive value

(PPV) in these models due to low mortality and morbidity, the

inability to track physiologic evolution over time, and the

difficulty to incorporate the effects of intervention. This is

particularly true in the setting of acute neurological injury in the

PICU, as the standard measures of organ dysfunction (e.g.,

neurological exam, imaging, electroencephalography) are difficult

to distill into straightforward scales (21). The ideal model would

allow for real-time automatic monitoring of multiple modalities

to better adjust for population illness severity and the subtleties

of evolving diseases. However, even a model producing mortality

and morbidity estimates on admission has potential value. As a

rule-in test, such a tool could bring attention and additional ICU

monitoring resources to patients who may be at higher risk than

initially apparent, particularly those at intermediate risk.

Importantly, an explainable model would help clue the clinician

to the associated reasons for concern. While a rule-out test (high

sensitivity) may be helpful for reassurance, it is less likely to

provide actionable decision support.

We aim to use ML to predict outcomes in PICU patients with

concern for acute neurological injury on admission from high-

fidelity admission physiologic data collected as part of a

multicenter study. We propose that the complex interplay

between physiologic variables in PICU patients is better

modeled by non-linear ML techniques than previously

published traditional LR models, and that these techniques may

provide better PPV in predicting patient outcomes. To

accomplish this, we applied widely accepted and well-studied

ML algorithms to predict outcomes in a cohort of patients with

suspected acute neurological injury. We then created a Health

Level Seven International (HL7) Fast Healthcare Interoperability

Resources (FHIR)-based application to demonstrate an

automated vendor-agnostic data pipeline and bedside

explainability. We finally explored the use of Shapley Additive

ExPlanations (SHAP, RRID:SCR021362) to provide bedside-

relevant individual and population-level explanations of model

predictions.
2. Materials and methods

We performed a secondary analysis of a public-use dataset

derived from the Trichotomous Outcomes in Pediatric Critical
frontiersin.org
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Care (TOPICC) study (17, 22). TOPICC was a prospective

observational cohort study of 10,078 patients under the age of

18 admitted to medical and cardiac ICUs in seven

Collaborative Pediatric Critical Care Research Network

(CPCCRN) hospitals from 2011 to 2013. The goal of TOPICC

was to develop and validate a new predictive instrument for

in-hospital mortality and new morbidity based on admission

physiologic data (from 2 h before PICU admission, to 4 h

after) using the Pediatric Risk of Mortality (PRISM) score.

New morbidity was defined as an increase in Functional Status

Score (FSS) from admission to hospital discharge by at least 3

points. FSS is a validated age-independent assessment of

pediatric function across 6 domains. Each domain is scored

from 1 (normal) to 5 (very severe dysfunction), and the total

score ranges from from 6 to 30 (22). TOPICC generated a

trichotomous model, attempting simultaneous prediction of

death, survival with new morbidity, and survival without new

morbidity, as well as multiple dichotomous models that

combined two of the above outcomes (e.g., survival vs. death

or survival without new morbidity vs. death). All categories of

included vital signs and laboratory values are listed in

Supplementary Table S2.

Patients were selected for a suspicion for acute neurological

injury on admission, even if the primary diagnosis was non-

neurological; patients who only developed neurological injury

during admission could not be ascertained because of the

study design. Multiple approaches were attempted to define

the subset of patients with acute neurological injury. The

PRISM III neurological score, comprised of pupillary reaction

and Glasgow Coma Scale (GCS), insufficiently captured the

entire population at risk for neurological injury. The

admission and discharge diagnosis codes did not capture

patients whose primary diagnosis was non-neurological. The

TOPICC dataset includes a question asked of the clinician on

admission: “Is there reasonable suspicion of possible

neurological injury for this patient?” Although subjective, this

flag was thought to be most clinically relevant to capture the

target population and was used to identify the target subset of

patients.

Model selection sought to encompass the breadth of clinically-

relevant ML models. The models included were LR, RF, SVM,

extreme Gradient Boosting (GB), NN in the form of a Multi-

Layer Perceptron (MLP), and an ensemble meta-regressor (23).

The LR model mirrored TOPICC with the physiologic data

combined into PRISM III scores. Input variables into the LR

model included age; admission source; presence of cardiac arrest,

cancer, or trauma; primary system of dysfunction; baseline FSS

as good/not good; and the PRISM III neurological score and

non-neurological score (17). The other ML models were given

the raw physiologic variables. Categorical data were included by

adding a separate binary yes-no variable for each categorical

option, a process called one-hot encoding. The ensemble

regressor used the RF, GB, and SVM models as voters in a meta-

model. With each of the ML models, bootstrapped train and

validation sets were used to prevent overfitting and to obtain

statistical distributions for model comparison. Bootstrapping was
Frontiers in Pediatrics 03
performed with 50 samples and a sample size fraction of 1.0,

drawing elements with replacement and using the out-of-bag

elements as the validation cohort. We tested multiple methods

for missing data imputation, including median, mode, and

k-nearest neighbors imputation; all were single imputation

methods. Short model descriptions and final model

hyperparameters are included in Supplementary Table S8.

Because some algorithms perform poorly on imbalanced data

sets, we also attempted oversampling of the target class as well as

nearest-neighbor generation of synthetic data, though these

techniques did not improve performance in any technique and

were not included in the final models, which used median

imputation and no class balancing (Supplementary Table S2).

Weak calibration testing was performed using least-squares fit of

the binned calibration curve and moderate calibration testing was

done using calibration plots (24). Strong calibration testing was

not conducted due to the low number of patients with the

outcome of interest.

Feature importance analysis and model explainability were

accomplished with two approaches: standard Gini impurity-based

feature importance analysis on the RF and GB model structure,

and the use of the SHAP model (25). Both population-level and

individual-level explanations were performed. Model parsimony

was tested by separate analyses with the top 20, 10, and 3

features as determined by SHAP explanations.

Our statistical analysis of model performance included receiver

operating characteristic (ROC) curves and area under the ROC

curve (AUROC). Given the imbalanced nature of outcomes in

the TOPICC data set, we also included a measure of positive

predictive value, so precision-recall analysis was performed using

Average Precision (AP), similar to the Area under the Precision-

Recall Curve (AUPRC). Precision-recall curves represent the

balance between PPV (precision), and sensitivity (recall).

Bootstrapped model performance distributions were compared

using the Student t-test. Determining the optimal cut points for

bedside classifier performance requires thoughtful consideration

on the parameters to be optimized (i.e., false negative vs. false

positive rates), particularly in an imbalanced dataset. To fairly

compare models, we reported traditional classifier metrics such

as positive and negative predictive value using a cutoff set to

guarantee 50% sensitivity, 90% sensitivity, 98% specificity, and

99.5% specificity.

To create an interoperability proof-of-concept, we used an off-

the-shelf HL7 Application Programming Interface (HAPI) FHIR

server and generated synthetic patient data simulating the first

24 h of admission. All input variables were mapped to Logical

Observation Identifiers Names and Codes (LOINC) identifiers.

The HAPI FHIR client retrieved patient data to reconstruct the

TOPICC variables of highest and/or lowest values in the first 4 h

of admission and then fed the preprocessed data into the pre-

trained RF model. The web-interface output was the RF and

SHAP explainability results.

The full ML pipeline is shown in Figure 1. Software packages

included python 3.9.4 (Python Software Foundation, Beaverton,

OR, USA; https://www.python.org) with ML packages of scikit-

learn 0.24.1, pandas 1.2.3, NumPy 1.20.1, shap 0.39.0, and
frontiersin.org
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FIGURE 1

Interoperability and explainability machine learning pipeline.
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fhirpy 1.2.1, as well as R 4.0.5 (R Foundation for Statistical

Computing, Vienna, Austria; https://www.r-project.org) for

model comparison. A HAPI FHIR (5.4.0) backend server was

used for the model deployment targeting FHIR R4 4.0.1.

All code is available at https://github.com/nkmunjal/

PICUNeuroPrediction. TOPICC data, the data used for this

study, cannot be shared by the authors but is available by

application via the National Institute of Child Health and

Development (NICHD) Data and Specimen Hub (DASH,

https://dash.nichd.nih.gov/). The sample FHIR client application

is available at https://fhirdemo.nkmj.org.

This study was approved by the Institutional Review Board

of the University of Pittsburgh on 6/5/2019, approval number

STUDY19050230 for the study titled “Secondary Analysis of

TOPICC Data using Machine Learning.” As it was a

secondary analysis and the primary study was completed,

informed consent was waived. Procedures were followed in

accordance with the ethical standards of the University of

Pittsburgh institutional committee on human experimentation

and the Helsinki Declaration of 1975. The Transparent

Reporting of a multivariable prediction model for Individual
TABLE 1 Group characteristics of neurological and Non-neurological
subset.

Characteristics Whole
TOPICC
cohort

No suspected
neurological

injury

Suspected
acute

neurological
injury

Number 10,078 8,218 1,860

Age (years) 3.7 (0.8–10.8) 3.4 (0.7–10.3) 5.4 (1.3–12.4)

Under 1 year 2,790 (28%) 2,409 (29%) 381 (21%)

Female 4,548 (45%) 3,761 (46%) 787 (42%)

PICU Length of
Stay (days)

2 (1–5) 2 (1–5) 2 (1–5)

Hospital Length of
Stay (days)

4 (2–10) 4 (2–10) 4 (2–10)

No new morbidity 9,372 (93.0%) 7,779 (94.7%) 1,593 (85.4%)

New morbidity 431 (4.3%) 279 (3.4%) 152 (8.2%)

Mortality 275 (2.7%) 160 (1.9%) 115 (6.2%)

TOPICC, trichotomous outcomes in pediatric critical care study.
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Prognosis or Diagnosis (TRIPOD) checklist is provided as

Appendix 1 (26).
3. Results

During the original TOPICC study period, 10,078 patients were

enrolled. Of those, 1,860 were flagged for suspected acute

neurological injury at PICU admission. Their characteristics are

summarized in Table 1. Notably, the cohort with suspected acute

neurological injury was older but otherwise had similar male

predominance, ICU and hospital length of stay compared to the

whole cohort. Patients with suspected acute neurological injury

had higher mortality (6.2% vs. 1.9%) and new morbidity (8.2%

vs. 3.4%).

The model validation-set results are summarized in Table 2.

Standard ROC and precision-recall curves are shown in

Figures 2, 3. All models performed better in predicting mortality

alone, vs. mortality or new morbidity. The RF and SVM models

performed best among base models, with similar AUROC (RF:

0.89 [0.85–0.93 95% bootstrapped confidence interval], SVM 0.90

[0.87–0.93 95% CI]) to the original TOPICC LR model [0.90

(0.84–0.93 95% CI)] and improved AP for mortality (RF: 0.54

[0.41–0.64], SVM: 0.56 [0.44–0.66], LR: 0.49 [0.35–0.56]). For

morbidity and mortality, RF, GB, SVM, and LR base models

performed similarly. The simple NN model performed poorly.

The ensemble learning model improved the PPV of the best

performing models [AP: 0.59 (0.51–0.69)], but only after

discarding the worst performing model (NN), representing a 10%

absolute and 20.4% relative improvement in AP over the original

TOPICC LR model performance on this subpopulation.

For traditional classifier statistics, a cutoff defined to obtain a

specificity of 0.995 is shown in Table 2. For mortality, the

ensemble had improved sensitivity (ensemble: 0.35 [0.25–0.52],

LR: 0.15 [0.03–0.34]), PPV (ensemble: 0.79 [0.69–0.85], LR: 0.60

[0.20–0.78]), and equal NPV. For morbidity and mortality, RF,

GB, SVM, ensemble, and LR all performed similarly (ensemble:

sensitivity 0.22 [0.14–0.31], PPV 0.88 [0.82–0.91], NPV [0.89
frontiersin.org
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TABLE 2 Model validation set results.

Predictive model AUROC (95% bootstrapped
confidence interval)

Average precision
(95% bootstrapped CI)

Classifier metrics with fixed specificity 0.995 (all
95% bootstrapped CI)

Sensitivity Positive
predictive value

Negative
predictive value

Mortality versus Survival
Random Forest 0.89 (0.85, 0.93) 0.54 (0.41, 0.64) 0.29 (0.13, 0.41) 0.73 (0.56, 0.83) 0.96 (0.95, 0.96)

Gradient Boosting 0.89 (0.84, 0.93) 0.53 (0.41, 0.63) 0.28 (0.13, 0.46) 0.75 (0.56, 0.82) 0.96 (0.94, 0.97)

Support Vector Machine 0.90 (0.87, 0.93) 0.55 (0.44, 0.66) 0.32 (0.14, 0.45) 0.76 (0.64, 0.83) 0.96 (0.94, 0.97)

Neural Network
(Multilayer Perceptron)

0.82 (0.77, 0.88) 0.46 (0.36, 0.55) 0.24 (0.13, 0.40) 0.71 (0.56, 0.81) 0.95 (0.94, 0.97)

Ensemble 0.91 (0.88, 0.94) 0.59 (0.49, 0.68)* 0.35 (0.25, 0.52) 0.79 (0.69, 0.85) 0.96 (0.95, 0.97)

Logistic Regression 0.89 (0.84, 0.93) 0.47 (0.35, 0.56) 0.15 (0.03, 0.34) 0.60 (0.20, 0.78) 0.95 (0.93, 0.96)

New Morbidity and Mortality versus Survival without New Morbidity
Random Forest 0.81 (0.77, 0.84) 0.55 (0.47, 0.61) 0.21 (0.14, 0.29) 0.86 (0.82, 0.91) 0.89 (0.86, 0.90)

Gradient Boosting 0.80 (0.75, 0.83) 0.52 (0.44, 0.60) 0.18 (0.10, 0.26) 0.86 (0.79, 0.89) 0.88 (0.86, 0.89)

Support Vector Machine 0.82 (0.78, 0.85) 0.55 (0.46, 0.61) 0.19 (0.11, 0.28) 0.86 (0.77, 0.90) 0.88 (0.86, 0.90)

Neural Network
(Multilayer Perceptron)

0.78 (0.75, 0.81)* 0.50 (0.42, 0.57)* 0.15 (0.06, 0.25) 0.82 (0.67, 0.88) 0.87 (0.86, 0.89)

Ensemble 0.83 (0.79, 0.86) 0.58 (0.52, 0.63)* 0.22 (0.14, 0.31) 0.88 (0.82, 0.91) 0.89 (0.86, 0.90)

Logistic Regression 0.81 (0.76, 0.84) 0.53 (0.43, 0.60) 0.18 (0.11, 0.30) 0.85 (0.77, 0.90) 0.88 (0.86, 0.90)

Logistic Regression represents the original study model applied to the neurological concern subpopulation. Sample classifier metrics were derived using a cutpoint defined

by setting specificity equal to 0.995, to enable predictive value comparison. AUROC, Area under the Receiver Operating Characteristic curve

*p < 0.05 two-tailed compared to Logistic Regression.

Munjal et al. 10.3389/fped.2023.1177470
(0.86–0.90)]. Due to class imbalance and fixed specificity, all

models had virtually equal negative predictive value (mortality:

0.95, morbidity: 0.88). Additional cutoff comparisons for a set

specificity of 0.98, and sensitivity of 0.90 and 0.50, are included

in Supplementary Table S1. Notably, there was some separation

in PPV between the ensemble and LR at the 0.50 sensitivity

cutoff for mortality (ensemble: 0.63 [0.38–0.85], LR 0.55 [0.36–

0.72]), but not at the 0.90 cutoff.

Changing the method of oversampling and imputation did not

improve the model performance (Supplementary Table S2). The

fraction of data points that were missing and required

imputation for each feature is listed in Supplementary Table S3.
FIGURE 2

Bootstrapped receiver operating characteristic plots. Shaded area represents b
50 samples, sample size fraction of 1.0, with out-of-bag elements as the valid

Frontiers in Pediatrics 05
Notably, PaO2 was missing from 78% of the subpopulation,

Prothrombin Time/Partial Thromboplastin Time (PT/PTT,

respectively) from 63%, ionized calcium from 56%, and blood

gas values (pH, PCO2) from 50%.

SHAP analysis and mean decrease in impurity revealed the

most influential features in the RF and GB models. The results

for RF Gini feature importance are in Supplementary Table S4

and for the GB feature importance analysis in Supplementary

Table S5. The most important features in most bootstrapped

models included derangements in temperature, blood pressure,

pupillary status, PT/PTT, blood pH, and PCO2. Factors that

repeatedly were found to be not helpful to the model included
ootstrapped 85% Confidence Interval. Bootstrapping was performed with
ation cohort.
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FIGURE 3

Bootstrapped precision-recall plots. Shaded area represents bootstrapped 85% Confidence Interval. Bootstrapping was performed with 50 samples,
sample size fraction of 1.0, with out-of-bag elements as the validation cohort.
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sex, hospital site, and intubation status. Figure 4 shows the SHAP

summary plot for the RF model, listing the population-wide most

important variables explaining the model result in descending

order. Categorical variables, such as worst total GCS score and
FIGURE 4

SHAP population-level validation-set explanation plot. Variables are included
individual patient values above the mean (continuous variables) or positive (c
Placement on the x-axis is the contribution of that data point towards the
prediction of mortality. This plot is also frequently called a beeswarm plot.
International Normalized Ratio; PT, Prothrombin Time; PTT, Partial Thrombo
Urea Nitrogen; Hgb, Hemoglobin; iCa, Ionized Calcium.
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non-reactive pupils are given high importance in the SHAP

explanation. Supplementary Figures S1A,B show individual

explanatory predictions for patients in whom the model correctly

predicted survival without new morbidity (1a) and mortality
in descending order by average importance. Red data points represent
ategorical), blue below the mean (continuous) or negative (categorical).
final regressor prediction, with more positive values representing higher
SHAP, SHapley Additive exPlanations; GCS, Glasgow Coma Scale; INR,
plastin Time; SBP, Systolic Blood Pressure; HR, Heart Rate; BUN, Blood
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FIGURE 5

Calibration plots. Shaded area represents bootstrapped 85% Confidence Interval. Ideal calibration occurs when estimated outcome probability is equal to
actual outcome fraction for each bin, and is represented by the diagonal line y = x.

Munjal et al. 10.3389/fped.2023.1177470
(1b). Important features for each patient are listed in descending

order.

Weak calibration statistics are provided in Supplementary

Table S6, demonstrating that globally RF and GB had the best

least-squared calibration fit, while the SVM, ensemble, and LR

models showed global miscalibration in opposite directions.

Moderate calibration analysis via calibration curves is shown in

Figure 5. For the morbidity and mortality model, all models

except NN showed reasonable calibration. For the mortality

model, the RF, GB, and Ensemble models show reasonable

calibration under 60% and a trend towards underestimating

mortality at estimates greater than 60%. The LR model

overestimated mortality at estimates greater than 90%, with

actual mortality rates around 60%.

The impact of model parsimony on performance is

demonstrated in Supplementary Table S7. By taking the top 20

features as determined by the RF model SHAP summary plot we

see no change in the predictive accuracy of the RF or GB

models. With 10 features, there is a mild average performance

loss, and with 3 features, it is marked.

A sample demonstration of a real-time web interface is shown

in Supplementary Figure S2. The back-end HAPI FHIR server was

pre-loaded with synthetic Electronic Health Record (EHR) patient

data simulating PICU admission. The front-end Python FHIR

client polls the server in real-time and compiles the admission

data to generate a patient row for the pre-trained RF models for

mortality alone and mortality and new morbidity. The prediction

scores and individual SHAP waterfall plots are then generated

and displayed.
4. Discussion

We developed and tested multiple ML models to predict both

mortality and new morbidity in pediatric patients with suspicion

for acute neurological injury on admission to the PICU. Without

clinician input on the relative importance of variables, multiple

models matched AUROC performance to the original TOPICC-
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generation and refinement, and modestly improved PPV. For this

dataset, the RF model and an ensemble meta-model performed

best. Though the ROC curves in Figure 2 are similar in

appearance (except for the MLP), with an identical mortality/

morbidity prevalence between models, the difference in AP/PPV

can only come from improvement in sensitivity and/or

specificity. With a highly imbalanced dataset, small improvement

in sensitivity or specificity can produce greater improvement in

PPV, resulting in the modest separation of the precision-recall

curves of Figure 3. When evaluating an algorithm for individual-

level prediction, rather than population-level prediction, accuracy

metrics such as PPV and NPV matter more than sensitivity and

specificity, as the clinician does not ask how likely all true

positives are test positive, but rather how likely it is that the

patient who has a positive test is a true positive. Thus,

algorithms should aim to improve PPV or AP, even if the

change in AUROC is minimal. In setting fixed sensitivity and

specificity cut-offs to provide accurate model comparison, we

observed separation between the ML algorithms and LR for the

high specificity tests and moderate sensitivity tests (both higher

PPV situations) than for the high sensitivity (rule-out) situation.

This suggests that LR performs well in many scenarios, but ML

may provide advantage in situations where high PPV is needed.

Multiple additional findings merit discussion. First, we used a

public use dataset to derive a predictive model for outcome

prediction in a neurologically-injured pediatric cohort, a

population that does not yet have a population-level predictive

model; indeed, high-quality data with this many patients in the

PICU is challenging to acquire. Developing such a model is

important given the recognized difference in injury burden,

whether due to a specific primary Central Nervous System (CNS)

problem or secondary to another illness. Second, we attempted to

derive this model using advanced algorithms. Given the

prevalence of always-accessible computers in modern ICUs, the

use of simple decision trees or hand-calculable algorithms must

be justified by performance, rather than ease of use. More

optimal is to have the most accurate algorithm directly read data
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from the medical record and easily deliver the result. Third,

prediction of morbidity and mortality is more difficult than

mortality alone. Given the increasing focus of PICU outcomes on

morbidity, this becomes a more critical question. Fourth, this ML

study was undertaken with a high-quality prospectively derived

dataset, with well-defined input (PRISM physiologic variables)

and output (FSS variables). There are multiple advantages to a

ML approach with such datasets. First, to a limited degree these

algorithms can provide good results requiring minimal data

tuning and interpretation. The RF, GB, NN, and ensemble

models all used continuous physiologic data, as opposed to the

existing TOPICC LR model which required assembly of the data

into the previously derived and validated PRISM score. This

approach removes some biases; for example, a normal sodium

level may be interpreted differently in patients with acute brain

injury than those with other diseases, but PRISM (and all other

traditional models) has pre-defined cutoffs. LR models can be

built to evaluate continuous data as well, and have globally

demonstrated non-inferiority to ML models due to increasingly

sophisticated augmentative techniques (27). However, as

demonstrated in Figure 4, non-linear interactions of variables

would not be as easily modelled using LR: for many patients a

high hemoglobin was predicted to be protective, whereas for

others it was predictive of harm. Without explicitly including the

correct interaction between hemoglobin and other variables, LR

may not provide a similar result. An important component for

any predictive model is the population from which it is derived

and for which it is valid. Due to the limitation of the underlying

dataset, our use of the flag of suspected neurological injury can

both be perceived as a limitation due to its subjective nature, but

also as a strength. Given the broad inclusion criteria, our model

could be considered valid for any patient that the practicing

bedside provider has concern for neurological injury, regardless

of their admission diagnosis. Future models may have a more

objectively defined population and improved predictive results,

but the current model may have sufficient merit to be deployed

with this advantage, even implemented as a simple prompt or

rule-based trigger embedded in the EHR.

The clinical relevance of our results is notable. Without

significant a priori clinically-based feature selection, or pre-

specified binning of data based on normative values, a sensible

set of predictive features was found. In order to be useful as a

bedside CDS tool, it is helpful for a model to not only be

accurate, but to provide coherent explanations for its prediction

to assure the user of its interpretation. Poor GCS score and non-

reactive pupils were logically found to be uniformly powerful

predictors. Well-recognized secondary CNS insults such as

derangements in temperature, blood pressure, coagulation profile,

and PCO2 were all demonstrated by both the RF and GB

algorithms to be important predictive features. The relationships

between variables were not always monotonic in direction

or linear in magnitude, producing an advantage afforded to

these ML models over LR, which would require explicit inclusion

of those interaction terms. Given the diversity of patient

diagnoses it is difficult to draw conclusions about direct

mechanistic relationships, but our findings may shed light
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on strategies to identify risk factors secondary brain injury.

Though strictly only a measure of association, these tools raise

hypotheses about the impact of modifiable risk factors on

outcome that could be studied in the future, and potentially

even demonstrate the patient population for which it would be

most impactful.

Non-linear dynamics are nature’s rule, not the exception (28).

Complex relationships between variables are more challenging to

capture in a linear model such as LR compared to ML models

like RF, which outperform LR in scenarios involving expected

non-linear interactions (29). For example, the commonly

discussed interaction between hypoxemia and hypotension in

cerebral oxygen delivery could only be additive in standard LR

analysis; these alternative approaches reveal a more nuanced

relationship, such as a multiplicative or stepwise effect, and

would ideally generate it without supervision.

Model explainability becomes a crucial link to bring predictive

models to the bedside (30, 31). As more sophisticated ML models

achieve success, we see a natural trade-off in the opacity of the

model explanation. Approaches such as the use of mean decrease

in Gini impurity for RF models are helpful at the population

level, but provide little assistance at the individual level (32).

Additionally, Gini impurity also significantly downplays the role

that categorical variables (e.g., GCS and pupillary response) have

on model output. Recent approaches using simulated local

perturbations have improved both aspects of model production

(33, 34). In particular, SHAP has become popular due to its ease

of use and game-theoretical analytic advantages on both the

individual and the population level (35). SHAP models, such as

in Figure 4, nicely demonstrate the complexity of these

relationships that the ML models have attempted to capture: for

example, in some patients a high PaO2 was predictive of

mortality, while in others a low PaO2 was predictive of mortality.

High-fidelity explanatory models provide insight into complex

physiologic interactions and are a sanity check ensuring the

algorithm is learning sensible features in the clinician’s mind.

Having both population-level and individual-level feature

importance is useful, particularly when contemplating future

implementation at the bedside. The individual-level predictive

graphs seen in Supplementary Figures S1, 2 quickly allow a

bedside provider to recognize the prediction model

underpinnings, in order of importance.

Even explainable models will only see widespread clinical

usage if they are tightly and automatically integrated to a busy

ICU workflow (36). Developing interoperable applications was a

driving force for HL7 to adopt the FHIR framework (37). FHIR

represents a standardized hierarchical data structure whose

elements are exposed via a RESTful Application Programming

Interface (API). Targeting this API allows for faster vendor-

agnostic automated model deployment (38). Interoperability via

the FHIR API has become essentially mandatory for all EHR

providers via ruling from the Centers for Medicare and Medicaid

Services in the United States and is a core feature of National

Health Service Digital in the United Kingdom (39). By designing

the application with explainability and interoperability at its core,

we demonstrate feasibility of clinically-relevant modeling with
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near-universal automated data collection. The focus of the present

models is on admission physiologic data but the FHIR scaffold

provides a bridge to automatically collecting data for a future

real-time predictive model.

Our study reveals the danger of indiscriminately applying

algorithms to a dataset. Each algorithm has a nuanced set of

advantages and disadvantages. For example, the RF model easily

outperforms the NN in this dataset. There are likely two

principal reasons why the NN model underperformed here. First,

NNs train best with large volumes of data (often >100 k data

points, vs. the 1,860 patients in our cohort) (40). Second, NNs

also are susceptible to underperforming with imbalanced

datasets, as seen with the 6% mortality rate in our cohort. We

attempted oversampling techniques without improvement. For a

more straightforward dataset, algorithms that require less training

data are more appropriate (41).

Our study has limitations. First, despite the use of bootstrapped

train and validation datasets, prospective validation of such models

is necessary before clinical use. Second, though the TOPICC data

have been well-curated, inconsistencies could still arise when data

of this scale are manually entered. Third, as discussed above,

such models gain discriminatory power as their numbers

increase, so an even larger sample could help with further

refinement. Fourth, our use of the subjective “risk for acute

neurological injury” flag was limited by the input features in the

dataset and certainly makes defining the represented population

challenging. Fifth, this model is limited to admission data given

the structure of the data source, and therefore causes of

permanent injury or death observed during the ICU stay would

not be captured by this algorithm. Though the structure of our

specific algorithms was optimized for variables from a single

time point, similar approaches can be undertaken for continuous

monitoring throughout a PICU stay, likely providing greater

discriminatory power (9). Additionally, the selected population is

likewise limited to patients with suspicion of acute neurological

injury on admission. Developing a real-time algorithm validated

on patients who develop this concern during their ICU course

would also add significant value. Sixth, PPV of 0.5–0.6 may still

remain insufficiently high for many clinicians to trust such an

algorithm; as a rule-in test, however, a number needed to screen

of 2 could also be seen as quite useful if the chosen intervention

(e.g., increased ICU monitoring) is relatively low-risk. Finally, it

is notable that though the TOPICC dataset provides significant

advantages as a prospectively collected trial, the patients were

enrolled from 2011 to 2013 and patient characteristics have likely

changed in the decade since the last enrolment. In addition,

changes in ICU practice and technology have potentially changed

outcomes significantly, and possibly heterogeneously with respect

to the patient population. These can all potentially result in

poorer algorithm performance and miscalibration. Future large-

scale data collection would be important to update the algorithm

to changes in the patient population and practice.

There are additional limitations from a technical standpoint.

First, there were a substantial number of variables with missing

data in the original dataset, including 78% who did not have a

PaO2, and 63% who did not have markers of coagulation. Our
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values for missing values. This assumption can be problematic,

though decision-tree based algorithms still found value in

deviations from normal values. Future use of multiple imputation

and analytic methods that more accurately understand

missingness may be helpful. Second, our observed calibration for

some of the models on the mortality task was sub-optimal, both

globally (for SVM and ensemble models) and particularly for

patients at high estimated risk of mortality. As an example, for

patients in the validation set using the ensemble model, if the

model gave a predicted output of 0.6, actual mortality was around

0.8. Mis-calibrated models provide a significant challenge if

intended for bedside use and can breed mistrust; mis-calibrated

accurate models may be trusted less than models with worse

performance as measured by AUROC and AUPRC but better

calibration (24). Our models for morbidity and mortality were

better calibrated, but the ensemble and SVM still demonstrated

some global miscalibration. Though we chose not to use a

calibration updating corrective algorithm due to concerns about

target outcome population size, such an approach could be helpful

in future validating studies with larger validation sets.

Finally, it is important to recognize the limitations of population-

level predictive models on individual risk prediction. To be useful at

the individual level, models need to be accurate, precise, and

generalizable to the population of interest. Unfortunately, features

that determine population-level risks can be very different than

those for the individual, and a model that performs well at the

population level may translate poorly to the latter (42). While the

TOPICC dataset was generated with the former in mind, we

demonstrate improved predictive power in the latter, though

potentially not sufficiently precise for current decision support.

Further prospective study would be needed to enhance and

eventually validate such an individual predictive model.

Our goal was to build an explainable predictive model using a

clean and previously-appraised physiologic dataset. Future

directions include the application of this approach to real EHR

data, the prospective validation of such a model, and the move

into real-time monitoring with high-fidelity multi-modal data

sources. Each of these steps brings multiple new challenges to

carefully address.
5. Conclusion

We demonstrate multiple ML approaches that improved

positive predictive value over prior PRISM-based LR in

predicting both mortality and new morbidity from admission

data in patients with risk for acute neurological injury on

admission to the PICU. We also identified multiple well-

recognized secondary CNS insults as predictive of poor

outcomes, supporting biological plausibility. Finally, we

demonstrate a proof-of-concept of the need to design models

with interoperability and explainability at the core. Future work

will focus on the translation of similar algorithms to real-time

EHR data and for real-time prediction at the individual level.
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