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Introduction: Cardiotocography, which consists in monitoring the fetal heart rate
as well as uterine activity, is widely used in clinical practice to assess fetal wellbeing
during labor and delivery in order to detect fetal hypoxia and intervene before
permanent damage to the fetus. We present DeepCTG® 1.0, a model able to
predict fetal acidosis from the cardiotocography signals.
Materials and methods: DeepCTG® 1.0 is based on a logistic regression model fed
with four features extracted from the last available 30 min segment of
cardiotocography signals: the minimum and maximum values of the fetal heart
rate baseline, and the area covered by accelerations and decelerations. Those
four features have been selected among a larger set of 25 features. The model
has been trained and evaluated on three datasets: the open CTU-UHB dataset,
the SPaM dataset and a dataset built in hospital Beaujon (Clichy, France). Its
performance has been compared with other published models and with nine
obstetricians who have annotated the CTU-UHB cases. We have also evaluated
the impact of two key factors on the performance of the model: the inclusion
of cesareans in the datasets and the length of the cardiotocography segment
used to compute the features fed to the model.
Results: The AUC of the model is 0.74 on the CTU-UHB and Beaujon datasets, and
between 0.77 and 0.87 on the SPaM dataset. It achieves a much lower false
positive rate (12% vs. 25%) than the most frequent annotation among the nine
obstetricians for the same sensitivity (45%). The performance of the model is
slightly lower on the cesarean cases only (AUC= 0.74 vs. 0.76) and feeding the
model with shorter CTG segments leads to a significant decrease in its
performance (AUC=0.68 with 10 min segments).
Discussion: Although being relatively simple, DeepCTG® 1.0 reaches a good
performance: it compares very favorably to clinical practice and performs
slightly better than other published models based on similar approaches. It has
the important characteristic of being interpretable, as the four features it is
based on are known and understood by practitioners. The model could be
Abbreviations

CTG, cardiotocography; FHR, fetal heart rate; UC, uterine contractions; FIGO, international federation of
gynecology and obstetrics; AUC, area under the receiver operating characteristic curve; STV, short-term
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improved further by integrating maternofetal clinical factors, using more advanced machine
learning or deep learning approaches and having a more robust evaluation of the model
based on a larger dataset with more pathological cases and covering more maternity
centers.

KEYWORDS

cardiotocography, computerized cardiotocography, fetal monitoring, fetal hypoxia, labor, Fetal Heart

Rate (FHR), fetal morbidity, fetal mortality
TABLE 1 Datasets’ characteristics.

CTU-UHB Beaujon SPaM
Total number of cases 552 675 300

Fetal outcome
pH < 7.05 (Nb) 40 42 60

7.05≤ pH < 7.15 (Nb) 65 257
240

pH≥ 7.15 (Nb) 447 376

Apgar 1’: mean (std) 8.3 (1.6) 8.4 (2.5)

–

Apgar 1’: Nb < 7 68 140

Apgar 5’: mean (std) 9.1 (1.1) 9.4 (1.5)

Apgar 5’: Nb < 7 19 43

Term: mean (std) 40.0 (1.1) 39.6 (1.5)

Birth weight: mean (std) 3.4 (0.5) 3.3 (0.5)

Sex (share of girls) 48% 46%

Maternal and delivery data
Maternal age: mean (std) 29.7 (4.5) 29.7 (5.1)

–Share of primiparous 68% 56%

Delivery (share of cesareans) 8% 12%

CTG signals
Mean signal duration (min) 74 420 308

Share of FHR missing points 19% 7% 7%

Share of UC missing points 20% 22% 5%
1. Introduction

Cardiotocography (CTG) is defined as the recording of Fetal

Heart Rate (FHR) and Uterine Contractions (UC) during

pregnancy using an electronic fetal monitor. It is used during

labor and delivery as a screening tool to monitor the fetal well-

being.

Currently, its interpretation is mainly performed visually by

obstetricians or midwives following common guidelines (1).

Although the guidelines are constantly being challenged (2, 3),

CTG interpretation methods have not drastically changed since

CTG was introduced as a screening tool in the 1960s. The overall

process of interpreting CTG during delivery is known to be

subject to a significant inter-observer and intra-observer

variability (4, 5). For those reasons, the effectiveness of

continuous CTG during labor is still debated (6). Some

professionals recommend fetal blood sampling when there are

concerns about abnormal fetal heart rate patterns (7, 8). In

addition to their questionable contribution to reducing poor

neonatal outcomes, these invasive methods are not without risks

for the fetus, can be difficult to perform and require available

medical staff (9, 10). Therefore, it is worth improving

computerized CTG analysis systems that may one day replace

these invasive technologies.

In the last decades, researchers worked on designing reliable

computer-aided systems able to process automatically CTG

signals to detect fetal hypoxia (11). The first developed systems

were based on a quantitative adaptation of the guidelines

proposed by the International Federation of Gynecology and

Obstetrics (FIGO) (12). Dawes and Redman have designed a

system in the 1980s to alert practitioners during pregnancy on

the risk of pathological outcome (13). The SisPorto system,

developed by Ayres-de-Campos et al., consists of a quantitative

adaptation of FIGO’s guidelines. The last iteration of the system,

SisPorto 4.0, has been released in 2015 (14). Georgieva et al.

published in 2017 the OxSys system (15), based on the

decelerative capacity, an average measure of the downward

movements in the FHR signal. More recently, the construction of

large clinical databases of CTG signals with corresponding

clinical information and fetal outcomes (16, 17), some of whom

are published in open-access, have led to a surge of research

works about computerized CTG analysis using recent machine

learning and deep learning techniques. Gatelier et al. and Abry

et al. have trained and evaluated multivariate machine learning

models on the open CTU-UHB dataset (18, 19). Other systems

are based on deep learning methods which input the raw CTG
02
signals instead of features extracted from the signals: Petrozziello

et al. and Mohannad et al. have built such systems on

proprietary databases with more than 30.000 births (20, 21),

while Fergus et al. and Ogasawara et al. have built similar

systems on the CTU-UHB dataset (22, 23).

In the present study, we introduce DeepCTG® 1.0, a model

able to predict fetal acidosis during labor and delivery using

CTG signals and evaluated on several clinical datasets.
2. Materials and methods

2.1. Datasets used

The model was built and evaluated using three datasets

(Table 1):

– The CTU-UHB dataset (16) contains 552 open-access CTG

recordings collected at the University Hospital of Brno, with

corresponding maternofetal data (eg gestational age, mother’s

age, parity) and fetal outcome (fetal blood pH, Apgar at one

and five minutes, weight). Those cases have been annotated

by nine expert obstetricians who predicted the labor outcome
frontiersin.org
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(pH < 7.15) based on the CTG signals (5). We also have defined

a college of obstetricians which consists in considering for every

case the most frequent labor outcome prediction among the

nine obstetricians. Some annotations are missing: the nine

obstetricians have classified in average 456 cases each over 552.

– The SPaM dataset, introduced as part of the Workshop on

Signal Processing and Monitoring in Labor (24), contains 300

cases collected from three participating centers (Lyon, Brno

and Oxford). Each center provided 100 cases: 80 with a fetal

pH within 7.25–7.30 and 20 corresponding to a pathological

outcome (pH < 7.05). For every case, the CTG recordings

during delivery (FHR and UC) as well as the binary outcome

(pH < 7.05 or pH within 7.25–7.30) are available.

– The Beaujon dataset contains 675 CTG recordings collected at

the University Hospital Beaujon (Clichy, France), with

corresponding maternofetal data and fetal outcomes. All

deliveries with pH < 7.15 between January 2020 and

December 2022 have been included, and for any such

delivery, the latest delivery with pH > 7.15 has been included.

This inclusion methodology has been defined to limit the

total number of cases (because the extraction of the CTG

signals was manual and time-consuming) while ensuring that

the dataset contains the highest possible number of cases of

fetal hypoxia.

An additional dataset shared by Boudet et al. (25), named the

FHRMA dataset (for FHR morphological analysis) in the rest of the

paper, has been used to calibrate our FHR baseline estimation

methodology. It contains, for 66 FHR recordings, a reference

baseline, accelerations and decelerations annotated by a

consensus of four obstetricians.
2.2. Signals preprocessing and filtering

The CTG signals fed to the model correspond to the latest

available data before delivery. The signals are available on a 4 Hz

frequency. There are a significant proportion of missing points in

the signals, equal to 0 or −1 in the raw signals (between 5% and

20% depending on the datasets), and they were preprocessed

using the following approach:

– Missing segments of data lasting less than 10 min are

interpolated using linear interpolation. Missing segments

lasting more than 10 min are not filled.

– For every case, the latest 30 min segment without any missing

data (after interpolation) is selected. If such a segment does

not exist, or if it starts more than 90 min before delivery, the

case is discarded. This led to the discarding of 10 cases over

the three datasets (including 1 pathological case), representing

less than 0.7% of the total number of cases.

Some existing studies perform missing data imputation using linear

interpolation (21, 26), and some other use more advanced

interpolation methods like spline interpolation (22, 27) or

autoregressive models (28). We have implemented and tested a

more advanced gap imputation technique based on cubic

Hermite spline interpolation and used in another paper (22),
Frontiers in Pediatrics 03
using the python function scipy.interpolate.CubicHermiteSpline

(https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.

CubicHermiteSpline.html), but it did not improve the performance of

the model. We have not found other studies that limit the

maximum duration to fill the data gaps: choosing 10 min helped

to limit the size of the interpolated intervals while discarding a

limited number of cases.
2.3. Features computed from the CTG
signals

This section details the computation of the 25 features

extracted from the CTG signals which have been considered in

the prediction model. For illustration, Figure 1 shows the raw

FHR signals with the corresponding baseline, accelerations and

decelerations determined as described in the paper.
2.3.1. Features based on FHR baseline
Three features are computed from the FHR baseline: the

minimum, median and maximum values computed on the

30 min segment fed to the model.

The FHR baseline is defined as the mean of the signal after

accelerations and decelerations have been excluded. This creates a

circular definition as accelerations and decelerations are defined

as periods when the signal is consistently above or below the

baseline. Because of this circular definition and of the high

variability of some recordings which makes hard to distinguish

between a change in the baseline and an acceleration or a

deceleration, designing a methodology to automatically compute

the FHR baseline from the CTG signal is a complex and ill-

defined problem. To overcome this issue, we calibrate our

methodology for baseline estimation on the baselines,

accelerations and decelerations annotated by a consensus of

obstetricians available in the FHRMA dataset.

Houzé de l’Aulnoit et al. have implemented and compared 11

published baseline estimation methods with baselines annotated by

a consensus of four obstetricians in the FHRMA dataset (29). The

same team has developed a methodology based on a weighted

median filter and has shown that it outperforms other existing

approaches on the FHRMA dataset (30). We compute the FHR

baseline with a similar weighted median filter relying on the

following methodology:

– The FHR signal is supposed at any time to be in one of two

states: a non-stable state, corresponding to accelerations and

decelerations, and a stable state corresponding to the

remaining time periods.

– The probability pstab(t) for the signal to be in a stable state at

time t is modeled using a prediction model trained on the

annotations available in the FHRMA dataset.

– Then, the FHR baseline at time t is estimated as a weighted

median of the signal around time t, with weights depending

on the pstab function.

The rest of this section details the estimation of pstab and the

definition of the weights.
frontiersin.org
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FIGURE 1

FHR signal (black) for two cases of the CTU-UHB dataset, one case with a pathological outcome (pH < 7.05, top) and one with a normal outcome
(bottom). The baseline is displayed in red, accelerations in blue and decelerations in orange.
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2.3.1.1. Estimation of the probability of stability
We note FHRa�b the bandpass filtered FHR signal with cut-off

frequencies a and b expressed in beats per minute (bpm), which

corresponds to the FHR signal where only frequencies within a

certain range are kept. Computing FHRa�b with different ranges

of frequencies enables to isolate specific features observed at

different frequencies in the FHR signal. We note d(X) the first

derivative of a signal X, estimated by a simple finite differences

algorithm, and envelope(X) the analytical envelope of signal X,

which captures the slowly varying features of a signal X. In

practice, FHRa�b is computed with a Butterworth sixth-order

filter using the python function scipy.signal.butter (https://docs.

scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html),

and envelope(X) is computed using the python function scipy.

signal.hilbert (https://docs.scipy.org/doc/scipy/reference/

generated/scipy.signal.hilbert.html).

The probability of stability pstab(t) is estimated using a logistic

regression fed with the eight following variables:

jd(FHR0 bpm�0:1 bpm)j, jd(FHR0:1 bpm�1 bpm)j, jd(FHR1 bpm�3 bpm)j,
jd(FHR3 bpm�7 bpm)j

jenvelope(d(FHR0 bpm�0:1 bpm))j, jenvelope(d(FHR0:1 bpm�1 bpm))j,
jenvelope(d(FHR1 bpm�3 bpm))j, jenvelope(d(FHR3 bpm�7 bpm))j

Smoothing the signal with several intervals of frequencies (0–

0.1 bpm, 0.1–1 bpm, 1–3 bpm, 3–7 bpm) enables to model the

signal variability at a large range of frequencies and to adapt to

the diversity of accelerations and decelerations observed in CTG

signals. Those ranges of frequencies capture the observed

variability of accelerations and decelerations, and we use four

ranges of frequencies only to limit the number of variables fed to

the logistic regression model estimating pstab(t). The absolute

value of the first derivative of FHRa�b is used because points

with a high derivative are likely to correspond to the slope of an

acceleration or deceleration. However, using the first derivative

only is not enough because it does not enable to distinguish

between the baseline and the trough of an acceleration or

deceleration. That is why we use the envelope of the derivative as
Frontiers in Pediatrics 04
well, that has a high value throughout the acceleration or

deceleration. More details on the motivations for using those

variables to model the stability of the signal are given in Boudet

et al. (30).

The 66 recordings in the FHRMA dataset have been randomly

separated into two datasets: a training dataset with 40 recordings

used to train the logistic regression, and a test dataset with 26

recordings to evaluate its accuracy. For every recording, it is

assumed that time periods annotated by the expert consensus as

an acceleration or deceleration correspond to a non-stable state,

while the remaining time periods correspond to a stable state.

2.3.1.2. Weights used to compute the weighted median
The baseline at time t is computed as a weighted median of the

FHR signal on a symmetric window centered on time t and of

half-duration T. We note Wt(t0) the weight associated to a time

t0 when estimating the baseline at time t. It is given by the

following formula:

Wt(t
0) ¼ pstab(t

0)�max 0, 1� jt � t0j
T

� �

The first term pstab(t0) ensures that time periods corresponding to

accelerations and decelerations (where we should have

pstab(t0) � 0) are excluded from the computation of the baseline.

The second term ensures that more weight is given to times t0

close to the current time t: it equals 1 when t ¼ t0 and decreases

to 0 when jt � t0j ¼ T .

We consider two different methodologies for setting the value

of the half-duration of the window T :

– Fixed half-duration: in this configuration we set

T ¼ 20 minutes.

– Variable half-duration: in this configuration the half-duration of

the window used to compute the baseline at any time t is

modulated with pstab(t), the average probability of stability in

the interval [t � 20 minutes, t þ 20 minutes]. It is given by the

formula T ¼ 20 minutes
3 � pstab(t)

. The factor 3 in front of pstab(t) ensures

that the average half-duration over all recordings remains

close to 20 minutes. The motivation for introducing a variable
frontiersin.org
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half-duration is that when the signal has a low stability ( pstab(t)

is low), a larger window is necessary to be able to estimate

accurately the baseline, while when the signal is stable

( pstab(t) is high), a smaller window is enough to estimate the

baseline accurately and enables to adapt more quickly to a

change in the baseline.

More details about the motivations for those weights are given in

Boudet et al. (30), except the variable half-duration of the

window which is introduced in our paper.

2.3.2. Features based on FHR accelerations and
decelerations

Accelerations and decelerations are defined in FIGO’s

guidelines (1) as increases in FHR above the baseline

(respectively decreases in FHR below the baseline) of more than

15 bpms in amplitude and lasting more than 15 seconds.

Consistently with this definition, a time period is defined to be

an acceleration when the three following conditions are met:

– The FHR signal is always above the baseline during the time

period.

– The maximum deviation to the baseline is higher than 15 bpms

– The average deviation to the baseline is higher than 10 bpms

We use a symmetric definition for decelerations. Then, 11 features

are computed from the accelerations and decelerations detected in

the 30 min segment:

– The number of accelerations, the total duration of the

accelerations, the area covered by the accelerations (defined

for every acceleration as the sum of the differences between

the FHR and its baseline) and the maximum depth of the

accelerations (defined as the maximum difference between the

FHR and its baseline).

– The number of decelerations and late decelerations (lasting

more than two minutes), the total duration of decelerations

and late decelerations, the area covered by decelerations and

late decelerations, and the maximum depth of the decelerations.

2.3.3. Features based on the FHR variability
We compute two features based on the FHR variability and

known to be linked to fetal hypoxia (18): the short-term

variability (STV) and the long-term variability (LTV). There exist

several slightly differing definitions and we have used the

algorithm published by Dawes and Redman (31). We define STV

as the difference in the mean FHR between two successive

intervals lasting 3.75 s. LTV is defined as the amplitude

(difference between maximum and minimum values) of the FHR

signal in one-minute segments, as defined in FIGO’s guidelines

(1). STV and LTV computed on intervals are then averaged over

the 30 min segment.

2.3.4. Features based on contractions derived
from UC signal

The contractions are identified from the UC signal as time

periods during which the UC signal remains above 10 mm Hg

during more than 30 s. Then, three features are defined: the
Frontiers in Pediatrics 05
number of contractions in the segment, the total duration of

contractions and the area covered by contractions.

Decelerations and contractions are often interpreted jointly in

clinical practice. The link between them is complex and is

different if the deceleration is late or not (32). Consequently, we

have defined several features based on both decelerations and

contractions that match the joint interpretation of clinicians:

– The total duration of decelerations (or late decelerations)

happening outside contractions and the area they cover.

– The time difference between the peaks of decelerations (or late

decelerations) and the closest contraction peak, summed over

the 30 min segment.

2.4. Training and evaluation of the model

The model is trained to predict a binary outcome

corresponding to fetal hypoxia. The default outcome we use is

pH < 7.05. The model is fed with a subset of the 25 features

extracted from the CTG signals: several subsets of features are

considered. It is trained using the python package scikit-learn

(33). The cases are weighted to give the same total weight to

cases with normal and pathological outcomes. This is required

because the CTU-UHB and SPaM datasets are highly imbalanced

and contain much more normal cases than pathological ones.

The main evaluation metric used is the area under the receiver

operating characteristic curve (AUC), which is used in almost all

papers evaluating fetal hypoxia prediction models. For every

dataset, we estimate the performance of the model when it is

trained on the other datasets, to ensure that the evaluation is

representative of the performance that could be reached when

using the model in a new center. On the CTU-UHB dataset, the

performance of the model is compared with the nine expert

obstetricians’ annotations and with other published models,

although this comparison is hard because other models are often

evaluated on a different set of cases or with other outcomes.

Also, we evaluate the impact of two key parameters on the

performance of the model: the inclusion of cesareans in the

dataset and the length of the CTG segment used to compute the

features fed to the model. Those evaluations are performed on all

datasets using cross-validation with five folds.
2.5. Interpretability of the model

The predicted risk of fetal hypoxia p can be written as

p ¼ exp(b0þ
P

i
bixi)

1þexp(b0þ
P

i
bixi)

. where xi is a feature fed to the model and bi

is the corresponding coefficient of the logistic regression. The

contribution ci of every feature i in the risk of fetal hypoxia

can be defined as ci ¼ bixiP
i
bixi

. Several variations can be

considered around this formula. For example, scaling and

normalizing the values of each feature helps to produce

interpretable contributions, and computing the contributions

only on features with bixi . 0 enables to build contributions

which are all positive and sum to 1.
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TABLE 2 Accuracy of the baseline estimation methodology on the FHRMA
test dataset.

Baseline estimation
methodology

Average difference with the
baselines annotated by

Ben M’Barek et al. 10.3389/fped.2023.1190441
Then, the contributions of each feature can be provided to

practitioners along with the risk of fetal hypoxia. For example,

an important contribution of the feature indicating a high value

for the maximum FHR baseline may indicate a case of tachycardia.

obstetricians (in beats per minute)

p_stab = 1 6.12

p_stab calibrated 5.03

p_stab calibrated and variable
half-duration

4.75

2.6. Ethical approval

This work had the approval of Robert Debré hospital’s Ethical

committee (IRB 00006477).
3. Results

3.1. Missing data imputation method

We have evaluated the performance of the model with two

different methodologies for missing data imputation: linear

interpolation and cubic Hermite spline interpolation. This

evaluation is performed on all datasets using a k-fold cross-

validation strategy with five folds. Both models achieve very

similar results (AUC = 0.760 with linear interpolation and AUC

= 0.756 with cubic Hermite spline interpolation). This result is

consistent with Asfaw et al. (34), which evaluates several data

imputation techniques and concludes that using more advanced

techniques than linear interpolation does not lead to a

statistically significant improvement in the accuracy of the model.

We have also evaluated how decreasing the maximum duration

to fill the data gaps from 10 min to 1 min impacted the

performance of the model. Using 1 min led to the discarding of

275 cases, representing 22.4% of the total number of cases,

including 36 pathological cases (24.8% of the total number of

pathological cases) and 239 non-pathological cases (22.0% of the

total number of non-pathological cases), and the AUC of the

corresponding model was very similar (AUC = 0.764 with 1 min

and AUC = 0.760 with 10 min), suggesting that including the

cases with large data gaps does not significantly impact the

accuracy of the model. Hence, we decided to use 10 min to

ensure that our system applies to a larger share of the cases, even

when the signal quality is particularly poor.
3.2. Accuracy of the baseline estimation

The accuracy of the baseline estimation is measured as the

average difference between the baseline annotated by the

consensus of obstetricians and the estimated baseline, over the 26

recordings in the FHRMA test dataset which have been excluded

from the calibration of the baseline estimation.

Table 2 compares the accuracy of the estimated baseline in

different settings:

– Baseline estimation with a constant probability of stability

pstab ¼ 1. In this setting, the baseline estimation is performed

using a simple weighted median filter with weights depending

on jt � t0j only.
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– Baseline estimation with a probability of stability pstab calibrated

on the FHRMA dataset and a fixed half-duration of the window.

– Baseline estimation with a probability of stability pstab calibrated

on the FHRMA dataset and a variable half-duration of the

window.

Those results show that calibrating a probability of stability on

the obstetricians’ annotations significantly decreases the error

(from 6.12 to 5.03 beats per minute), and that using a variable

half-duration for the window leads to a significant decrease in

the error as well (from 5.03 to 4.75 beats per minute).
3.3. Selection of the features fed to the
model

3.3.1. Univariate analysis
We have studied the individual performance of the 25 features

extracted from the CTG signals by estimating a univariate logistic

regression model for every one of those features. Table 3 shows

the AUC of those univariate models as well as the p-value and

the sign of the coefficient in the logistic regression. A positive

sign means that the higher the variable the higher the risk of

fetal hypoxia is. Those models are trained and evaluated on all

available cases from the three datasets.

The minimum and maximum value of the FHR baseline are

both significant, unlike the median value. All features based on

accelerations and decelerations are statistically significant, and the

best performing ones in terms of AUC are the area covered by

accelerations and the area covered by decelerations. The sign of

the coefficients show that more accelerations or decelerations

lead to a higher risk of fetal hypoxia. The features based on

contractions are not statistically significant and do not have a

great predictive power. The features based on a joint analysis of

contractions and FHR decelerations perform better, however they

are very correlated with the simpler features based on FHR

decelerations only, and their predictive power is lower. Finally,

the STV and LTV features both have a good predictive power,

and high variabilities are associated to a higher risk of fetal

hypoxia.
3.3.2. Multivariate model selection
In a second step, several multivariate logistic regression models

have been trained and evaluated on the three datasets using a k-fold

cross-validation strategy with five folds. Table 4 gives the AUC of

four multivariate models, both on the training and validation cases:
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TABLE 4 Evaluation of several multivariate models (all datasets, k-fold
cross-validation).

Features AUC on
training
cases

AUC on
validation
cases

All (25 features) 0.793 0.750

b_min, b_max, acc_area, dec_area, stv, ltv,
late_dec_no_contraction_area,
time_diff_late_dec_contraction

0.773 0.747

b_min, b_max, acc_area, dec_area, stv, ltv 0.782 0.747

b_min, b_max, acc_area, dec_area 0.780 0.757

TABLE 5 Evaluation and validation of DeepCTG® 1.0.

CTU-
UHB

Beaujon SPaM

Oxford Lyon Brno
DeepCTG® 1.0 trained on
other centers and evaluated
on the center

0.743
(*)

0.739 0.811 0.873 0.768

*For example: DeepCTG® 1.0 trained on Beaujon, SPaM datasets and evaluated on

CTU-UHB.

TABLE 3 Univariate models trained for the 25 features based on
cardiotocography signals (all datasets).

AUC Sign p-value

FHR baseline
Minimum value 0.604 - <0.01

Median value 0.511 + 0.76

Maximum value 0.613 + <0.01

FHR accelerations and decelerations
Number of accelerations 0.605 + <0.01

Total duration of accelerations 0.644 + <0.01

Area of accelerations 0.649 + <0.01

Maximum depth of accelerations 0.575 + <0.01

Number of decelerations 0.562 + <0.01

Number of late decelerations (>2 mn) 0.597 + <0.01

Total duration of decelerations 0.661 + <0.01

Total duration of late decelerations 0.609 + <0.01

Area of decelerations 0.675 + <0.01

Area of late decelerations 0.624 + <0.01

Maximum depth of decelerations 0.551 + 0.02

Uterine Contractions
Number of contractions 0.513 - 0.68

Total duration of contractions 0.517 + 0.58

Area of contractions 0.514 + 0.68

Features based on contractions and FHR decelerations
Total duration of decelerations outside contractions 0.570 + <0.01

Total duration of late decelerations outside
contractions

0.583 + <0.01

Area of decelerations outside contractions 0.588 + <0.01

Area of late decelerations outside contractions 0.589 + <0.01

Time difference between decelerations and
contractions peaks

0.539 + 0.10

Time difference between late decelerations and
contractions peaks

0.574 + <0.01

FHR variability
Short-term variability (STV) 0.582 + <0.01

Long-term variability (LTV) 0.621 + <0.01
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– A model fed with the 25 features computed from the CTG

signals: this model is prone to overfitting and is hardly

interpretable, but its performance on the training dataset can

be interpreted as the maximum performance that can be

achieved using any subset of those 25 features.

– A model fed with the best performing features in each category:

the minimum and maximum value of the baseline (noted bmin

and bmax), the area covered by accelerations and decelerations

(noted accarea and decarea), the area covered by late
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decelerations outside contractions and the time difference

between late decelerations and contraction peaks (noted

late dec no contractionarea and time diff late dec contraction),

and the STV and LTV (noted stv and ltv). We have not

included the features based on contractions which are not

statistically significant.

– The same model after removing the features corresponding to

the joint interpretation of contractions and decelerations.

– The same model after removing the STV and LTV features as

well.

The results confirm that the model fed with the 25 features is

the best performing one on the training cases (AUC = 0.793),

however the evaluation on the validation cases leads to a

significant decrease in performance (AUC = 0.750). The best

performing model on the validation cases is the fourth one

(AUC = 0.757), which is also the simplest as it is fed with four

features only. In the rest of the paper, the prediction models are

all fed with those four features: bmin, bmax , accarea and decarea.
3.4. Evaluation of the model

Table 5 shows, for each dataset, the AUC of the model when it

is evaluated on the cases in this dataset and trained on the cases

from the other datasets. For example, when evaluated on the

CTU-UHB dataset, the model is trained on the Beaujon and

SPaM datasets, and when evaluated on the Beaujon dataset, it is

trained on the CTU-UHB and SPaM dataset. This methodology

ensures that the evaluation is representative of the performance

that could be reached when using the model in a new center.

Figure 2 shows the corresponding ROC curves. The three centers

forming the SPaM dataset have been grouped because the ROC

curves on every center were too noisy due to the low number of

cases of fetal hypoxia (20 in each center). The model reaches a

similar performance on the CTU-UHB and Beaujon datasets

(AUC = 0.743 and 0.739) and performs significantly better on the

SPaM dataset (between 0.768 and 0.873).
3.5. Comparison of the model with other
published models

Table 6 compares the performance obtained by our model with

other models published in the literature. All papers included in this

comparison report the AUC obtained on the CTU-UHB dataset or

a subset of it. For our model, we show a 95% confidence interval
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FIGURE 2

Receiver-operating characteristic curves of DeepCTG® 1.0 on the three datasets (outcome: pH < 7.05).

TABLE 6 Comparison of DeepCTG® 1.0 with other published systems.

Paper Model Outcome Training database Evaluation database AUC (IC 95%)
Gatellier et al. (2020) Logistic regression pH < 7.1 CTU-UHB CTU-UHB (subset of 439 cases) 0.72 (*)

Abry et al. (2018) Sparse support vector machine pH < 7.05 Lyon CTU-UHB (subset of 472 cases) 0.72 (*)

Petrozziello et al. (2018) Convolutional neural network pH < 7.05 Oxford CTU-UHB 0.82 (*)

Ogasawara et al. (2021) Convolutional neural network pH < 7.2 or Apgar 1’ < 7 CTU-UHB CTU-UHB 0.73 (0.69–0.77)

Fergus et al. (2021) Convolutional neural network Caesarean CTU-UHB CTU-UHB (subset of 101 cases) 0.73 (*)

DeepCTG® 1.0 Logistic regression pH < 7.05 SPaM, Beaujon CTU-UHB 0.74 (0.66–0.81)

*The 95% confidence intervals were not available for those studies.
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obtained by bootstrapping the CTU-UHB dataset with 100

bootstraps. A confidence interval was available in one other

study only (23). We identify three main limitations to this

comparison that are highlighted in Table 6:
– The outcomes predicted by the model are not the same in all

papers: three papers use an outcome based on the fetal pH,

one of them with a threshold different than 7.05, another

paper uses an outcome based on both the fetal pH and the

Apgar at one minute, and another one predicts the delivery

mode (vaginal or caesarean).

– Three papers evaluate the model on a subset of the CTU-UHB

cases. Fergus et al. (22) randomly select 101 cases to form the

evaluation dataset, while Gatellier et al. (18) and Abry et al.

(19) remove the cases with the most missing points in the

FHR signals, which may bias the evaluation. For the two
Frontiers in Pediatrics 08
other papers, it is not explicitly stated whether the evaluation

is performed on a subset of the cases or on all cases.

– Three papers train the model on the CTU-UHB dataset as well,

which can significantly bias the performance evaluated on the

same dataset.
Our model achieves a slightly better AUC than the 2 other

models based on a logistic regression or a support vector

machine (AUC = 0.74 vs. AUC = 0.72 or 0.73). The only model

giving a better performance is the one published by

Petrozziello et al. (26), which is trained on a much larger

dataset with more than 35.000 cases and using deep learning

methods. However, those differences in accuracy are very

probably not statistically significant because of the important

width of the confidence intervals due to the relatively small

size of the CTU-UHB dataset.
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TABLE 7 Number of cases per delivery mode (CTU-UHB and beaujon
datasets).

Number of cases Pathological cases
(pH < 7.05): Number (%)

Cesareans 127 20 (16%)

Other delivery modes 1,100 62 (6%)

TABLE 8 AUC of the models depending on delivery modes included in
training and evaluation datasets (CTU-UHB and beaujon datasets, k-fold
cross-validation).

Evaluation dataset

Cesareans Other delivery
modes

Training
dataset

All delivery
modes

0.735 0.758

Ben M’Barek et al. 10.3389/fped.2023.1190441
3.6. Comparison of the model with expert
obstetricians’ annotations

We have compared the performance of our model with the

available obstetricians’ annotations (Figure 3). The model is

evaluated on the CTU-UHB dataset and trained on the other

datasets with an outcome consistent with the annotations (pH <

7.15). The annotations differ significantly from an obstetrician to

the other, confirming the important interobserver variability

reported in past studies (5, 35).

The outcome predictions from the college of obstetricians are

quite conservative, with a low false positive rate around 25%, but

a low true positive rate around 45%. The model performs better

than the college of obstetricians and better than every individual

expert.
Without
cesareans

0.735 0.760
3.7. Impact of the inclusion of cesareans in
the training and evaluation datasets

The mode of delivery (natural, operative or caesarean) is

available for every birth in CTU-UHB and Beaujon datasets

(Table 7). The rate of births with pH < 7.05 is much higher for

cesareans (16% vs. 6% for other delivery modes). While the

inclusion of cesareans in the training dataset does not impact the

results significantly, their evaluation on cesareans only cases leads

to a slightly worse performance (AUC = 0.74 vs. 0.76) (Table 8).
FIGURE 3

Receiver-operating characteristic curve of DeepCTG® 1.0 (red dots), compar
pH < 7.15).
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3.8. Impact of the length of the CTG
segment

The models presented up to this section are fed with

features computed from 30 min CTG segments. We study here

how the length of the CTG segment impacts the performance

of the model. The AUC is 0.68, 0.76 and 0.78 with 10 min,

30 min and 60 min respectively (Table 9).
ed with the obstetricians’ annotations of the CTU-UHB cases (outcome:
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TABLE 9 Evaluation of DeepCTG® 1.0 depending on the length of the CTG
segment fed to the system (all datasets, k-fold cross-validation).

Length of the CTG segment AUC
10 min 0.679

20 min 0.747

30 min 0.760

40 min 0.773

50 min 0.774

60 min 0.779

75 min 0.788

Ben M’Barek et al. 10.3389/fped.2023.1190441
4. Discussion

In this paper, we have introduced DeepCTG® 1.0, a model for

predicting fetal hypoxia from the CTG signals. We have brought a

significant attention to the methodology used to preprocess the

CTG signals and to extract the features which are fed to the

model. The methodology applied to fill the missing points in the

signals did not have a significant impact on the model’s

performance, as mentioned in other studies (34), and we have

used a simple approach based on linear interpolation. The most

complex part is the computation of the FHR baseline, which is

also a prerequisite for the computation of the features based on

accelerations and decelerations. The baseline estimation

methodology aims at reproducing as good as possible the

annotations of baselines, accelerations and decelerations provided

by a consensus of obstetricians in the FHRMA dataset. Our

approach is based on a weighted median filter similar to the one

introduced by Boudet et al. (30), which is shown to work better

than other published approaches (29), and we have added a

modulation of the duration of the window used to compute the

baseline. An area for improvement in the preprocessing of the

signals is to identify the maternal heart rate which is sometimes

recorded by mistake by the monitor. Boudet et al. highlight the

importance of this step when preprocessing the FHR signal (26).

The four features fed to the model (minimum and maximum

value of the baseline, and the area covered by the accelerations

and decelerations computed on a 30 min segment) have been

selected among a larger set of 25 features. We have verified that

using those 4 features only did not harm the performance of the

model with the important advantage of keeping it simpler,

confirming the results of past studies (19). This gives our model

the important characteristic of being interpretable: it is based on

features which are known and understood by practitioners, and

the influence of each feature on every prediction can be evaluated.

While being relatively simple, it performs well on the three

datasets used in this study. Very importantly, the performance

on each dataset is evaluated when the model is trained on the

remaining datasets, making it representative of the performance

the model could reach when deployed in new centers without

any specific adaptation. The performance obtained on the

Beaujon dataset (AUC = 0.74) is representative of the

performance that could be achieved in a clinical context, because

it includes all pathological cases occurring at Beaujon hospital

over a time period and non-pathological cases have been filtered
Frontiers in Pediatrics 10
for practical reasons, but the filtering methodology described

previously should not bring any bias in the dataset. We do not

know how the 552 cases in the open CTU-UHB dataset have

been selected, but the performance of the model is very close on

those cases. The performance is significantly higher on the SPaM

dataset (between 0.77 and 0.87). This dataset has been built as

part of a challenge and the cases may have been carefully

selected, as the lower share of missing points in the FHR and

UC signals in the SPaM dataset suggests. Also, the high

difference in fetal pH between the pathological cases (pH < 7.05)

and the non-pathological ones (pH in the range 7.25–7.30) very

probably helps the model to classify the cases. This explains the

higher performance observed on those cases.

We have compared the performance of the model with other

published models and with obstetricians’ annotations. The

comparison with other models published is not straightforward,

because the models are often evaluated on a different set of

clinical cases or using different outcomes than pH < 7.05. Despite

those limitations, we conclude that our model performs slightly

better than other models based on relatively simple statistical

models (like logistic regression or support vector machines)

trained on datasets of similar sizes. The only model performing

significantly better is the one published by Petrozziello et al. (26),

which is based on a more complex deep learning model trained

on a much larger dataset with more than 35.000 cases. Its

complexity makes it harder to deploy in clinical practice and to

provide interpretable indicators for practitioners. However, it is

worth noting that those differences in accuracy are very probably

not statistically significant because of the relatively small size of

the CTU-UHB dataset. When compared with the annotations of

the CTU-UHB cases by nine expert obstetricians, the model

performs significantly better than every individual expert and the

majority vote.

We have challenged the inclusion of cesareans in the datasets

used to build the model, as this is a questionable decision. On

one hand, for those births, there is probably a lower correlation

between the available CTG signals and the fetal pH at birth.

Indeed, there may be a delay between the end of the CTG

segment and the time of delivery, as in practice the CTG signal

does not end at delivery but instead when the decision of doing

the cesarean is made. On the other hand, removing those cases

could create a very strong selection bias harming the

performance of the model when it is used in clinical practice. As

far as we know, this point is not discussed specifically in the

literature and more research should be done to integrate those

births consistently when building the model by using the reason

why the cesarean was performed. Our study shows that the

inclusion of cesareans in the training dataset does not

significantly impact the accuracy of the system, suggesting that

for most cesarean cases, the last available CTG signal can be

reliably used as a proxy of the state of the fetus just after delivery.

The definition of the CTG segment used to compute the

features is a key parameter of the system: in this study, we

choose the last 30 min before delivery. We have shown a high

dependence of the performance of the system on the length of

the segment: we choose 30 min, which achieves a good
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performance while making the model usable quickly after the CTG

recording starts. Using the latest available signal before delivery is

consistent with the fact that the outcome is based on the fetal blood

pH measured right after delivery. However, the signal during the

expulsive period is probably more difficult to interpret. Future

research will aim at using a fetal outcome based on fetal blood

sampling during labor, removing the need to use the signal

during the expulsive period to train and evaluate the system.

Also, in a clinical setting, the system would be applied to detect

fetal hypoxia as early as possible to help appropriate

intervention. Further research will aim at optimizing the system

to improve early detection of fetal hypoxia, for example by using

the signal earlier in the labor to predict the fetal outcome. This

point is not specifically studied in the literature as far as we know.

In this work, cases of fetal hypoxia are defined by a fetal pH at

birth lower than 7.05, which is the most common choice in the

literature. Using a higher threshold may be more relevant in

clinical practice to detect fetal hypoxia as soon as possible and to

use the model as a non-invasive second line to replace fetal

blood sample. Using other fetal outcomes not based only on the

fetal pH can be considered (36), as a low pH alone is not

synonymous with a poor neonatal condition (37). Other

computerized systems use outcomes based on the Apgar score

(21) or on both pH and Apgar score (23).

We identify several areas for improvements that will be the

focus of future work. A major improvement is to integrate the

clinical context in the model, as done in a few studies using for

example preeclampsia and thick meconium, nulliparity or the

labor stage (15, 38, 39). Also, the use of more advanced machine

learning or deep learning algorithms could help to model the

complex correlations between the CTG signals, the clinical

context and the fetal outcome, at the price of a more complex

and less interpretable model. Finally, training and evaluating the

model on larger databases with more pathological cases and

covering more maternity centers should help to improve the

performance and robustness of the model.
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