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Necrotizing Enterocolitis (NEC) is one of the leading causes of gastrointestinal
emergency in preterm infants. Although NEC was formally described in the
1960’s, there is still difficulty in diagnosis and ultimately treatment for NEC due
in part to the multifactorial nature of the disease. Artificial intelligence (AI) and
machine learning (ML) techniques have been applied by healthcare researchers
over the past 30 years to better understand various diseases. Specifically, NEC
researchers have used AI and ML to predict NEC diagnosis, NEC prognosis,
discover biomarkers, and evaluate treatment strategies. In this review, we discuss
AI and ML techniques, the current literature that has applied AI and ML to NEC,
and some of the limitations in the field.
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1. Introduction

Necrotizing enterocolitis (NEC) is a devastating, inflammatory disorder, which impacts

mainly preterm infants and remains one of the most common gastrointestinal emergencies

in the preterm infant population (1–6). In the United States alone, it is estimated that up to

9% of infants weighing less than 1,500 g at birth will develop NEC (7). The mortality rate

from NEC is significant and has been reported up to 30%–50% depending on disease

severity (1–6). Treatment strategies have remained limited, non-targeted, and have not

changed significantly in decades (8). Although NEC was formally described in 1965 by

Mizrahi et al., the specific causes have yet to be fully elucidated (1–6). To help clinicians

with NEC diagnosis, Bell et al. published the first clinical staging system for NEC in 1978

that was designed to help clinicians know when to surgically intervene (9). Eight years

later, Walsh and Kliegman published a modified version of Bell’s staging system (9, 10).

The Bell and Modified Bell staging systems have consistently been the most widely used

clinical definitions and are considered the “gold standard” in the field. However, most

researchers and clinicians now focus on Bell ≥2 and believe that Bell stage 1 or Modified

Bell stage 1A and 1B are considered largely non-specific (11). This has led to the

development of six newer definitions for NEC, which all propose to be superior at NEC

diagnosis than the Bell and Modified Bell staging definitions (12–18).

While many discoveries are being made within the NEC field, which may help prevent or

treat NEC in the future, there remain fundamental limitations that clinicians and scientists in

the field face. First, there is no universal definition of NEC. As discussed in the last paragraph,

there now exist multiple definitions of NEC and clinicians and scientists can choose the one

that suits their purposes best. This can lead to differences in what clinicians diagnose as NEC
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at various institutions. An added challenge is that the etiology of

NEC has yet to be fully understood. Many in the field believe that

NEC is a multifaceted disease and is the common end point of

several pathways and pathologies. This multifaceted nature of NEC

has made biomarker discovery difficult. Despite the NEC field

spending ample time, resources, and research focus attempting to

discover better biomarkers to aid in better prevention and

mitigation strategies, all biomarkers discovered thus far have been

insufficient (19–21). Therefore, NEC as a disease has the potential

to benefit greatly from artificial intelligence (AI) and machine

learning (ML) (21–24). So far, AI has shown promise in

identification and prediction of diseases, biomarker discovery,

disease risk evaluation, and development of improved treatment

plans for many diseases both for adults and neonates (25–31).

While AI and ML studies applied to the healthcare setting have

rapidly increased in recent years, most instances have been applied

to common and more well-defined diseases such as sepsis or

cancer and only a few published studies have applied AI and ML

to NEC. This review will summarize basic concepts of AI and ML

(Section 2), present and summarize the current published

literature on AI and ML in NEC (Section 3), as well as describe

some of the limitations and pitfalls of AI and ML (Section 4).
2. Artificial intelligence and machine
learning in healthcare

Artificial intelligence (AI) has become an increasingly relevant

topic in most aspects of life and has offered particular promise in

the healthcare sector (32–35). Computers have the unique ability

to quickly find patterns in massive datasets that would take the

human eye and brain far longer to identify (33, 36). Because of

this, as early as the 1980’s it was thought that through machine

learning (ML), AI had the potential to be used to identify disease

patterns and ultimately improve healthcare. Although at the time

the computational power and algorithms necessary for ML and AI

to be used effectively were not available, within the past decade a

massive amount of time and resources have been devoted into the

advancement of computers, AI, and ML (33, 36, 37). These

improvements have made applying AI and ML to electronic

medical records (EMRs) and within the healthcare sector a real

possibility (38). While many use AI and ML interchangeably,

there is a distinction between the two. AI describes a machine/

computer using math and logic to learn and problem solve

similarly to how a human brain functions, which can be done

with or without the use of ML (39–43). While ML, a subset of AI,

is the use of mathematical modeling and algorithms which learn

and improve without explicit instruction as more data is provided

(39–43). To put more simply, ML is just one application of AI,

but other types of AI also exist such as limited memory AI, which

is used for the development of chatbots or giving cars the ability

to drive autonomously (39–43).

Two main types of ML classifiers are used when AI is applied

in the healthcare setting, which include supervised, or inductive

classifiers, and unsupervised, which each have their own merits

(Figure 1) (33, 36, 37). Supervised ML is used when the data has
Frontiers in Pediatrics 02
a labelled or identified outcome of interest. When using

supervised ML in the neonatal healthcare setting, the dataset will

contain features that are thought to influence an outcome (often

EMR data including treatments, feeding types, gestational age,

etcetera) as well as representation from the potential outcomes or

labels of interest (disease vs. no disease; improvement, worsening,

or no change following treatment; clinical disease scores; and so

forth) (33, 36, 37). Within supervised ML, there are three

subcategories depending on the data type including classification,

regression, and forecasting (Figure 1). Classification supervised

ML occurs when the output is categorical/discrete, whereas

regression supervised ML uses continuous numerical values as

output (33, 36, 37). The final type of supervised ML is

forecasting, which is when both past and present data types are

used as input to inform the model (33, 36, 37).

The other major type of ML is unsupervised ML, where

unlabeled data is used as input and the ML model will identify

patterns or structures within the data that would otherwise not be

detectable to the human eye (33, 36, 37). Like supervised ML,

unsupervised ML can also be divided into subcategories including

association, clustering, and dimensionality reduction (Figure 1).

Association models can be used to identify/predict comorbidities.

In contrast, clustering models will group similar datasets together,

but distinctly from others. For example, a clustering model would

likely group patients with a disease condition together, but

distinctly from patients without the disease (33, 36, 37). Finally,

dimensionality reduction involves scaling down the data through

the process of feature optimization. The process of dimensionality

reduction is of particular importance when using EMRs and

“omics” datasets because they house a wealth of information.

However, because of the volume of data in these datasets, only a

fraction of that information is useful when identifying/predicting

disease (33, 36–38). Through dimensionality reduction,

unsupervised ML models can identify what features best represent

an outcome of interest vs. those that are superfluous. Thus,

dimensionality reduction through feature optimization as well as

feature engineering can be used for biomarker discovery.

Dimensionality reduction can also aid in establishing a hybrid ML

model (Figure 1). In this case, ideal features will be identified

using an unsupervised ML model and then those features can be

used as input into a supervised ML model to then predict a

disease of interest. An additional approach to handling large data

sets such as EMRs as well as “omics” data is using deep learning

(DL). Deep learning can be used in the context of both supervised

and unsupervised ML. DL uses higher complexity algorithms like

neural networks and greater computational power to process large

or high dimensionality datasets that some of the simpler ML

models would have difficulty fitting (33, 36, 37).

Supervised and unsupervised ML models have similarities and

differences in the required inputs. To create a supervised ML

model, the dataset is first split into a training set, which will

contain the majority or roughly 70%–80% of the data, and a test

set, which will contain the remaining 20%–30% (33, 36, 37). If

sufficient data is available, the 30% of data allocated for the test

set can be split into both a test set (10%–15% of data) and a

validation set (10%–15% of data). The validation set is utilized for
frontiersin.org
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FIGURE 1

Overview of the three major types of machine learning (ML) that are applied in the healthcare setting as well as the respective subtypes. Figure created
with Biorender.com.
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parameter tuning within the various ML models, so that when the

model reaches the testing/evaluation phase, the model is being

tested on data it has never seen. Although ideal, if the overall

dataset is relatively small and will not require a great deal of

parameter tuning, the validation set may not be necessary (44).

The training set will be provided to the ML algorithm of choice,

ideally multiple different algorithms, and will include both the

features as well as the labelled diagnoses/outcomes of interest. The

ML algorithm will make a model based on the training data and

then will apply the model created on the validation or test set.

During the validation/testing stage, the model will use the features

from the validation/test set that the model was originally trained

on and attempt to predict the diagnosis/outcome. The model can

then assess its own efficacy through accuracy scores (both training

and test set accuracy), area under the receiver operator

characteristics curve (AUROC), sensitivity, specificity, and other

evaluation metrics (33, 36, 37, 44). The model developer can then

fine tune the algorithm(s) parameters to improve upon the various

evaluation metrics using the validation dataset. On the other hand,

when using unsupervised ML models, there is no need to split the

data into training and test sets because the data is unlabeled

resulting in no way to formally evaluate the accuracy of the

output. Instead, all the features of interest are used as input for

each sample and then the algorithm(s) of choice is/are used to

process the data before the model provides the desired output (33,

36, 37). While unsupervised machine learning models do not have

the same degree of evaluation metrics, model developers can split

data into a training and validation dataset. For unsupervised ML
Frontiers in Pediatrics 03
validation sets, it is important to have similar patterns and sample

distribution as is present in the training set otherwise the ML

model may have a false poor performance. If the ML model and

the datasets were developed appropriately, similar output would be

anticipated after running either set. For example, when using a

clustering unsupervised ML model, samples would cluster

similarly, and the same number of clusters would be found in

both the training and validation set. Ultimately, while the input in

supervised and unsupervised ML is different, using a validation set

in both can help to ensure the model is being trained using the

correct algorithm and is behaving in the way intended.
3. AI and ML in NEC

ML and AI studies and publications applied to the healthcare

setting have rapidly increased in recent years, but most instances

have been applied to common and more well-defined diseases

such as sepsis or cancer (25–31). In comparison, relatively few

studies have been published applying AI and ML to NEC

(Table 1). While not formally described as ML, one of the

earliest applications of computer science in the NEC literature

came from the use of univariate and multivariate linear

regressions, which was first documented in 1991 by Uauy et al.

(61). In this publication, the modified Bell staging definition was

used to distinguish suspected NEC (infants in stages IA and IB),

proven NEC (infants in stage IIA), advanced NEC (infants in

stage IIIA), and perforated NEC (infants in stage IIIB) (61).
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Demographic and clinical features of NEC were used as variables to

determine statistical significance in the model distinguishing the

various infant groups (61). Medical center, race, gender, birth

weight, maternal hemorrhage, duration of ruptured membranes,

and cesarean section were all identified as significant risk factors

using this multicenter population and methodology (61). Since

this publication, univariate and multivariate linear regressions

continue to be utilized and seen in over 200 PubMed

publications related to NEC to determine what risk factors are

associated with NEC as was seen in the Uauy et al. publication

or determining the prognosis of a patient with NEC based on

treatment strategy. While linear regression is a form of

classification ML, many debate whether univariate and

multivariate linear regressions are considered true ML. Thus,

these publications will not be discussed in detail in this review.
3.1. ML methods for NEC biomarker
discovery

Biomarker discovery, particularly non-invasive biomarkers,

and determining risk factors for NEC have been a topic of

interest for researchers applying ML to NEC (Table 1). The first

publication to formally apply ML to NEC was by Mueller et al.

in 2009 (45). Using artificial neural networks (ANN), Mueller

et al. found two risk factors from their set of 57 that were

important for distinguishing NEC infants from controls

including small for gestational age and being artificially

ventilated (45). Additionally, the best scoring metric came from

an ANN model using only five features (45). For biomarker

discovery, Doheny et al. used the high frequency component of

heart rate variability (HF-HRV) to predict NEC with high

sensitivity and specificity in a multiple logistic regression model

as infants that developed NEC had a much lower HF-HRV than

infants that did not develop NEC (47). Pantalone et al. also used

ML for biomarker discovery but chose to focus on the predictive

ability of complete blood cell count (CBC) data at various time

periods before NEC onset to distinguish between controls,

patients with surgical NEC, and those with medical NEC (53).

Their random forest (RF) model performed the best and while

there were high performance scores in all metrics when

distinguishing between surgical NEC and controls, the sensitivity

was low when the RF model tried to classify surgical NEC

compared to medical NEC (53). In both models, absolute bands

at NEC and gestational age at birth were important contributors

to the model (53). Cho et al. used six different supervised ML

models to identify NEC based on 74 clinical features with the

goal of understanding, which features may be important for NEC

prediction. Two models, logistic regression (LR) and RF, had the

best performance with high accuracy and decent AUROC scores

(55). They also found 10 of the 74 features to be important for

the RF model to distinguish NEC from controls (55).

Hooven et al., Lin et al., and Olm et al. all used stool

microbiome data and demographic data to predict risk for NEC

(50, 51, 56). In the publication by Hooven et al., following a

dimensionality reduction approach through feature engineering,
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the stool microbiome and demographic data were used as input

in a multi-layer neural network (MIL) model that had a high

AUROC score (51). Importantly, the model Hooven et al.

designed was able to predict NEC over 24 h before disease onset,

but due to the complexity of the MIL model, it was difficult to

interpret what features were required for the model to make

decisions (51). As an extension of the Hooven et al. findings, Lin

et al. used a similar hybrid approach with serial stool

microbiome data, 10 clinical features, and the overall label of

NEC vs. control (56). An unsupervised MIL model was used on

each unlabeled stool sample within each patient’s labeled set

since it is unknown, which stool sample(s) within the set is/are

NEC. The stool sample data was used to feed an ANN

supervised ML model to predict NEC (56). The model had a

high AUROC score and depended more on the microbiome data

than it did on the clinical features (56). Interestingly, their model

was able to predict NEC an average of 8.3 days before onset and

using a RF model they found that certain taxa associated with

NEC such as Firmicutes, Proteobacteria, and Enterobacteriaceae

within the stool were important for NEC prediction (56). Olm

et al. developed ML models using taxonomic data as well as

other data that can be gleaned from microbiome data such as

secondary metabolite profiles, metabolic pathways, and bacterial

replication rates (50). Four feature categories from the original

2,119 features were considered important for prediction and their

gradient boosted classifier (GBM) had the best performance in

distinguishing NEC infants from controls (50). Casaburi et al.

used machine learning to predict NEC vs. control from shotgun

metagenomics data collected from several published studies (54).

Their RF model had high accuracy and when testing the models

under various conditions, it was found that specificity was high,

but sensitivity varied greatly (54). Like Lin et al., it was found

that NEC associated bacteria such as the Enterobacteriaceae

species like Klebsiella pneumoniae and Enterobacter cloacae

were important for the model decision making as well as

Staphylococcus aureus (54).

Rather than stool microbiome data, Rusconi et al. used stool

samples to generate metabolomic data to determine if there were

usable biomarkers that could distinguish NEC from non-NEC

infants (49). They found that sphingolipid profiles varied between

NEC infants and non-NEC infants and used the respective profiles

to develop a K nearest neighbors (KNN) model (49). After doing

unsupervised ML hierarchical clustering, they determined that

sphingolipids were only useful to distinguish a subset of patients,

but after including the sphingolipid clustering profile with the

other clinical features, much better ML accuracy scores were

observed (49). Sylvester et al. used ML methods for biomarker

discovery from urine peptides (46). First, unsupervised ML was

used to cluster NEC infants with various potential biomarker

profiles to distinguish surgical NEC infants from medical NEC

infants (46). One cluster of peptides classified as fibrinogen A

were most useful and when developing a linear discriminate

analysis (LDA) model using both clinical parameters and urine

peptide biomarkers, the model was able to correctly classify 100%

of the infants as either surgical NEC or medical NEC, while the

model using only clinical features was unable to classify 39% of
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the patients (46). Song et al. designed an algorithm with the intent of

determining features that would be important to distinguish NEC

diagnosis from feeding intolerance (FI) and predicting whether

infants with NEC will require surgery (60). In their model

distinguishing NEC from FI, seven features from their original set

of 119 were important for diagnosis and their model achieved a

high AUROC score (60). With a similar AUROC score, the model

predicting NEC prognosis also had high performance and

weighted five of the features as being most important for

prediction (60).
3.2. ML used to predict NEC or NEC
outcomes

Similarly, many publications have used ML to predict NEC. Ji

et al. used generalized linear mixed effects models (GLMMs), on a

dataset of 27 clinical features presented by the patients at first

suspicion of NEC and historically had been associated with NEC

prediction to determine NEC severity (16). Nine of the 27 features

were important for the GLMMs to score NEC severity: “abdominal

pain, pneumatosis intestinalis, portal venous gas, dilated bowel, air/

fluid levels, thickened bowel walls, white blood cell count (WBC),

% neutrophils, and neutrophil count” (16). Those nine significant

features were used to develop a GLMM (supervised ML) and tested

to determine whether it could provide similar scores to the

clinician classifications (16). The model classified 100% of stage 1

infants correctly, 94% of stage 2% and 83% of stage 3 (16). Using

an LDA algorithm (a dimensionality reduction approach for

supervised classification ML), Ji et al. predicted infants at low,

intermediate, or high risk for NEC progression (16). In this model,

outcome score was most influenced by metabolic acidosis (pH)

and portal venous gas (PVG) (16). While the AUROC score was

relatively high, the model was unable to predict 18.9% of medical

NEC and 57% of surgical NEC subjects and incorrectly predicted

0.6% of medical NEC and 21.4% of surgical NEC infants (16). ML

models often struggle when data is missing, which is often the case

when considering clinical data/EMRs (33, 36, 37, 44). A further

interesting finding from Ji et al., was that their NEC outcome score

model still had an AUROC score of roughly 80% when

considering as few as five of their 27 features (16). While this

groundbreaking study developed two relevant ML models applied

to NEC severity diagnosis and prognosis respectively, there were

limitations to the models including difficulty in risk stratification

particularly of intermediate patients and disagreement in NEC

score from the clinician classification in scores ≥2 (16).
3.3. ML methods to distinguish NEC with or
without IP from spontaneous intestinal
perforation (SIP)

While the publication by Ji et al. eliminated all infants with SIP

three more recent publications by Irles et al., Lure et al., and Son

et al. developed ML models involving SIP and IP (48, 57, 59).

Irles et al. used back propagated ANN models on two datasets
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birth and the other using 35 variables collected at birth as well as

during hospitalization (48). Both models were able to effectively

classify the infants (48). They went on to determine which

variables were most informative for the model and found several

variables associated with predicting IP including neonatal platelet

and neutrophil counts, orotracheal intubation, birth weight, sex,

arterial blood gas parameters, gestational age, use of fortifier,

patent ductus arteriosus (PDA), maternal age, and maternal

morbidity (48). Like Irles et al., Lure et al. found gestational age at

birth to be associated with NEC as well as post menstrual age

(PMA) prior to surgery, and pneumatosis, but found that

pneumoperitoneum was associated with SIP (57). Additionally,

their ML scoring metric (AUROC) was high with ridge logistic

regression and RF models when radiographic findings were

included as part of the input variables (57). Finally, Son et al.

utilized several different ML algorithms to distinguish NEC infants

with or without IP from those with SIP but had the most luck

with ANN models/multilayer perceptron (MLP) (59). The first

model distinguished between NEC, NEC with IP, and SIP and had

reasonably high AUROC scores (59). In the second model, the

first layer distinguished between NEC and NEC with IP, while the

second layer distinguished between NEC with IP and SIP by

utilizing data from the NEC infants from the first layer (59). They

also used the models on a new dataset of patients and found an

AUROC score of 0.67–1.0 depending on which condition was

being predicted, with the highest AUROC score of 1.0 associated

with predicting NEC-IP and 0.9 for predicting SIP (59).
3.4. ML methods to evaluate treatment
options

Others have used ML to determine what NEC infants may

benefit from a treatment such as surgery. For example, Qi et al.

utilized LR, SVM, and RF models on a subset of radiographic and

clinical features to predict whether surgery would be necessary for

infants diagnosed with NEC (58). The RF model had a reasonable

AUROC score using a feature engineered subset of 18 radiomic

features and 14 clinical features from the original dataset of 79

features (58). Similarly, Gao et al. designed two different models

using both clinical data as well as radiomics data (52). Using DL,

Gao et al. scaled the radiomics data to use in a light GBM

supervised ML classifier (52). The first model predicted NEC

depending on 18 clinical features and the radiomics data with a

high AUROC score (52). The second model was designed to

predict whether surgery would be necessary for infants diagnosed

with NEC (52). The second model placed importance on 9 of the

clinical features and had also had a high AUROC score (52).
3.5. ML to evaluate currently available NEC
definitions

Finally, in a recent publication from our lab, ML has been

applied to evaluate the currently available definitions for NEC
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with the hope of developing a better definition (22). As mentioned

earlier, there are now eight definitions for NEC including the

original Bell and the modified Bell staging definitions and the

more recent six definitions that have all been described within

the last ten years (22). We found that the International Neonatal

Consortium (INC) and 2 of 3 definitions had the best overall

performance from the definitions and consistently outperformed

the Bell and Modified Bell staging definitions (22). Additionally,

we found nine features that were important for distinguishing

NEC from non-NEC infants, but a model using only those nine

features was not able to outperform previously described

definitions (22).
4. Limitations and pitfalls for ML and AI

While ML and AI can be powerful tools, there are several

pitfalls and limitations that must be taken into consideration

when applying ML. First, as mentioned earlier, there is currently

no universally accepted definition of NEC, and the Bell and

Modified Bell staging definitions that are commonly used suffer

from being non-specific to NEC until more severe stages of the

disease have been reached. This means there can be discrepancies

between what different institutions or even clinicians within an

institution classify as NEC or the severity of NEC. Ultimately,

this can lead to ML models being provided with subjective labels

that may vary between institutions, which can make the model

difficult to generalize to infants at other institutions. Along those

lines, ML models can suffer from biases based on the input data,

which can also make the models difficult to generalize (62). As

an example, most studies discussed in this review were single

center studies and some had as few as <100 patients. ML models

often require 100 s–1,000 s of patients to be sufficiently trained

and then additional patients to test/validate the model. Studies

using few patients and only from a single center suffer from

relatively homogenous populations. ML models trained on small

and/or homogenous populations will have more difficulty

properly classifying when heterogenous samples are added (62).

An added limitation is differences in EMRs that are often used as

input for the clinical/demographic features. EMRs house a plethora

of information, but there can be gaps in the data, subjective data, and

differences in standard practices between institutions, which may

limit its utility for ML purposes, or the generalizability of ML

models developed (63). As discussed earlier, ML models struggle

to cope with missing data. Thus, scientists developing ML models

must make a choice between excluding patients, excluding certain

features, imputing the data to fill the gaps, manually deciding for

each gap the best way to fill in the feature, or some combination

of these. Any decision made can have the potential of skewing the

ML model. Other data processing may also be necessary to

optimize a ML model’s ability to appropriately classify such as

scaling or normalizing certain features, which may impact

generalizability when adding in different patients (63). Also, data

points that are subjective and can vary between clinicians are

challenging for a ML model to manage and can result in

inaccurate predictions (63). Examples of features that may be
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subjective in nature are abdominal distension, lethargy, or

radiologic findings as well as features that can have cutoffs that

may vary between institutions such neutropenia,

thrombocytopenia, or acidosis. Differences in standard practices

between institutions can also skew the availability of EMR data

points (63). For example, performing certain tests at birth may be

standard at one hospital, but not at another, or the frequency at

which certain tests are performed may vary between institutions

which leads to gaps in the data available.

Finally, interpretability of developed ML models can be

challenging (45, 64–66). One challenge in interpretability occurs

when using feature engineering as it combines multiple different

features into one. Hooven et al. used this approach to help scale

down the metagenomics data, but they commented that although

they knew the model depended on the metagenomics data since

removing it resulted in lower performance metrics, it was hard to

determine exactly what features within that dataset were

important (51). Another challenge in interpretability that arises is

when combining EMRs with omics data such as in Hooven

et al., Lin et al., and Rusconi et al. (46, 54, 56). Omics datasets

have massive numbers of features and require more complicated

models to appropriately handle the data (30, 45). To understand

more about complex models’ decision-making process, separate

ML models can be developed like Lin et al. who used a RF

model to determine what taxonomic features from the

microbiome data were important for the MIL model (54). Others

used unsupervised ML through hierarchical clustering to narrow

down the features that were used in the final model such as in

Sylvester et al. and Rusconi et al. (46, 60). Requiring a secondary

model to understand the model being developed adds another

layer of complexity to the ML process and can make

interpretability difficult for the eventual end users, the clinicians,

who have varying levels of understanding of ML (65, 66).
5. Conclusions

While ML and AI have been utilized in the healthcare realm for

decades with over 11,000 publications relating to cancer since 1985

and over 500 publications relating to sepsis since 1990, publications

applying ML and AI to NEC have been far sparser. Nevertheless,

the publications that have applied ML to NEC have covered a

breadth of topics such as biomarker discovery, predicting NEC

before onset, distinguishing NEC from other conditions,

determining prognosis, or evaluating the current definitions of

NEC. These studies have all provided promising data to aid in

improving diagnosis and/or prognosis of infants with NEC, but

there is plenty more that can be done in the future. As

mentioned, many of the studies to date have been single center,

used small patient sizes, and/or been rife with limitations. ML

and AI models are only as good as the input they are provided

(33). This reinforces the necessity to foster collaborations

between researchers, clinicians, data scientists, biostatisticians,

and bio-informaticists to provide future studies with clean, more

widely generalizable datasets and overcome the many pitfalls and

limitations that come with ML and AI. NEC as a disease has
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historically been difficult to diagnose and treat, but, if used

effectively, ML and AI offer the potential to more quickly

identify and diagnose NEC, help to predict the severity of the

case, help optimize treatment strategies, and in summation

provide an overall better prognosis for infants with NEC.
Author contributions

SRL and SJM: contributed to the conception, drafting, and

critical revisions of this manuscript. SRL and SJM: approve this

manuscript for publication. All authors contributed to the article

and approved the submitted version.
Funding

SRL is supported by the University of Iowa Stead Department

of Pediatrics. SJM is supported by the National Institute of Health
Frontiers in Pediatrics 09
(NIH) grant no. R01DK125415 and the UC Davis Children’s

Hospital Department of Pediatrics.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Mizrahi A, Barlow O, Berdon W, Blanc WA, Silverman WA. Necrotizing
enterocolitis in premature infants. J Pediatr. (1965) 66:697–705. doi: 10.1016/S0022-
3476(65)80003-8

2. Neu J, Walker WA. Necrotizing enterocolitis. N Engl J Med. (2011) 364
(3):255–64. doi: 10.1056/NEJMra1005408

3. Claud EC, Walker WA. Hypothesis: inappropriate colonization of the premature
intestine can cause neonatal necrotizing enterocolitis. FASEB J. (2001) 15(8):1398–403.
doi: 10.1096/fj.00-0833hyp

4. Gordon P, Christensen R, Weitkamp J-H, Maheshwari A. Mapping the new world
of necrotizing enterocolitis (NEC): review and opinion. EJ Neonatol Res. (2012) 2
(4):145–72. PMID: 23730536.

5. Tanner SM, Berryhill TF, Ellenburg JL, Jilling T, Cleveland DS, Lorenz RG, et al.
Pathogenesis of necrotizing enterocolitis: modeling the innate immune response. Am
J Pathol. (2015) 185(1):4–16. doi: 10.1016/j.ajpath.2014.08.028

6. Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet. (2006) 368(9543):1271–83.
doi: 10.1016/S0140-6736(06)69525-1

7. Hull MA, Fisher JG, Gutierrez IM, Jones BA, Kang KH, Kenny M, et al. Mortality
and management of surgical necrotizing enterocolitis in very low birth weight
neonates: a prospective cohort study. J Am Coll Surg. (2014) 218(6):1148–55.
doi: 10.1016/j.jamcollsurg.2013.11.015

8. Wejryd E, Martí M, Marchini G, Werme A, Jonsson B, Landberg E, et al. Low
diversity of human milk oligosaccharides is associated with necrotising enterocolitis
in extremely low birth weight infants. Nutrients. (2018) 10(10):1556. doi: 10.3390/
nu10101556

9. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal
necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg.
(1978) 187(1):1–7. doi: 10.1097/00000658-197801000-00001

10. Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging
criteria. Pediatr Clin North Am. (1986) 33(1):179–201. doi: 10.1016/S0031-3955(16)
34975-6

11. Battersby C, Santhalingam T, Costeloe K, Modi N. Incidence of neonatal
necrotising enterocolitis in high-income countries: a systematic review. Arch Dis
Child - Fetal Neonatal Ed. (2018) 103(2):F182 LP–F189. doi: 10.1136/archdischild-
2017-313880

12. Battersby C, Longford N, Costeloe K, Modi N. Development of a gestational age-
specific case definition for neonatal necrotizing enterocolitis. JAMA Pediatr. (2017)
171(3):256–63. doi: 10.1001/jamapediatrics.2016.3633

13. Network VO. Vermont Oxford Network manual of operations: Part 2 data
definitions and infant data forms (2019). Available at: https://vtoxford.zendesk.com/
hc/en-us/articles/360013115393-2019-Manual-of-Operations-Part-2-Release-23-2-
PDF- (2019).

14. Gephart SM, Gordon P V, Penn AH, Gregory KE, Swanson JR, Maheshwari A,
et al. Changing the paradigm of defining, detecting, and diagnosing NEC: perspectives
on bell’s stages and biomarkers for NEC. Semin Pediatr Surg. (2018) 27(1):3–10.
doi: 10.1053/j.sempedsurg.2017.11.002

15. Gephart SM, McGrath JM, Effken JA, Halpern MD. Necrotizing enterocolitis
risk: state of the science. Adv Neonatal Care Off J Natl Assoc Neonatal Nurses.
(2012) 12(2):77–9. doi: 10.1097/ANC.0b013e31824cee94

16. Ji J, Ling XB, Zhao Y, Hu Z, Zheng X, Xu Z, et al. A data-driven algorithm
integrating clinical and laboratory features for the diagnosis and prognosis of
necrotizing enterocolitis. PLoS One. (2014) 9(2):e89860. doi: 10.1371/journal.pone.0089860

17. Caplan MS, Underwood MA, Modi N, Patel R, Gordon P V, Sylvester KG, et al.
Necrotizing enterocolitis: using regulatory science and drug development to improve
outcomes. J Pediatr. (2019) 212:208–15.e1. doi: 10.1016/j.jpeds.2019.05.032

18. Control C for D. CDC/NHSN Surveillance Definitions for Specific Types of
Infections Introduction (2022). (January): 1–30. Available at: https://www.cdc.gov/
nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf.

19. Garg BD, Sharma D, Bansal A. Biomarkers of necrotizing enterocolitis: a review
of literature. J Matern Neonatal Med. (2018) 31(22):3051–64. doi: 10.1080/14767058.
2017.1361925

20. Wang K, Tao G, Sun Z, Sylvester KG. Recent potential noninvasive biomarkers
in necrotizing enterocolitis. Gastroenterol Res Pract. (2019) 2019:8413698. doi: 10.
1155/2019/8413698

21. Patel RM, Ferguson J, McElroy SJ, Khashu M, Caplan MS. Defining necrotizing
enterocolitis: current difficulties and future opportunities. Pediatr Res. (2020) 88(Suppl
1):10–5. doi: 10.1038/s41390-020-1074-4

22. Lueschow SR, Boly TJ, Jasper E, Patel RM, McElroy SJ. A critical evaluation of
current definitions of necrotizing enterocolitis. Pediatr Res. (2021) 91(3):590–7.
doi: 10.1038/s41390-021-01570-y

23. Martin CR. Definitions of necrotizing enterocolitis: what are we defining and is
machine learning the answer? Pediatr Res. (2022) 91(3):488–9. doi: 10.1038/s41390-
021-01687-0

24. van Druten J, Sharif MS, Khashu M, Abdalla H. A proposed machine learning
based collective disease model to enable predictive diagnostics in necrotising
enterocolitis. 2018 International conference on computing, electronics &
communications engineering (iCCECE), IEEE (2018). p. 101–6.

25. Nemati S, Holder A, Razmi F, Stanley MD, Clifford GD, Buchman TG. An
interpretable machine learning model for accurate prediction of sepsis in the ICU.
Crit Care Med. (2018) 46(4):547–53. doi: 10.1097/CCM.0000000000002936

26. Chicco D, Oneto L. Data analytics and clinical feature ranking of medical
records of patients with sepsis. BioData Min. (2021) 14(1):12. doi: 10.1186/s13040-
021-00235-0

27. Mani S, Ozdas A, Aliferis C, Varol HA, Chen Q, Carnevale R, et al. Medical
decision support using machine learning for early detection of late-onset neonatal
sepsis. J Am Med Informatics Assoc. (2014) 21(2):326–36. doi: 10.1136/amiajnl-
2013-001854
frontiersin.org

https://doi.org/10.1016/S0022-3476(65)80003-8
https://doi.org/10.1016/S0022-3476(65)80003-8
https://doi.org/10.1056/NEJMra1005408
https://doi.org/10.1096/fj.00-0833hyp
https://pubmed.ncbi.nlm.nih.gov/PMID: 23730536
https://doi.org/10.1016/j.ajpath.2014.08.028
https://doi.org/10.1016/S0140-6736(06)69525-1
https://doi.org/10.1016/j.jamcollsurg.2013.11.015
https://doi.org/10.3390/nu10101556
https://doi.org/10.3390/nu10101556
https://doi.org/10.1097/00000658-197801000-00001
https://doi.org/10.1016/S0031-3955(16)34975-6
https://doi.org/10.1016/S0031-3955(16)34975-6
https://doi.org/10.1136/archdischild-2017-313880
https://doi.org/10.1136/archdischild-2017-313880
https://doi.org/10.1001/jamapediatrics.2016.3633
https://vtoxford.zendesk.com/hc/en-us/articles/360013115393-2019-Manual-of-Operations-Part-2-Release-23-2-PDF
https://vtoxford.zendesk.com/hc/en-us/articles/360013115393-2019-Manual-of-Operations-Part-2-Release-23-2-PDF
https://vtoxford.zendesk.com/hc/en-us/articles/360013115393-2019-Manual-of-Operations-Part-2-Release-23-2-PDF
https://doi.org/10.1053/j.sempedsurg.2017.11.002
https://doi.org/10.1097/ANC.0b013e31824cee94
https://doi.org/10.1371/journal.pone.0089860
https://doi.org/10.1016/j.jpeds.2019.05.032
https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf
https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf
https://doi.org/10.1080/14767058.2017.1361925
https://doi.org/10.1080/14767058.2017.1361925
https://doi.org/10.1155/2019/8413698
https://doi.org/10.1155/2019/8413698
https://doi.org/10.1038/s41390-020-1074-4
https://doi.org/10.1038/s41390-021-01570-y
https://doi.org/10.1038/s41390-021-01687-0
https://doi.org/10.1038/s41390-021-01687-0
https://doi.org/10.1097/CCM.0000000000002936
https://doi.org/10.1186/s13040-021-00235-0
https://doi.org/10.1186/s13040-021-00235-0
https://doi.org/10.1136/amiajnl-2013-001854
https://doi.org/10.1136/amiajnl-2013-001854
https://doi.org/10.3389/fped.2023.1182597
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


McElroy and Lueschow 10.3389/fped.2023.1182597
28. Tran KA, Kondrashova O, Bradley A, Williams ED, Pearson J V, Waddell N.
Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med.
(2021) 13(1):152. doi: 10.1186/s13073-021-00968-x

29. Deepa P, Gunavathi C. A systematic review on machine learning and deep
learning techniques in cancer survival prediction. Prog Biophys Mol Biol. (2022)
174:62–71. doi: 10.1016/j.pbiomolbio.2022.07.004

30. Giacobbe DR, Signori A, Del Puente F, Mora S, Carmisciano L, Briano F, et al.
Early detection of sepsis with machine learning techniques: a brief clinical perspective.
Front Med. (2021) 8:617486. doi: 10.3389/fmed.2021.617486

31. Goh KH, Wang L, Yeow AYK, Poh H, Li K, Yeow JJL, et al. Artificial intelligence
in sepsis early prediction and diagnosis using unstructured data in healthcare. Nat
Commun. (2021) 12(1):1–10. doi: 10.1038/s41467-020-20314-w

32. Rong G, Mendez A, Bou Assi E, Zhao B, Sawan M. Artificial intelligence in
healthcare: review and prediction case studies. Engineering. (2020) 6(3):291–301.
doi: 10.1016/j.eng.2019.08.015

33. Panesar A. Machine learning and AI for healthcare. In: John CS, Moodie M,
Modi D (eds), Apress, Coventry, United Kingdom: Springer (2019). p. 428.

34. Dhillon A, Singh A. Machine learning in healthcare data analysis: a survey. J Biol
Today’s World. (2019) 8(6):1–10. doi: 10.15412/J.JBTW.01070206

35. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in
healthcare: past, present and future. Stroke Vasc Neurol. (2017) 2(4): 230–43.
doi: 10.1136/svn-2017-000101

36. Müller AC, Guido S. Introduction to Machine Learning with Python: A Guide for
Data Scientists. Sebastopol, CA: O’Reilly Media, Inc. (2016). 384.

37. Hunter P. The advent of AI and deep learning in diagnostics and imaging:
machine learning systems have potential to improve diagnostics in healthcare and
imaging systems in research. EMBO Rep. (2019) 20(7):e48559. doi: 10.15252/embr.
201948559

38. Wong J, Murray Horwitz M, Zhou L, Toh S. Using machine learning to identify
health outcomes from electronic health record data. Curr Epidemiol Reports. (2018) 5
(4):331–42. doi: 10.1007/s40471-018-0165-9

39. Dick S. Artificial intelligence. Harvard Data Sci Rev. (2019) 1(1):1–8. doi: 10.
1162/99608f92.92fe150c

40. Sitek A, Seliga-Siwecka J, Płotka S, Grzeszczyk MK, Seliga S, Włodarczyk K, et al.
Artificial intelligence in the diagnosis of necrotising enterocolitis in newborns. Pediatr
Res. (2023) 93(2):376–81. doi: 10.1038/s41390-022-02322-2

41. Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med.
(2022) 28(1):31–8. doi: 10.1038/s41591-021-01614-0

42. McAdams RM, Kaur R, Sun Y, Bindra H, Cho SJ, Singh H. Predicting clinical
outcomes using artificial intelligence and machine learning in neonatal intensive
care units: a systematic review. J Perinatol. (2022) 42:1561–75. doi: 10.1038/s41372-
022-01392-8

43. Athanasopoulou K, Daneva GN, Adamopoulos PG, Scorilas A. Artificial
intelligence: the milestone in modern biomedical research. Biomedinformatics.
(2022) 2:727–44. doi: 10.3390/biomedinformatics2040049

44. Jiang T, Gradus JL, Rosellini AJ. Supervised machine learning: a brief primer.
Behav Ther. (2020) 51(5):675–87. doi: 10.1016/j.beth.2020.05.002

45. Mueller M, Taylor SN, Wagner CL, Almeida JS. Using an artificial neural
network to predict necrotizing enterocolitis in premature infants. 2009 International
joint conference on neural networks (2009). p. 2172–5

46. Sylvester KG, Ling XB, Liu GY, Kastenberg ZJ, Ji J, Hu Z, et al. A novel
urine peptide biomarker-based algorithm for the prognosis of necrotising
enterocolitis in human infants. Gut. (2014) 63(8):1284–92. doi: 10.1136/
gutjnl-2013-305130

47. Doheny KK, Palmer C, Browning KN, Jairath P, Liao D, He F, et al. Diminished
vagal tone is a predictive biomarker of necrotizing enterocolitis-risk in preterm
infants. Neurogastroenterol Motil. (2014) 26(6):832–40. doi: 10.1111/nmo.12337

48. Irles C, González-Pérez G, Carrera Muiños S, Michel Macias C, Sánchez Gómez
C, Martínez-Zepeda A, et al. Estimation of neonatal intestinal perforation associated
Frontiers in Pediatrics 10
with necrotizing enterocolitis by machine learning reveals new key factors. Int
J Environ Res Public Health. (2018) 15(11):2509. doi: 10.3390/ijerph15112509

49. Rusconi B, Jiang X, Sidhu R, Ory DS, Warner BB, Tarr PI. Gut sphingolipid
composition as a prelude to necrotizing enterocolitis. Sci Rep. (2018) 8(1):1–13.
doi: 10.1038/s41598-018-28862-4

50. Olm MR, Bhattacharya N, Crits-Christoph A, Firek BA, Baker R, Song YS, et al.
Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella,
and fimbriae-encoding bacteria. Sci Adv. (2019) 5(12):eaax5727. doi: 10.1126/sciadv.
aax5727

51. Hooven T, Lin YC, Salleb-Aouissi A. Multiple instance learning for predicting
necrotizing enterocolitis in premature infants using microbiome data. Proceedings of
the ACM conference on health, inference, and learning, New York, NY, USA:
Association for Computing Machinery (2020). p. 99–109 (CHIL ‘20). doi: 10.1145/
3368555.3384466

52. Gao W, Pei Y, Liang H, Lv J, Chen J, Zhong W. Multimodal AI system for the
rapid diagnosis and surgical prediction of necrotizing enterocolitis. Ieee Access. (2021)
9:51050–64. doi: 10.1109/ACCESS.2021.3069191

53. Pantalone JM, Liu S, Olaloye OO, Prochaska EC, Yanowitz T, Riley MM, et al.
Gestational age-specific complete blood count signatures in necrotizing enterocolitis.
Front Pediatr. (2021) 9:604899. doi: 10.3389/fped.2021.604899

54. Casaburi G, Wei J, Kazi S, Liu J, Wang K, Tao G-Z, et al. Metabolic model of
necrotizing enterocolitis in the premature newborn gut resulting from enteric
dysbiosis. Front Pediatr. (2022) 10:893059. doi: 10.3389/fped.2022.893059

55. Cho H, Lee EH, Lee K-S, Heo JS. Machine learning-based risk factor analysis of
necrotizing enterocolitis in very low birth weight infants. Sci Rep. (2022) 12(1):21407.
doi: 10.1038/s41598-022-25746-6

56. Lin YC, Salleb-Aouissi A, Hooven TA. Interpretable prediction of necrotizing
enterocolitis from machine learning analysis of premature infant stool microbiota.
BMC Bioinformatics. (2022) 23(1):104. doi: 10.1186/s12859-022-04618-w

57. Lure AC, Du X, Black EW, Irons R, Lemas DJ, Taylor JA, et al. Using machine
learning analysis to assist in differentiating between necrotizing enterocolitis and
spontaneous intestinal perforation: a novel predictive analytic tool. J Pediatr Surg.
(2021) 56(10):1703–10. doi: 10.1016/j.jpedsurg.2020.11.008

58. Qi G, Huang S, Lai D, Li J, Zhao Y, Shen C, et al. An improved joint non-
negative matrix factorization for identifying surgical treatment timing of neonatal
necrotizing enterocolitis. Biomol Biomed. (2022) 22(6 SE-Translational and Clinical
Research):972–81. doi: 10.17305/bjbms.2022.7046

59. Son J, Kim D, Na JY, Jung D, Ahn J-H, Kim TH, et al. Development of artificial
neural networks for early prediction of intestinal perforation in preterm infants. Sci
Rep. (2022) 12(1):12112. doi: 10.1038/s41598-022-16273-5

60. Song J, Li Z, Yao G, Wei S, Li L, Wu H. Framework for feature selection of
predicting the diagnosis and prognosis of necrotizing enterocolitis. PLoS One.
(2022) 17(8):e0273383. doi: 10.1371/journal.pone.0273383

61. Uauy RD, Fanaroff AA, Korones SB, Phillips EA, Phillips JB, Wright LL, et al.
Necrotizing enterocolitis in very low birth weight infants: biodemographic and
clinical correlates. J Pediatr. (1991) 119(4):630–8. doi: 10.1016/S0022-3476(05)82418-7

62. Ahmad MA, Patel A, Eckert C, Kumar V, Teredesai A. Fairness in machine
learning for healthcare. Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining (2020). p. 3529–30

63. Sauer CM, Chen L-C, Hyland SL, Girbes A, Elbers P, Celi LA. Leveraging
electronic health records for data science: common pitfalls and how to avoid them.
Lancet Digit Heal. (2022) 4(12):e893–8. doi: 10.1016/S2589-7500(22)00154-6

64. Rudin C. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat Mach Intell. (2019) 1(5):206–15.
doi: 10.1038/s42256-019-0048-x

65. Ozaydin B, Berner ES, Cimino JJ. Appropriate use of machine learning in
healthcare. Intell Med. (2021) 5:100041. doi: 10.1016/j.ibmed.2021.100041

66. Rasheed K, Qayyum A, Ghaly M, Al-Fuqaha A, Razi A, Qadir J. Explainable,
trustworthy, and ethical machine learning for healthcare: a survey. Comput Biol
Med. (2022) 149:106043. doi: 10.1016/j.compbiomed.2022.106043
frontiersin.org

https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1016/j.pbiomolbio.2022.07.004
https://doi.org/10.3389/fmed.2021.617486
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1016/j.eng.2019.08.015
https://doi.org/10.15412/J.JBTW.01070206
https://doi.org/10.1136/svn-2017-000101
https://doi.org/10.15252/embr.201948559
https://doi.org/10.15252/embr.201948559
https://doi.org/10.1007/s40471-018-0165-9
https://doi.org/10.1162/99608f92.92fe150c
https://doi.org/10.1162/99608f92.92fe150c
https://doi.org/10.1038/s41390-022-02322-2
https://doi.org/10.1038/s41591-021-01614-0
https://doi.org/10.1038/s41372-022-01392-8
https://doi.org/10.1038/s41372-022-01392-8
https://doi.org/10.3390/biomedinformatics2040049
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1136/gutjnl-2013-305130
https://doi.org/10.1136/gutjnl-2013-305130
https://doi.org/10.1111/nmo.12337
https://doi.org/10.3390/ijerph15112509
https://doi.org/10.1038/s41598-018-28862-4
https://doi.org/10.1126/sciadv.aax5727
https://doi.org/10.1126/sciadv.aax5727
https://doi.org/10.1145/3368555.3384466
https://doi.org/10.1145/3368555.3384466
https://doi.org/10.1109/ACCESS.2021.3069191
https://doi.org/10.3389/fped.2021.604899
https://doi.org/10.3389/fped.2022.893059
https://doi.org/10.1038/s41598-022-25746-6
https://doi.org/10.1186/s12859-022-04618-w
https://doi.org/10.1016/j.jpedsurg.2020.11.008
https://doi.org/10.17305/bjbms.2022.7046
https://doi.org/10.1038/s41598-022-16273-5
https://doi.org/10.1371/journal.pone.0273383
https://doi.org/10.1016/S0022-3476(05)82418-7
https://doi.org/10.1016/S2589-7500(22)00154-6
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1016/j.ibmed.2021.100041
https://doi.org/10.1016/j.compbiomed.2022.106043
https://doi.org/10.3389/fped.2023.1182597
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	State of the art review on machine learning and artificial intelligence in the study of neonatal necrotizing enterocolitis
	Introduction
	Artificial intelligence and machine learning in healthcare
	AI and ML in NEC
	ML methods for NEC biomarker discovery
	ML used to predict NEC or NEC outcomes
	ML methods to distinguish NEC with or without IP from spontaneous intestinal perforation (SIP)
	ML methods to evaluate treatment options
	ML to evaluate currently available NEC definitions

	Limitations and pitfalls for ML and AI
	Conclusions
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


