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Necrotizing enterocolitis (NEC) is an intestinal disease that primarily impacts
preterm infants. The pathophysiology of NEC involves a complex interplay of
factors that result in a deleterious immune response, injury to the intestinal
mucosa, and in its most severe form, irreversible intestinal necrosis.
Treatments for NEC remain limited, but one of the most effective
preventative strategies for NEC is the provision of breast milk feeds. In this
review, we discuss mechanisms by which bioactive nutrients in breast milk
impact neonatal intestinal physiology and the development of NEC. We also
review experimental models of NEC that have been used to study the role of
breast milk components in disease pathophysiology. These models are
necessary to accelerate mechanistic research and improve outcomes for
neonates with NEC.
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Introduction

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that impacts 2%–7%

of preterm infants (1). Risk factors for NEC include prematurity, low birth weight, delivery

via cesarean section, lack of breast milk feeds, microbial dysbiosis, inadequate intestinal

perfusion, and exposure to medications such as antibiotics and acid blockers (2). Disease

pathogenesis is characterized by unrestrained inflammation, injury to the intestinal

epithelium, and bowel ischemia, which can rapidly progress to bowel necrosis, sepsis, and

death (3). Treatment options for NEC include the discontinuation of enteral nutrition,

gastric decompression, broad-spectrum antibiotics, and surgical removal of necrotic bowel

(3). There are no targeted therapies available due to our incomplete understanding of

disease pathogenesis; however, it has been well described that breast milk feedings are a

protective factor against the development of NEC (4–7). Bioactive components in human

milk have been demonstrated to reduce intestinal inflammation, enhance stem cell

proliferation, decrease enterocyte apoptosis, and promote the development of a healthy

microbiome (5–11).

In this review, we discuss important components of breast milk and their role in

intestinal immune homeostasis, barrier function, and the prevention of NEC (Figure 1).

Finally, we outline models of NEC that can be utilized for mechanistic studies into the

impact of breast milk components on intestinal physiology.
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FIGURE 1

Summary of the impact of nutritional factors on gut barrier integrity and the mucosal immune response. Nutritional components improve the intestinal
barrier by enhancing the expression of tight junctions, increasing IL-22 production, promoting mucus secretion, and inducing Paneth cell AMP release.
They also have diverse effects on the immune response via modulation of the microbiome, downregulation of inflammatory signaling pathways, and
prevention of potentially deleterious immune cell activation. Gln, glutamine; Zn, zinc; Vit A, vitamin A; Vit D, vitamin D; HMOs, human milk
oligosaccharides; IPA, 3-indole propionic acid; AMP, antimicrobial peptides; SCFAs, short-chain fatty acids; LPS, lipopolysaccharide; VDR, vitamin D
receptor; TLR4, toll-like receptor 4; ERK, extracellular signal-regulated protein kinase; ROS, reactive oxygen species. Figure created with Biorender.com.
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Lipids

Breast milk lipids are important in supporting a diverse array of

physiologic functions in early life, such as organogenesis, lipid

membrane development, and signaling molecule synthesis (12).

Long-chain polyunsaturated fatty acids (LC-PUFAs) are a class of

bioactive lipids that are predominately acquired during the third

trimester of pregnancy (13). This translates into inadequate

LC-PUFA stores in preterm neonates and rapid declines in

LC-PUFA levels after birth (14). The impact of these deficiencies

on intestinal health remains an area of active research. In a study of

preterm piglets, enteral provision of a lipid emulsion containing

varying ratios of the LC-PUFAs arachidonic acid (ARA, C20:4n-6)

and docosahexaenoic acid (DHA, 22:6n-3) found greater villus

height in the ileum of piglets that were adequately supplemented

with ARA (15). In a rat model of NEC, supplementation of

formula with ARA and DHA led to reduced disease severity

relative to controls (16). Finally, in vitro studies using human fetal

intestinal epithelial cells found that treatment with ARA and/or

DHA reduced cytokine production in response to an inflammatory

stimulus (17). Additional research is needed in the form of both

preclinical models and clinical trials to determine the optimal dose

and ratio of LC-PUFA supplementation to support intestinal

development and reduce the risk of NEC in preterm infants.
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Lactoferrin

Lactoferrin is an abundant component of the whey protein

fraction of breast milk that has a diverse array of potentially

beneficial functions, including enhancing immunity, controlling

inflammation, and promoting intestinal epithelial cell growth (18–

21). Host defense properties of lactoferrin arise from iron binding

properties as well as direct interactions with microbes and immune

cells (22). Clinical trials and a 2020 Cochrane Review have thus far

not detected a significant benefit for lactoferrin supplementation in

the risk of NEC or mortality for preterm neonates (23–25).

Additional studies, such as the Lactoferrin Infant Feeding Trial

(LIFT_Canada), are needed to examine the impact of lactoferrin

supplementation on the health of preterm neonates (26).
Human milk oligosaccharides (HMOs)

Human milk oligosaccharides (HMOs) are a family of over 150

structurally complex glycans that are abundant in human milk,

with concentrations varying based on the stage of lactation

(27–30). HMOs are metabolized by intestinal bacteria such as

Bifidobacteria and Lactobacilli spp., and thus shape the

development of the intestinal microbiome (31). Additionally,
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HMOs serve a diverse array of potentially beneficial roles in the

intestine, including augmenting host defense, modulating

immune cell function, and enhancing intestinal barrier integrity

(32–34). For example, HMOs act as soluble adhesion receptor

decoys, blocking the attachment of viral and bacterial pathogens

to intestinal epithelial cells (35, 36). HMOs also possess

bacteriostatic and bactericidal properties and can modulate

intestinal inflammatory responses (34). In addition, maternal

breast milk HMO levels have been associated with an infant’s

risk of developing NEC (37).

The role of HMOs in attenuating inflammatory immune

responses in the gut is well described in preclinical models. In a

recent study by Suligoj et al., the effects of HMOs on intestinal

barrier function were explored using Caco-2 cell monolayers (38).

A combination of 2’-O-fucosyllactose (2’FL), the most abundant

oligosaccharide in human milk, and lacto-N-neotetraose (LNnT)

was shown to significantly decrease paracellular permeability while

increasing tight junction protein (claudin-8) expression (38). In an

ex vivo model of human intestinal tissue, galactosyloligosaccharides

(GOs) were shown to downregulate TNF-α and interleukin (IL)-1β

production (39). In addition, colostrum HMOs, particularly GOs,

attenuated Toll-like receptor (TLR) 3 and TLR5 signaling (32).

Lastly, the HMO α-3 sialyllactose was shown to downregulate the

expression of the inflammatory cytokines IL-8 and IL-12 in Caco-2

cells by inhibiting nuclear factor-κB (NF-κB) signaling and

stimulating peroxisome proliferator-activated receptor gamma

(PPAR-γ) expression (40).

Similar anti-inflammatory properties of HMOs have been

described in animal models of NEC. For example, in a rat model of

NEC, the HMO disialyllacto-N-tetraose (DSLNT) increased survival

rates from 73.1% to 95% (P < 0.001) and led to a reduction in

intestinal pathology (41). A human study found that significantly

decreased levels DSLNT in maternal breastmilk were detectable for

infants who developed NEC relative to controls (42). In addition, in

a mouse model of NEC, administration of 2’FL resulted in a

decreased severity of intestinal injury that was associated with

improved intestinal perfusion (43). Lastly, the HMOs 2’FL and

6'-sialyllactose (6'-SL) decreased intestinal injury in mouse and

piglet models of NEC, which was associated with reductions in

TLR4 activation (44). These findings support further investigation

into the role of HMO supplementation in the development of a

healthy microbiome and prevention of NEC in preterm neonates.
Dietary amino acids

Dietary amino acids (AA) are a primary energy source for

intestinal epithelial cells (45). AA in human milk are

predominantly protein-bound, with approximately 5%–10%

present in free form (46). Free AA are more readily absorbed

into the intestinal circulation than their protein-bound

counterparts and contribute significantly to the initial rise in AA

serum levels in infants following a feed (47). These free AA

support intestinal health and may contribute to preventing NEC

in preterm infants (45, 48–51). We will discuss amino acids that

have been studied in relationship to NEC.
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Glutamine

Glutamine (Gln) is the most abundant essential free AA in

human milk, particularly in the first three months of lactation (52),

and a deficiency in circulating Gln is associated with an increased

risk of NEC in neonates (53). The beneficial effects of Gln include

promoting intestinal epithelial growth, improving barrier function,

reducing oxidative stress, and downregulating inflammation.

Gln promotes intestinal growth by providing energy for

intestinal epithelial cell proliferation as well as regulating

signaling pathways, including the mammalian target of

rapamycin (mTOR), mitogen-activated protein kinase (MAPK),

and extracellular signal-regulated protein kinase (ERK) pathways

(54). Additionally, Gln enhances the effects of growth factors

such as epidermal growth factor (EGF), transforming growth

factor alpha (TGFα), and insulin-like growth factor-1 (IGF-1) (54).

Gln is critical in preventing epithelial cell atrophy in catabolic

states and improves barrier function by regulating the expression of

tight junction proteins, including claudin-1, occludin, and zonula

occludens (ZO-1) (55, 56). In a randomized clinical trial,

improved intestinal barrier integrity was observed for preterm

neonates receiving enteral Gln (57).

Gln exerts anti-oxidative properties by acting as a substrate for

glutathione (GSH) biosynthesis (58). GSH is a tripeptide composed

of Gln, glycine, and cysteine that scavenges potentially damaging

reactive oxidants and free radicals (58). In a study involving

breastfed newborn rats, enteral Gln supplementation reduced

markers of oxidative stress in intestinal tissue (59). In another

study examining intestinal epithelial cells (IECs) in the setting of

oxidative and non-oxidative stress, Gln exerted anti-apoptotic

properties by decreasing the level of cleaved caspase-3 and

increasing the expression of heat shock proteins (53).

Gln has also been shown to downregulate inflammation. In an

in vitro study using healthy human intestinal tissue, Gln

supplementation downregulated the production of the inflammatory

cytokine interleukin-1 beta and upregulated the level of the anti-

inflammatory cytokines IL-4 and IL-10 (60). In a rat model of

NEC, Gln supplementation was associated with decreased mucosal

injury, reduced inflammation, and downregulated expression of the

innate immune receptors Toll-like receptor-2 and TLR4 in ileal and

colonic tissue (61). Although these studies indicate that Gln may

have a beneficial role in intestinal health, a 2016 Cochrane review

found that glutamine supplementation was unlikely to significantly

improve outcomes for preterm neonates (62).
L-arginine

L-arginine is a semi-essential amino acid exclusively synthesized

by intestinal epithelial cells (63). It is a substrate for nitric oxide

(NO) production via the arginine-nitric oxide synthase (NOS)

pathway, which plays a vital role in regulating intestinal blood

flow and maintaining intestinal integrity (64–67).

The role of L-arginine in NEC has been examined in animal

models. In a neonatal piglet model of NEC, reduced arginine

levels were detected for preterm piglets prior to NEC onset (68).
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In addition, supplementation of L-arginine attenuated intestinal

injury in another study using this model (69). Mechanistically, this

was attributed to enhanced NOS activity and NO production in

the intestine (69). In a murine model of NEC, endothelial cell

TLR4 activation was associated with increased tissue damage and

reduced endothelial NOS (eNOS) activity (70). NEC severity was

also found to be increased in eNOS-deficient mice (70). In

addition, enteral L-arginine supplementation attenuated hypoxia-

reoxygenation-induced bowel injury in a murine model of NEC (71).

In neonates, low levels of circulating L-arginine have been

associated with an increased risk of NEC (72). Data from animal

studies and RCTs support a potential role for L-arginine

supplementation in NEC prevention (59, 63, 68, 69, 71–73).

However, a 2017 Cochrane review determined that L-arginine

supplementation was associated with a significant reduction in

the risk of Bell’s Stage 1 but not Stage 2 or 3 NEC (74). A large

high-quality study is needed before the routine arginine

supplementation for preterm neonates can be implemented.
L-Tryptophan

L-tryptophan is an essential amino acid found in human milk

(75). It is metabolized by tryptophanase expressed by the gut

microbiota leading to the production of tryptamine and indole

derivatives such as 3-indole propionic acid (IPA) (76). IPA and

other tryptophan metabolites have important roles in gut

immunity and intestinal barrier integrity.

IPA regulates intestinal barrier function and inflammation by

activating the xenobiotic sensor pregnane-X receptor (PXR) (77).

PXR activation upregulates the expression of tight junction proteins

and downregulates the expression of the inflammatory cytokine

tumor necrosis factor-alpha (TNF-α) (78). In epithelial cell-specific

PXR-deficient mouse models, enhanced TLR4 signaling results in

significant inflammation and loss of intestinal barrier integrity (79).

Indole derivatives also activate the aryl hydrocarbon receptor

(AhR) (80, 81). Decreased AhR expression has been associated with

the development of NEC, with reduced levels detected in the

intestine of neonates, mice, and piglets with NEC (82). Recent

evidence from a murine model of NEC found that administration

of the AhR proligand indole-3-carbinol (I3C) resulted in reduced

severity of NEC (81). Mechanistically, this was associated with

downregulated expression of inflammatory cytokines and increased

expression of the polyfunctional cytokine IL-22, which has been

shown to be an effective therapeutic against NEC (27, 81, 82).

Further investigation is needed to determine the protective

mechanisms induced by tryptophan metabolites in both animal

models and human studies.
Vitamins

Vitamin D

Vitamin D is important in immunoregulation and

enhancement of intestinal barrier function. Vitamin D exerts
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diverse immunomodulatory effects by binding to vitamin D

receptors (VDR) expressed on immune cells (83, 84). For

example, vitamin D inhibits Th17 differentiation and decreases

IL-17 production (85). VDR activation also inhibits IL-17

expression in the intestine and reduces IEC apoptosis by

blocking NF-κB activation (86). Moreover, activation of VDR

signaling reduces tissue damage by promoting T-cell

differentiation into Th2 cells rather than inflammatory Th1 cells

(87). T-cell phenotype is important in the pathogenesis of NEC,

with a role for increased Th17 cells and IL-17-related

inflammatory signaling in disease development (88, 89).

Vitamin D deficiency is prevalent in preterm infants, particularly

in those below 32 weeks of gestation, and decreased levels of vitamin

D have been associated with NEC (90). The role of Vitamin D in

supporting intestinal health has been supported by findings in

animal models. In a rat model of NEC, vitamin D downregulated

TLR4 expression and attenuated apoptosis of intestinal epithelial

cells (91). Moreover, vitamin D protected against intestinal barrier

disruption and the loss of tight junction proteins by increasing

occludin expression (91). In another study, supplementation of

vitamin D to lipopolysaccharide (LPS)-treated cells improved cell

viability, increased proliferation and growth, and decreased

expression of IL-6, IL-1β, and TNF-α (92). Although the

protective role of vitamin D is documented using human cell lines

and mouse models, there is limited data available on the impact of

vitamin D supplementation in NEC prevention.
Vitamin A

Vitamin A is present in human milk, but concentrations are

significantly lower in milk from mothers of preterm infants (93).

Vitamin A levels also vary by lactational stage with higher levels

found in colostrum relative to mature milk (94). In addition,

serum levels of vitamin A in patients with NEC are decreased

relative to healthy controls (95). It is possible that Vitamin A is

involved in improving intestinal health in preterm neonates, as it

has been previously implicated in regulating intestinal immunity

and in maintaining intestinal barrier function (96).

Studies in mice found that the intestinal mucosa of vitamin A

deficient mice contains a reduced number of immune cells,

including macrophages, B- and T-cells (97, 98). Vitamin A

deficiency in rats is associated with an increased abundance of

Escherichia coli, decreased mucin-2 (MUC2) and defensin-6, and

upregulation of TLR2 and TLR5 expression in the intestine (99).

In a study using a mouse model of NEC, vitamin A

supplementation reduced TNF-α and IL-6 mRNA levels relative

to controls (100). Vitamin A supplementation also increased the

expression levels of claudin-1, occludin, and ZO-1, indicating

vitamin A’s role in improving intestinal barrier function (95). In

another study using murine epithelial cells cultured with retinoic

acid (RA), the expression of several tight junction proteins,

including occludin, claudin-6, and ZO-1 were induced (101).

Finally, decreased permeability and increased transepithelial

electrical resistance were noted in another study using intestinal

epithelial monolayers grown with all-trans RA (102). These
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findings support the role of vitamin A in supporting intestinal

homeostasis.
Trace elements

Trace elements are micronutrients present in variable

concentrations in human milk (103). Essential trace elements

such as zinc (Zn), selenium (Se), and calcium (Ca) improve

intestinal barrier integrity, modulate the immune response, and

interact with the gut microbiota (104–106).
Zinc

Zinc (Zn) is involved in essential metabolic functions such as

immunoregulation, reduction of oxidative stress, and

development of the intestinal tract (107, 108). Zn is primarily

acquired in the third trimester of pregnancy leading to low

stores in preterm infants (100). Zn content in human milk is

dependent on the stage of lactation, while absorption is

correlated with the maturity of the infant’s gut and

bioavailability (109–112).

Zn plays an important role in maintaining intestinal barrier

integrity. In a study using Caco-2 cells, induced Zn deficiency led

to increased intestinal epithelial permeability and decreased

expression of tight junction proteins (113). Similarly, Zn

depletion led to the downregulation of occludin and claudin-3 in

another study using intestinal Caco-2 cells and ex vivo mouse

colons (104). Zn has also been shown to directly enhance the

production of intestinal epithelial cells in crypts and promote

IEC differentiation, particularly in disease states with increased

mucosal turnover (110, 114, 115). Lastly, Zn deficiency decreases

mucin synthesis through disturbances in the goblet cell

homeostasis (116). Taken together, these data suggest the

importance of Zn in maintaining intestinal barrier function.

Several studies highlight Zn’s regulation of intestinal immune

function. In an in vitro study using chicken intestinal tissue, Zn

supplementation (Zn-Gly) increased the expression of secretory

immunoglobulin A (IgA), promoted a Th1 and Th2 balance, and

reduced the expression of inflammatory cytokines such as TNF-α

and IL-1β (117). Zn is also critical for the normal function and

morphology of Paneth cells in animal models (118). Similarly,

decreased Paneth cell function occurs in human intestinal tissue

in response to low levels of Zn (119).

In addition to its immunomodulatory effects, Zn directly

affects the composition of the gut microbiota (120). Zn

deficiency reduces gut microbial diversity by indirectly

promoting the growth of bacteria adapted to low Zn

environments, such as Proteobacteria spp. (120). Several studies

have associated Gammaproteobacteria, a class of Proteobacteria,

with an increased risk for NEC (121–123). Conversely, Zn

excess may also lead to gut dysbiosis. Excess levels of Zn in

mice colonized with Clostridium difficile were found to

exacerbate inflammation and intestinal disease by increasing

toxin activity (124). Understanding the interplay between Zn
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deficiency and the intestinal microbiome could provide new

insights into NEC pathophysiology.
Interaction between nutrients and the
gut microbiota in NEC

One of the central roles of human breast milk feeds in

neonatal health is shaping the development of the neonatal

microbiome. Breast milk contains its own microbiome, and

these bacteria directly colonize the neonatal intestine (125,

126). In addition, breast milk components directly influence

the composition of the gut microbiome. For example, HMOs

can facilitate Bifidobacteria and Lactobacilli spp. growth (31),

and breast milk IgA supports the growth of Bifidobacteria

spp. (127).

There is a complex interplay between the intestinal

microbiome and the developing intestine. For example,

commensal bacteria, including Bifidobacterium spp. and

Clostridium leptum as well as Faecealbacterium prausnitzii,

Eubacterium rectale, and Roseburia spp. produce short-chain

fatty acids (SCFAs) (128–130). SCFAs such as butyrate,

acetate, and propionate regulate inflammation (131–133).

Specifically, butyrate inhibits LPS-induced inflammatory

cytokines such as IL-1β, TNF-α, and IL-6 (134). Butyrate

also enhances regulatory T-cell development and production

of the anti-inflammatory cytokine IL-10 (135). In addition to

producing SCFAs, these commensal bacteria occupy a niche

in the intestine that prevents the overgrowth of potentially

pathogenic bacteria. In preterm neonates, the growth of these

harmful bacteria can have devastating consequences, and

intestinal microbial dysbiosis has been repeatedly associated

with the development of NEC (121–123, 136).

Numerous studies have investigated if increasing the

abundance of commensal bacteria in the neonatal intestine

with probiotics impacts the incidence of NEC. Although data

point to a potential benefit of probiotics (137), this remains an

area of controversy within the field of neonatology (138).

There is a lack of consistency among probiotics used in

clinical trials and the lack of regulation of available

commercial products. Further research is needed before

probiotics become a standard of care in preventing NEC.
Milk composition by stage of lactation

Human milk composition by stage of lactation has been

previously reviewed in detail (139–141). Colostrum is the first

stage of milk production and consists of a high concentration

of potentially beneficial and immunomodulatory components,

including secretory IgA, lactoferrin, growth factors, cytokines,

and HMOs (139, 141, 142). Although colostrum contains a

high concentration of factors that are protective against NEC

such as IgA (143), EGF (5) and HMOs (43), studies

investigating provision of an extended course of exclusive

colostrum feeding on the risk of NEC are limited by the
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volume of maternal colostrum available. Over the course of

lactation, milk content shifts to a composition that promotes

infant growth and development with higher concentrations of

lactose and fat in mature milk relative to colostrum, although

the composition is influenced by a variety of maternal factors

(141).
Donor milk

Donor milk is an alternative source of human milk feeds

when maternal milk is not available in adequate quantities. The

composition of donor milk is significantly impacted by

pasteurization and storage (144–147), and it is generally derived

from a pool of high-producing donors, which can also lead to

significant differences in milk composition from maternal milk.

Meta-analyses point to a reduced risk of NEC for donor milk

feeds, although it remains to be determined if there is a

significant impact on death or neurodevelopmental impairment

(148). The Milk trial is a recently completed randomized

control trial that will address these questions by investigating

the impact of donor milk vs. formula on neurodevelopmental

outcomes 22–26 months.
Breast milk fortification and risk of NEC

The caloric density of human milk feeds is commonly

increased with the addition of fortifiers to enhance the growth of

preterm neonates. Comparison of human milk-based and bovine

milk-based fortifiers has not demonstrated a significant difference

in either mortality or morbidity, including in NEC rates, between

these types of fortification (149, 150). This remains an area of

active research.
Models for studying the roles of
nutrients in NEC

Due to the limited availability of human neonatal intestinal

samples, mechanistic studies into the pathogenesis of NEC rely

upon animal studies and in vitro models. NEC-like intestinal

inflammation is induced in neonatal rats, mice, rabbits, and piglets

through brief periods of hypoxia, feeding formula, LPS, and

bacteria isolated from the microbiota of infants with NEC (151,

152). These models have been used to investigate the roles of

prebiotics, probiotics, maternal milk constituents (milk proteins,

HMOs), vitamins, fatty acid supplementation, and amino acids in

the pathophysiology of NEC (81, 82, 91, 95, 153–155).

Numerous in vitro models and cell lines have been used

in studies investigating the mechanisms involved in NEC

(156–159). The human colorectal adenocarcinoma cell line,

Caco-2, is often used to study intestinal disease; however,

these cells are unable to differentiate into goblet cells

leading to a lack of mucus secretion. The human colon

adenocarcinoma cell line, HT-29, is also used to study NEC
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cells in specific cell culture conditions (160). The benefit of

using cell lines for mechanistic studies include abundance,

reproducibility, and ease of culture. However, the cellular

complexity of the intestine is hard to emulate in these

static monoculture cell models. In addition, the relevance of

findings in these adult tumor cell lines to neonatal disease

is questionable. To overcome these difficulties, an ex vivo

three-dimensional (3D) human organoid culture was

developed to bridge the gap between traditional cell culture

and studying primary human samples.

Gastrointestinal organoids are multicellular, 3D structures

developed from primary intestinal stem cells (ISCs) or from

inducible pluripotent stem cells (iPSCs) (161, 162). Intestinal

organoids (also called enteroids) contain multiple intestinal

epithelial cell types, which retain their critical structural and

functional properties of the intestinal epithelium, such as

barrier integrity, mucus and antimicrobial peptide (AMP)

secretion, and differentiation capabilities. Therefore, enteroids

allow for the study of numerous biologic properties, including

barrier function, inflammation, cellular proliferation,

therapeutic responses, nutrient effects, and epithelial-microbial

interactions (163, 164). Limitations of using enteroids include

their polarity and difficulties in co-culturing with immune and

endothelial cells (165, 166). These challenges led to the

development of novel Gut-on-a-Chip or Intestine-on-a-Chip

platforms (167, 168).

The Gut-on-a-Chip platform is a technical advance on enteroid

models due to the ability to co-culture multiple cell types, provide a

constant flow of media, access the apical side of the epithelium, and

mimic intestinal peristalsis via stretch (167). We recently developed

a NEC-on-a-Chip model using enteroids cultured from intestinal

tissue obtained from neonates undergoing intestinal surgery

(168). These enteroids were cultured on a microfluidic device in

the presence of an endothelial cell line and the intestinal

microbiome of an infant that died from NEC (168). In these

culture conditions, we detected cellular and gene expression

changes similar to what is observed upon studying samples from

neonates with NEC (168). This study highlights the scientific

relevance of Gut-on-a-Chip models for mechanistic investigations

related to the pathogenesis of NEC.
Conclusions and future directions

The intestine of the preterm neonate faces the difficult task of

meeting their nutritional requirements while still undergoing

postnatal development and being inundated with microbes and the

challenges posed by critical illness. Optimizing the provision of the

beneficial components of breast milk is central to supporting

neonates through this difficult stage. Disrupted intestinal

homeostasis and dysregulated inflammation can lead to NEC.

Breast milk provides protection against this dangerous disease, and

further research into how modulation of enteral nutrition can

prevent NEC and improve outcomes for neonates with NEC

remains a priority.
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