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Correlation between
hyperbilirubinemia risk and
immune cell mitochondria
parameters in neonates with
jaundice
Yingying Wang, Hongwei Wang*, Qiang Zhang, Shanshan Li,
Yiping Mao, Jiajin Lu, Yeqin Shen and Yaping Han

Shaoxing Keqiao Women & Children’s Hospital, Shaoxing, Zhejiang, China

Purpose: To explore the correlation between mitochondria parameters of immune
cells and hyperbilirubinemia risk in hospitalized neonates with jaundice.
Methods: This retrospective study included jaundiced neonates born between
September 2020 and March 2022 at Shaoxing Keqiao Women & Children’s
Hospital. The neonates were divided into low, intermediate-low, intermediate-
high, and high-risk groups according to the hyperbilirubinemia risk. The purpose
parameters including percentage, absolute count, mitochondrial mass (MM), and
single-cell MM (SCMM) of peripheral blood T lymphocytes detected by flow
cytometry were collected.
Results: Finally, 162 neonates with jaundice (47, 41, 39, and 35 with low,
intermediate-low, intermediate-high, and high-risk) were included. CD3+ SCMM
was significantly higher in the high-risk group compared with the low and
intermediate-low-risk groups (both P < 0.0083), CD4+ SCMM was significantly
higher in the high-risk group compared with the three other groups (all
P < 0.0083), and CD8+ SCMM was significantly higher in the intermediate-low
and high-risk groups compared with the low-risk group (both P < 0.0083). CD3+

(r= 0.34, P < 0.001) and CD4+ (r= 0.20, P= 0.010) SCMM positively correlated
with bilirubin levels.
Conclusions: The mitochondrial SCMM parameters differed significantly among
jaundiced neonates with different hyperbilirubinemia risks. CD3+ and CD4+ T
cell SCMM values were positively correlated with the serum bilirubin levels, and
might correlated with hyperbilirubinemia risk.

KEYWORDS

bilirubin, mitochondrial mass, neonatal jaundice, single cell mitochondrial mass,

T-Lymphocyte Subsets

1. Introduction

Bilirubin is the main metabolite of iron porphyrin compounds. Serum bilirubin levels

exceed 85 μmol/L in approximately 60% of term newborns and 80% of preterm infants in

the first week after birth, and jaundice occurs (1). Most cases of neonatal jaundice are

non-pathologic and may be due to physiologic reduction in bilirubin conjugating and

excreting mechanisms and/or increased bilirubin production (2–5). Hyperbilirubinemia

significant enough to require phototherapy has been reported in approximately 10% of

term and 25% of near preterm infants (2–5). The pathologic causes of neonatal jaundice

include hemolysis, enzyme deficiencies, or liver and biliary tract abnormalities (2–5).
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Physiological concentrations of bilirubin can modulate

intracellular signaling pathways involved in immunosuppression,

prevent diseases associated with an increased oxidative stress

(6), and produce anti-inflammatory effects by inhibiting NF-

κB and the activation of inflammatory vesicles and regulate the

morphology and function of mitochondria of immune cell (7),

and mitochondria play central roles in the activation,

differentiation, and survival of immune cells (8). Recently,

serum bilirubin has been found to regulate dendritic cells,

natural killer cells, and bone marrow-derived suppressor cells

in peripheral blood and affect the composition type of the

peripheral T cells (9). Excessive bilirubin can damage cell

membranes, causing oxidative damage and disrupting

cell signaling, leading to mitochondrial dysfunction (10),

which can result in immune system disruption or

hypoimmunity in affected children (9, 11) and even affect the

integrity of the blood-brain barrier (12), causing irreversible

neurological damage (12, 13).

For decades, the diagnosis and intervention monitoring of

jaundice have relied on total serum bilirubin levels, despite

their poor ability to predict the outcomes (13). Tests on

immune cells, metabolic function, and other indicators could

more objectively and accurately reflect the immune status of

neonates with jaundice. Therefore, it could be hypothesized

that tests evaluating the mitochondria of peripheral immune

cells in newborns with jaundice might better reflect the

prognosis and risks associated with excessive bilirubin.

Therefore, this retrospective study aimed to explore the

correlation between mitochondria parameters of immune cells

and bilirubin risk levels in hospitalized neonates with jaundice.
2. Patients and methods

2.1. Study design and patients

This retrospective analysis included jaundiced neonates born

between September 2020 and March 2022 at Shaoxing Keqiao

Women & Children’s Hospital. This study was reviewed and

approved by the Ethics Committee of Shaoxing Keqiao Women

& Children’s Hospital. The requirement for informed consent

was waived by the committee because of the retrospective nature

of the study.

The inclusion criteria were: (1) full-term newborns

(gestational age ≥37 weeks) of <28 days of age and (2)

diagnosed with neonatal jaundice based on Practical

Neonatology, 5th edition (2019). The exclusion criteria were:

(1) jaundice combined with other serious illnesses such as

neonatal sepsis and intracranial hemorrhage in newborns, (2)

incomplete information, or (3) blood samples for immune cell

mitochondrial were taken after phototherapy. In particular, the

subjects of our study were all from NICU children who were

bottle fed by staff and have NO breastfeed.

Neonates were divided into low, intermediate-low,

intermediate-high, and high-risk groups according to the

hyperbilirubinemia risk, evaluated by Bhutani curves (14).
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2.2. Data collection

The clinical characteristics of the included neonates with

jaundice was collected, including day age, gestational age, sex,

birth weight, serum bilirubin value (μmol/L), number of days in

the hospital, clinical diagnosis, and immune cell mitochondria

parameters. The immune cell mitochondrial testing is part of the

routine immunoassays (flow cytometry) performed for neonatal

jaundice, including CD3+, CD4+, and CD8+ cell percentages,

absolute counts, mitochondrial mass (MM), and single-cell

mitochondrial mass (SCMM). Sample preparation protocol:

(a) monoclonal antibody preparation of pre-mixed reagents;

(b) antibodies were mixed with peripheral blood samples, which

were vortex mixed and incubated away from light; (c) add

hemolysin for red blood cell lysis; (d) test by flow cytometer after

mixing; (e) the flow cytometry data (.fcs) were calibrated by the

human lymphocyte mitochondrial function analysis system

(software) and then output to keep the accuracy (15–17).
2.3. Statistical analysis

SPSS 26.0 (IBM, Armonk, NY, USA) and Hiplot software

(https://hiplot.com.cn/) were used for statistical analysis. The

Kolmogorov-Smirnov method was used to test the normality of

the continuous data. The continuous data conforming to the

normal distribution were expressed as means ± standard deviations

and compared using Student t-test. The continuous data

conforming to skewed distribution were presented as medians

(range), and compared using Mann-Whitney U-test. Categorical

data were presented as n (%) and analyzed using Fisher’s exact

test. The bonferroni test was applied for multiple testing in

pairwise comparing. Correlations between mitochondria

parameters and serum bilirubin were examined using the

ggscatterstats function in the “ggstatsplot” package (18), Spearman

and Wilcoxon rank sum tests were performed to explore P. A

two-sided P < 0.05 were considered statistically significant.
3. Results

There were 353 neonates with jaundice during the study period;

123 premature infants (gestational age <37 weeks) and 68 neonates

with severe illness such as neonatal sepsis and intracranial

hemorrhage were excluded. Therefore, 162 neonates (47, 41, 39, and

35 with low, intermediate-low, intermediate-high, and high-risk)

were included in this study. There were no significant differences

among the four groups regarding sex (P = 0.941), age (P = 0.091),

gestational age (P = 0.100), and birth weight (P = 0.481) (Table 1).

While the mean serum bilirubin value differed significantly

among jaundiced neonates with different hyperbilirubinemia risks

(P < 0.001). Figure 1 shows the distribution of the neonates’

bilirubin values according to hyperbilirubinemia risk.

The CD3+ and CD4+ T-cell percentages were lower in the high-

intermediate and high-risk groups than in the low-risk groups
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TABLE 1 Demographic and clinical characteristics of neonates with different risk levels of jaundice.

Characteristics Low-risk (n = 47) Low-intermediate-risk (n = 41) High-intermediate-risk (n = 39) High-risk (n = 35) P
Sex (male/female) 23/24 24/17 21/18 17/18 0.941

Age (hours) 132.00 (98.00, 144.00) 96.00 (77.00, 144.00) 120.00 (72.00, 192.00) 64.00 (30.00, 168.00) 0.091

Gestational age (days) 276.00 ± 12.56 276.00 ± 8.71 277.00 ± 9.67 277.00 ± 9.55 0.100

Birth weight (g) 3,255.00 ± 317.60 3,290.00 ± 258.04 3,280.00 ± 226.88 3,390.00 ± 209.51 0.481

Serum bilirubin (μmol/L) 201.14 ± 22.72 228.13 ± 21.32 271.75 ± 27.72 299.90 ± 62.40 <0.001

FIGURE 1

Distribution of serum bilirubin value according to hyperbilirubinemia risk.
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(P < 0.0083). The CD4+/CD8+ ratio was lower in the high-risk

group compared with the low-risk and intermediate-low-risk

groups (P < 0.0083). Absolute counts of CD3+ cells were lower in

the high-risk group compared with the low-risk group (P <

0.0083). Absolute counts of CD4+ cells were lower in the high-

risk group compared with the low-risk and intermediate-low-risk

groups (P < 0.0083). Besides, absolute counts of CD8+ cells have

not significant difference (Table 2 and Supplementary Table S1).

There were no differences among the four groups regarding the

MM parameters (all P > 0.05). The CD3+ SCMM was higher in the

high-risk group compared with the low and intermediate-low-risk

groups (both P < 0.0083), CD4+ SCMM was higher in the high-risk

group compared with the three other groups (all P < 0.0083), and

CD8+ SCMM was higher in the intermediate-low and high-risk

groups compared with the low-risk group (both P < 0.0083)

(Table 2 and Supplementary Table S1). CD3+ (r = 0.34,

P < 0.001) and CD4+ (r = 0.20, P = 0.010) SCMM correlated with

bilirubin levels positively (Figure 2).
Frontiers in Pediatrics 03
4. Discussion

This study suggested that the mitochondrial CD3+, CD4+, and

CD8+ SCMM parameters differed among jaundiced neonates with

different hyperbilirubinemia risks. CD3+ and CD4+ T cell SCMM

values were positively and linearly correlated with the serum

bilirubin levels. The results might provide an organelle view for

further studies on immunologic function and jaundice.

The process of bilirubin metabolism requires the direct

involvement of the mitochondria (7, 9–11), oxidizing bilirubin

into non-toxic, soluble biliverdin in the mitochondria and

preventing toxicity from reactive oxygen species; biliverdin is

then transported to the cytoplasm and reduced to bilirubin,

which is subsequently released from the cytoplasm into the blood

(19). In contrast, excess free bilirubin is highly toxic as it

promotes oxidative stress and lipid peroxidation, leading to

membrane damage and, ultimately, apoptosis (10, 20). Excess

bilirubin can directly disrupt the membrane lipids, proteins, and
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TABLE 2 Comparison of cell percentages, absolute counts, and mitochondria-related parameters between neonates with different risk levels of jaundice.

Characteristics Low-risk (n = 47) Low-intermediate-risk
(n = 41)

High-intermediate-risk
(n = 39)

High-risk (n = 35) P

CD3+ % 83.69 ± 13.31 76.85 ± 13.02 72.05 ± 11.22a 68.59 ± 10.85a <0.001

CD4+ % 60.27 ± 10.64 57.58 ± 10.90 51.63 ± 9.01a 48.14 ± 11.22a <0.001

CD8+ % 22.23 ± 10.18 19.25 ± 6.47 21.13 ± 9.02 23.28 ± 12.34 0.118

CD4+/CD8+ 2.54 ± 1.18 2.78 ± 1.04 2.49 ± 0.91 2.02 ± 1.13a,b 0.002

CD3+ Abs. Count 2,658.37 (1,357.24, 4,610.70) 2,348.00 (1,585.25, 3,123.76) 2,196.00 (1,274.98, 2,933.98) 1,773.60 (1,093.85, 2,439.00)a <0.001

CD4+ Abs. Count 1,880.00 (1,033.08, 3,393.49) 1,695.60 (1,185.25, 2,338.50) 1,604.82 (966.91, 2,234.00) 964.59 (683.31, 1,569.83)a,b <0.001

CD8+ Abs. Count 753.67 (415.00, 988.56) 524.00 (386.77, 830.15) 547.04 (327.55, 930.14) 569.44 (358.15, 669.16) 0.010

CD3+ MM 2,29,646.80 ± 1,99,190.20 2,57,518.80 ± 2,06,475.39 2,61,932.00 ± 1,48,714.71 3,23,996.00 ± 1,71,894.44 0.280

CD4+ MM 2,40,010.40 ± 2,05,319.90 2,57,709.60 ± 1,80,679.68 2,98,482.00 ± 1,54,353.10 3,22,954.40 ± 1,87,833.49 0.359

CD8+ MM 2,39,636.00 ± 1,95,974.55 2,23,939.00 ± 1,94,679.45 2,59,279.20 ± 1,46,063.70 3,04,928.00 ± 1,74,845.57 0.343

CD3+ SCMM 61.39 ± 48.76 62.45 ± 42.00 76.30 ± 54.25 111.82 ± 98.44a,b <0.001

CD4+ SCMM 86.65 ± 65.50 91.84 ± 55.71 106.79 ± 71.64 190.60 ± 146.38a,
b

,c <0.001

CD8+ SCMM 198.01 ± 142.56 276.21 ± 173.61a 289.40 ± 118.29 299.97 ± 148.34a <0.001

MM, mitochondrial mass; SCMM, single cell mitochondrial mass; Abs. count, absolute count.
aP < 0.0083 compared to the low-risk group.
bP < 0.0083 compared to the low-intermediate-risk group.
cP < 0.0083 compared to the high-intermediate-risk group.

FIGURE 2

Correlations between bilirubin and SCMM parameters by the function ggscatterstats. Correlation analysis of peripheral serum CD3+ cell SCMM values (A),
CD4+ cell SCMM values (B), CD8+ cell SCMM values (C), and peripheral bilirubin values.
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redox status of mitochondria (21) and is toxic to the mitochondria

(22). On the other hand, serum bilirubin concentrations below

apoptotic levels affect cellular mitochondrial function and cellular

activity by increasing the osmotic pressure of the mitochondrial

matrix, causing it to break down and release apoptosis-inducing

factor (AIF), leading to alterations of the cellular signaling

pathways, affecting cellular activity, or ultimately initiating

mitochondrial apoptotic mechanisms (20). Serum bilirubin has

antioxidant and anti-inflammatory effects and often acts as an

immunomodulator (23). Serum bilirubin has also been reported

to promote the regeneration of Treg cells (24) and to reduce T

cell numbers and activity by upregulating Treg cells for

lymphocyte immunosuppression (25). Therefore, high serum

bilirubin levels have a profound effect on immune cell activity

and mitochondrial function and can leave the jaundiced neonate

in an immunocompromised or immunosuppressed state, with a

high risk of infection.

Indeed, in the present study, as the risk of clinically significant

jaundice increased, the absolute immune cell count tended to

decrease, and the CD3+, CD4+, and CD8+ SCMM parameters
Frontiers in Pediatrics 04
were significantly higher in the high-risk group than in the low-

risk group, suggesting diminished immune cell function. CD3+

and CD4+ T cell SCMM values showed positive linear

correlations with the serum bilirubin levels, suggesting that

CD4+ T cells may be related to bilirubin via mitochondrial

metabolism. The immune system of newborns is not well

developed, and the mitochondrial metabolism capacity of

immune cells can be insufficient to deal with the large

accumulation of bilirubin. Hence, high bilirubin levels in

jaundiced neonates might be associated with mitochondrial

damage or dysfunction. On the other hand, a higher

concentration of bilirubin would have a more significant

suppressive effect on the body’s immune system and a greater

impact on cellular function impairment (10). Therefore,

neonates with neonatal jaundice showed significant differences

in relative and absolute immune cell counts and SCMM and

showed linear correlations between SCMM and bilirubin levels

across the different hyperbilirubinemia risks.

Serum bilirubin levels showed a positive linear correlation with

CD3+ and CD4+ T cell SCMM but not with CD8+ T cell SCMM,
frontiersin.org
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suggesting that high blood bilirubin levels have a more significant

effect on mitochondrial abnormalities/dysfunction in CD4+ T cells

than in CD8+ T cells. These results were consistent with the study

by Liu et al. (26), who reported that high bilirubin levels induced

apoptosis in activated CD4+ cells and produced direct

cytotoxicity. The effect of bilirubin on immune cells might be

selective. Indeed, CD8+ cells appear to have higher SCMM values

than CD3+ and CD4+ cells, which could be because CD8+ cells

mainly rely on glycolysis for energy production (27, 28). Still,

even though no correlations were observed between CD8+

SCMM and serum bilirubin levels, the CD8+ SCMM increases

with the risk grouping.

This study has strengths. In this study, blood collection from

neonates with jaundice was performed before phototherapy, and

the effects of gestational age, age, and birth weight on bilirubin

were excluded. This study also has limitations. The neonates

were from a single center, and the sample size was small.

There were limitations in the variability of data collection and

recording. The outcomes of the neonates were not available. The

results need to be confirmed in large multicenter studies.

In conclusion, the mitochondrial SCMM parameters differed

significantly among jaundiced neonates with different

hyperbilirubinemia risks. CD3+ and CD4+ T cell SCMM values

were positively correlated with the serum bilirubin levels, and

might correlated with hyperbilirubinemia risk. This study

provides new insight into the effect of serum bilirubin on

immune cell mitochondria, and the linear relationship between

CD4+ cell SCMM and bilirubin may also open up new diagnostic

ideas, thus improving the clinical understanding of immune cells

in jaundiced neonates and providing a basis for the management

of clinically relevant jaundice.
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