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Genetic mutations are critical factors leading to congenital surgical diseases and
can be identified through genomic analysis. Early and accurate identification of
genetic mutations underlying these conditions is vital for clinical diagnosis and
effective treatment. In recent years, artificial intelligence (AI) has been widely
applied for analyzing genomic data in various clinical settings, including
congenital surgical diseases. This review paper summarizes current state-of-
the-art AI-based approaches used in genomic analysis and highlighted some
successful applications that deepen our understanding of the etiology of several
congenital surgical diseases. We focus on the AI methods designed for the
detection of different variant types and the prioritization of deleterious variants
located in different genomic regions, aiming to uncover susceptibility genomic
mutations contributed to congenital surgical disorders.
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1. Introduction

Congenital disorders, also known as congenital abnormalities or disabilities, are the

leading causes of infant morbidity and mortality. Congenital surgical diseases refer to

those medical conditions present at birth that require surgical intervention as the first-line

treatment. Myriad factors, including genetic mutations, chromosomal abnormalities, and

environmental factors such as toxins or virus infection can cause these conditions. Many

of these congenital surgical diseases have been shown to have a strong genetic basis. For

example, approximately 10%–30% of patients with congenital heart disease (CHD), the

most common congenital anomaly that affects around 1% of newborns, may have an

identified genetic cause (1, 2). Chromosomal anomalies (e.g., trisomy 21 and 22q11.2

deletion) and mutations in genes such as GATA4, NOTCH1, NKX2-5 and TBX1

dysregulating cardiac morphogenesis and differentiation have been identified in

individuals with CHD (2). In addition, common regulatory variants and rare mutations

also predispose to an increased risk of less common surgical disorders, such as

Hirschsprung disease and biliary atresia (3).

In the past decade, the advancement in next-generation sequencing (NGS) has

revolutionized precision medicine, shifting the paradigm of genetic diagnosis toward big
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data analytics. Now, researchers are able to elucidate the genetic

etiology of congenital diseases by analyzing massive omics data

generated from DNA, RNA and epigenetic sequencing. Although

genomic analysis has been confirmed to be a potent approach for

identifying disease-causal variants, the detection and

prioritization of these variants predisposed to diseases from a

mass amount of data is still a barrier for researchers to tackle

with. AI affords from the tremendous amount of data remains

challenging. AI fills in this research gap by offering compelling

solutions to big data genomic analysis in three major aspects: (i)

detection of high-confidence genomic mutations from various

genomic data; (ii) predicting the functional impact of these

variants on protein structure or functions or regulatory elements;

and (iii) prioritizing disease-causing variants in patients.

AI is a technic acted by machines to mimic human intelligence.

In computer science, AI is defined as the study of “intelligent

agents”. It can deal with complicated problems by intelligently

searching through different relevant datasets, excavating the

hidden patterns of the existing features, formulating prediction

models, and giving the best solution (4).

There are multiple subfields of AI, including machine learning

(ML), deep learning (DL), and natural language processing

(Figure 1). ML serves to build AI-driven applications using

supervised or unsupervised learning methods (5, 6). Supervised

learning uses labeled training data to train the ML model by

learning the patterns and relationships between the input

features. The trained model is then used to predict the labels of

the new unlabeled testing data. Supervised learning algorithms,

including Random Forest, Naïve Bayes, and Support Vector

Machines (SVM), are mostly classification-and regression-based.

The classification algorithm finds functions that help categorize

the data into classes based on the input labels and is mostly

applicable for binary or categorical data with discrete values.

The regression algorithm predicts output labels based on

the association between dependent and independent variables

and is mostly used for predicting continuous data. On the other

hand, unsupervised learning trains models with unlabeled
FIGURE 1

Schematic diagram of AI algorithms.
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data to explore hidden patterns in the input. Clustering

and dimensionality reduction are common techniques for

unsupervised learning methods, such as Hidden Markov models

(HMMs) and k-means clustering. DL is the emerging machine

learning subfield that trains models with massive data and

various complex supervised or unsupervised algorithms. DL

involves the use of multi-layer artificial neural networks to learn

the complicated structures and patterns in the data. Among the

DL algorithms, convolutional neural networks (CNN) and

recurrent neural networks (RNN) are the most frequently used

(7, 8). For comprehensive information on the details of these ML

algorithms, interested readers can refer to other reviews (5, 6)

that extend beyond the scope of genomic data applications

discussed here.

With the introduction of these advanced AI-based, especially

DL-based, detection and prediction tools, countless disease-

causing variants were identified and prioritized from big genomic

data, dramatically enhancing our understanding of the etiology of

numerous congenital surgical diseases and promoting the uptake

of this new evidence into clinical practice. In this review, we will

focus on how AI assists the genomic analysis of congenital

surgical diseases by improving the performance of detecting and

prioritizing candidate disease-causing mutations.
2. Application of AI models in the
identification of genetic variants

Variant calling is the critical process to detect genetic variations

from DNA sequencing data. Before this process, the alignment of

sequencing reads to the reference genome is required, then

genetic variants are detected by comparing the differences in

base sequence between the aligned reads and the reference

genome. To detect high-quality genomic variants sensitively and

specifically, numerous tools have been developed using different

AI models (Bayesian, Random Forest, CNN, etc.). The majority

of these tools are established to identify single-nucleotide
frontiersin.org
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variations (SNVs), small insertions and deletions (indels), and copy

number variants (CNVs), as these types of variation are the

dominant sources of a genomic mutation linked to disease.

Similarly, rare and novel CNVs can also be called from

traditional SNP (single-nucleotide polymorphisms) array data

using AI models trained on data with known copy number

information.
2.1. Detection of SNVs and indels

As the major variant types, SNVs and indels could be detected

by plenty of variant calling tools, among which Genome Analysis

Toolkit (GATK), DeepVariants, and FreeBayes are frequently

used. GATK is the most widely used programming framework

for analyzing DNA sequencing data and for the discovery of

SNVs and indels. It applies various machine learning methods

like logistic regression, HMM, and Naïve Bayes classification to

reduce base errors and capture high-quality variants. For

example, in the variant quality score recalibration (VQSR)

process to filter low-quality variants, GATK trained on multiple

variant annotations (e.g., genotype qualities, depth of coverage,

mapping qualities, and local sequence context, etc.) of high-

confident known variants like HapMap genotypes and Omni 2.5

genotypes for 1,000 Genomes samples (9). It then uses the

trained model to assign a well-calibrated variant quality score to

each variant in a callset and refines the callset to a desired high

level of truth sensitivity (10–12).

Unlike GATK, another deep learning-based variant caller

called DeepVariants accurately identifies genetic variants using a

single deep CNN model trained with known genotypes instead of

the combination of multiple statistical models. Using the

Inception architecture, the CNN model calculates the genotype

likelihoods for each site using a pileup image of the reference

genome and sequenced reads around each candidate variant (13).

FreeBayes, a Bayesian variant calling tool, uses a haplotype-based

method to read short haplotypes directly from sequencing data.

It offers many advantages for variants detection compared to

approaches that manipulate a single site simultaneously. To

maintain semantic consistency between the candidate variants,

the haplotype-based method will assess all categories of alleles in

the same sequencing context simultaneously, improving the

detection utilities and accuracy (14).
2.2. Detection of CNVs

Another variant type, CNVs, is the variant that exhibits

differences in the number of copies in specific DNA segments,

specifically manifested as duplication or deletion of a particular

size of DNA fragments (15). A popular CNV caller, PennCNV,

uses HMM algorithm to detect CNVs from intensity data

generated by high-resolution SNP arrays. The parameters of

HMM models were first optimized by training using the Baum-

Welch algorithm on large CNV regions from a large set of

training samples. The optimized HMM then models the observed
Frontiers in Pediatrics 03
intensity data as a mixture of normal distributions, incorporated

with the Log R Ratio (LRR) and B Allele Frequency (BAF) values

for each SNP in the genome to predicted copy number states

(e.g., 0, 1, 2, or more copies) at each genomic location. Next, the

detected CNVs will be validated using the posterior probabilities

of each copy number state calculated by the Bayesian algorithm

with the use of pedigree information to obtain reliable CNVs

(16). The same framework was further extended and adapted for

calling CNVs from whole genome sequencing (WGS) data in

PennCNV-Seq. Another DL-based tool, DeepCNV, aims for

CNV validation instead of CNV calling. It attempts to replace

human visual examination in order to reduce the false positive

rate of CNVs, centering around the CNVs called by PennCNV.

DeepCNV is constructed by a hybrid deep neural network

architecture consisting of a deep convolutional neural network

(CNN) and a deep fully connected neural network (DNN). It can

deal with both image data and summary statistics output from

PennCNV, using CNN and DNN algorithms respectively. This

tool has completely changed the ability of CNV studies and can

trim the raw CNV calls into reliable CNV sets with high

effectiveness and efficiency (17).

In the new era of high-throughput technology, various tools

emerged for identifying CNVs from NGS data using AI models.

Based on a machine-learning approach, CN-Learn accurately

detects high-confidence CNVs by aggregating multiple CNV-

detected methods (CANOES, CODEX, CLAMMS, and XHMM)

from exome sequencing data. Caller-specific and genomic

features such as GC content, CNV concordance, and CNV size

were obtained from multiple CNV callers and further used as the

training dataset for a Random Forest classifier, eventually used to

distinguish true or false positive calls for the identified CNVs

(18). Similarly, CNV-JACG is developed with a random forest

model for Judging the Accuracy of CNVs and Genotyping using

paired-end WGS data. CNV-JACG is trained on 21 distinct

features characterizing true CNV regions, including 13 features

characterizing the breakpoints of CNVs, 6 features of the region

encompassed by the CNV, and 2 features related to the variants

called within the CNV region. After training, the model learns to

determine true and false CNVs and make predictions on the

input dataset, calling real CNVs (19).

CNVs have been reported to have a high impact on congenital

surgical diseases. For example, it has been reported that around

3%–25% of the CHD cases harbored rare pathogenic CNVs that

could produce unproperly working proteins (2). To access the

contribution of de novo CNVs in the pathogenesis of sporadic

CHD, Glessner, J. T. et al. applied PennCNV and XHMM

(exome hidden Markov model) for the detection of high-

confident de novo CNVs from the genotyping array and whole

exome sequencing (WES) data respectively (20). CNVs detected

in silico were then validated experimentally using digital droplet

PCR. Ultimately, they confirmed a significant increase in CNV

burden in CHD cases compared with healthy controls (21).

Tetralogy of Fallot (TOF) is the most common subtype of

CHD, characterized by pulmonary stenosis, ventricular septal

defect, overriding aorta and hypertrophy of the right ventricle

(22, 23). A WGS study on 146 Chinese nonsyndromic TOF
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parent-offspring trios CNV-JACG for the identification of high-

confidence CNVs (>50 bp) from the WGS data. The study

identified 16 de novo CNVs in 14 TOF patients, accounting for

9.6% in the Chinese TOF cohort, which is higher than that in

the general population (24). CNV analysis on Hirschsprung

disease (HSCR), also known as congenital intestinal

aganglionosis, identified a novel candidate gene, NRG3, with an

increased burden of intronic CNVs (both deletions and

duplications) in patients. Furthermore, the CNV analysis also

revealed the differential genetic architecture in relation to CNVs,

such that syndromic HSCR was associated with longer CNVs

whereas isolated HSCR were found to have an increased burden

of shorter CNVs (25).

Biliary atresia (BA) is a rare pediatric hepatobiliary disorder

with multifactorial etiology. It is characterized by progressive

fibro-inflammatory obstruction of the bile duct. The exact cause

of BA is still unknown, but it is thought to be caused by both

genetic and environmental factors. Cheng et al. detected 29 BA-

private CNVs from SNP array data of BA patients and controls

using PennCNV, Birdseye and iPattern. By exploring the

interconnectivity of CNVs, SNPs and genetic networks in BA

patients, they observed a significant enrichment in the immune-

inflammatory pathway for genes associated with these BA-

associated CNVs (26).
3. Application of AI models in variant
prioritization

Generally, the critical process of genomic analysis includes

variant detection and variant annotation. Variants could be

annotated with multiple variant features, like their associated

gene symbol, protein consequence of nucleotide change, allele

frequency, etc., among which deleterious prediction is the

important term. With the predicted deleterious score, one could

easily prioritize potentially damaging causative variants,

facilitating the clinical interpretation of variants and thus

contributing significantly to the study of congenital diseases.
3.1. Prioritizing deleterious mutations in the
coding region

Combined Annotation-Dependent Depletion (CADD) is the

most widely used annotation tool to predict the deleteriousness

of short variants (SNVs and indels) in genetic studies of both

monogenic and complex diseases. It applies a machine learning

model to aggregate diverse annotations, including evolutionary

conservation metrics from other annotated tools (phastCons

scores, GERP, and phyloP), regulatory information and

functional prediction, into a single, comprehensive measure,

including evolutionary conservation, regulatory information,

functional prediction score for each variant. Using the SVM

algorithm, the model is trained on a set of known pathogenic

and benign variants, learning to discriminate between these two

classes based on the input annotations with high precision and
Frontiers in Pediatrics 04
accuracy for all kinds of variants like missense, splice, and

frameshift variants (27, 28).

In contrast, another tool Rare Exome Variant Ensemble

Learner (REVEL), is designed only to predict the pathogenicity

of missense variants. Similar to CADD, REVEL is an ensemble

method integrated with 13 other prediction tools: MutPred,

FATHMM, VEST, PolyPhen, SIFT, PROVEAN,

MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP,

and phastCons. It is trained by Random Forest using a dataset of

known pathogenic and rare neutral missense variants to predict

the potential effect of the query variants. As reported, REVEL

has better performance on pathogenicity prediction of missense

variants than other ensemble methods: MetaSVM, MetaLR,

KGGSeq, Condel, CADD, DANN, and Eigen and thus widely

adopted for predicting in silico damaging effect (PP3) as

supporting evidence of pathogenicity in ClinGen Expect

specifications in variant interpretation (e.g., hearing loss Familial

Hypercholesterolemia) (29–31).

AI-based variant annotation has been instrumental in the

genetic analysis of rare congenital surgical diseases. In a WGS

study of a Chinese cohort with TOF, Tang et al. extracted

potential rare damaging variants by the damaging Phred-scaled

CADD scores; thereby identified 6 TOF patients with ultra-rare

damaging variants in 3 known TOF genes (KDR, FLT4 and

NOTCH1). It also pointed out novel biological pathways and

developmental hotspots relevant to the dysregulation of cardiac

development in TOF through enrichment analysis (24). Page

et al. called variants using GATK and defined likely pathogenic

nonsynonymous variants with a scaled CADD score≥ 20,

highlighting the increased burden of NOTCH1 mutations in TOF

(32). Likewise, a trio-based WES study on BA identified rare,

deleterious de novo or biallelic variants in liver-expressed ciliary

genes in 31.5% (28/89) of the BA patients with the help of the

CADD, SIFT and PolyPhen2. They found that these rare

deleterious variants in liver-expressed ciliary genes were

associated with a significant two-fold increased risk of BA,

underlying the potential disease mechanism of BA led by the

malformation and dysfunction of cilia (33).
3.2. Prioritizing variants that may lead to
alternative splicing

Alternative splicing is regulated by an extensive protein-RNA

interaction network involving cis-elements within the pre-mRNA

and trans-acting factors that bind to these cis-elements. It is a

crucial regulator of gene expression, with around 15% of disease-

causal mutations predicted to alter mRNA splicing (34).

Disruption of splicing (for example, exon skipping and intron

retention) would result in aberrant proteins that don’t work

correctly. Nowadays, numerous tools have been developed to

predict the effects of splice variants, emphasizing whether

variants in the splice regions can potentially lead to the loss or

gain of the splice donor or splice acceptor.

SpliceAI uses an ultra-deep CNN model to computationally

predict the effects of genetic variants on splicing based on the
frontiersin.org
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sequence of the pre-mRNA transcript. SpliceAI trained on the

dataset from GENCODE (an integrated annotation of gene

features) and the RNA-seq data Genotype-Tissue Expression

(GTEx). Training on the GTEx RNA-seq dataset conduces to

enhance the sensitivity of splicing-altering variation detection,

particularly for detecting deep intronic splicing variants. Given a

genetic variation, SpliceAI generates a couple of scores for the

effects on acceptor/donor gain and acceptor/donor gain (35).

Similar to SpliceAI, MMSplice (modular modeling of splicing) is

a neural network-based model to predict the effects of variants

on exon skipping, splice site choice, splicing efficiency, and

pathogenicity. It consists of six modules scoring sequences from

different genomic regions, wherein the donor and acceptor

modules are trained using GENCODE annotation features, while

the exon modules (exon 5’ and exon 3’ modules) and intron

modules (intron 5’ and intron 3’ modules) are trained using

massively parallel reporter assays (MPRAs) experiment, based on

different module architectures. These six modules are combined

with a linear model to score the variant effects on exon skipping,

alternative donor/acceptor site, and splicing efficiency separately.

Furthermore, it integrated with a logistic regression model to

predict variant pathogenicity. For each input variant, MMSplice

would output several scores, including (1) a main score that

exhibits the effect of the variant on the inclusion level, (2) a

pathogenicity score that shows the potential pathogenic effect, (3)

an efficiency score that demonstrates the variant effect on

splicing efficiency of the exon and (4) several scores for the

effects of the acceptor/donor/exon/intron according to the

reference allele and alternative allele (36).

In the context of genomic analyses, tools like SpliceAI and

MMSplice are typically employed not in isolation but as part of a

more extensive set of methods to prioritize pathogenic variants

with deleterious effects. Belbin et al. explored a cryptic splice

variant in ABCB4, predicted to cause a splice acceptor loss by

SpliceAI (score = 0.39) through an IBD-based (identity-by-

descent) phenome-wide association study (PheWAS) analysis and

fine-mapping. It was further validated to disrupt the splicing of

the ABCB4 pre-mRNA in vitro, leading to the skip transcription

of exon 23, thus resulting in liver disease (37). Given the

complex genetic architecture of the congenital disease, most of

the time, researchers may not only employ tools for the

prediction of coding variants but also adopt other tools for the

prediction of splicing variants or regulatory variants. For

example, a study that concentrated on the detection of mosaic

mutation implicated in CHD captured deleterious missense

variant by REVEL (with a score > 0.5) and damaging splicing

variants by SpliceAI (with a delta score > 0.5) (38). Therefore,

researchers would annotate the splice variants together with

other variants using some ensemble tools or databases. Take

CADD-Splice (same as CADD v1.6) as an example, it integrated

with several superior ML-based methods (including SpliceAI and

MMSplice) to score the potential splicing effect led by the

genetic variations (39). On the other hand, dbNSFP is a

comprehensive database designed to annotate the functional

impact of all SNPs in the human genome. It complied dozens of

prediction scores from various tools, consisting of (i) functional
Frontiers in Pediatrics 05
prediction (from SIFT, Polyphen, CADD, etc.), (ii) conservation

scores (from phyloP, phastCons, GERP++, etc.), and (iii) many

other variant annotations like allele frequency, gene information,

protein information, splicing effect, regulatory elements, and

gene-associated phenotype of mouse and zebrafish (40).
3.3. Prioritizing potentially damaging
regulatory variants

Historically, the majority of diseases’ pathogenic variants are

detected in the protein-coding regions, although it only takes up

around 2% of human genomes. Nonetheless, disease-causing

variations in the coding areas could only elucidate about 20%–

50% of the diseases’ etiology, indicating that rare noncoding

variations may contribute substantially to disease risk (41).

Unlike coding variants that may affect protein structure,

function and folding, noncoding variants disrupting functional

regulatory elements (e.g., enhancers, insulators, promoters, etc.)

have the potential to dysregulate gene expression and thus

contribute to genetic diseases (42). Deleteriousness prediction

tools primarily trained with coding datasets, like CADD and

REVEL, are insufficient to predict the pathogenicity of

noncoding variation. Hence, other variation annotation tools

specialized in predicting the regulatory effect of noncoding

variants are needed.

DeepSEA is a deep learning model specialized in predicting the

functional effects of noncoding mutations. It uses a multi-layer

CNN architecture to decode the regulatory sequence from

massive epigenomic profiles and predict the chromatin effects of

the genomic mutations. DeepSEA takes a 1,000 base pairs (bp)

DNA sequence centered on each variant as input and creates a

couple of sequences harboring either the reference or alternative

allele at the variant position. Then it calculates the chromatin

effect size across each epigenomic feature for each reference and

alternative allele, in which the absolute differences between wild-

type and mutation could be obtained. Additionally, DeepSEA

also takes evolutionary conservation into account and computes

the conservation score for each variant using PhastCons, PhyloP

and GERP++. By incorporating the variant-phenotype

information on human pathogenic variants from the Human

Gene Mutation Database (HGMD), DeepSEA has the capacity to

forecast the deleterious regulatory impacts that regulatory

variations may have, thereby aiding in the prioritization of

functional variations (43).

DeepSEA is a general deep learning model to predict the

regulatory effects of noncoding variants for all kinds of diseases.

HeartENN, on the other hand, is a heart-specific neural network

built on top of DeepSEA to predict the epigenomic outcomes of

variants in relation to heart diseases (like congenital heart

disease) with a double number of convolution layers architecture

(44). HeartENN is established with two neural network-based

epigenomic effects models, one for predicting heart-specific

human chromatin features (histone marks, transcription factors

and DNase I accessibility) and the other for mice. To assess the

utility of the HeartENN model, developers applied it to the WGS
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TABLE 1 AI-based tools utilized in the detection and prioritization of
disease-causative variants.

Purpose Variant
type

Tools Methods Launch
year

Variant calling SNVs/indels GATK HMM,
Bayesian, etc.

2010

FreeBayes Bayesian 2012

DeepVariants Deep CNN 2018

CNVs PennCNV HMM 2007

CN-Learn Random Forest 2019

CNV-JACG Random Forest 2020

DeepCNV Deep CNN 2021

Variant
prioritizing

Coding
variants

CADD SVM 2014

REVEL Random Forest 2016

Splicing
variants

SpliceAI Deep CNN 2019

MMSplice Deep CNN 2019

Regulatory
variants

DeepSEA Deep CNN 2015

HeartENN Deep CNN 2020

MARVEL GLM-LARS 2020

HMM, hidden markov model; CNN, convolutional neural networks; SVM, support

vector machine; GLM-LARS, generalized linear model-based least angle regression.

FIGURE 2

Schematic diagram of the review. (A) Application of AI models in variant detec
prioritization of disease-causing variants in different genomic regions (coding
congenital surgical diseases.

Lin et al. 10.3389/fped.2023.1203289
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data from 749 CHD trios and 1,611 unaffected trios. They found

that variants prioritized by HeartENN damaging score (scores

≥0.1) exhibited significant enrichment of the known human

CHD genes in CHD cases. Cooperating with a strategy focused

on human fetal cardiac enhancers, they confirmed that genes

enriched for noncoding DNVs in human fetal cardiac enhancers

also have an excess burden on the noncoding DNVs with

HeartENN scores ≥0.1, suggesting the capability of the

HeartENN in the prioritization of potentially disruptive

regulatory noncoding DNVs implicated in CHD (44).

Multiscale Analysis of Regulatory Variants on the Epigenomic

Landscape (MARVEL) is developed with a ML algorithm GLM-

LARS (generalized linear model-based least angle regression) to

prioritize phenotype-associated noncoding variants using WGS

data and cell-type specific epigenomic profiles. It integrates gene

annotation information, publicly available epigenetic data (e.g.,

enhancers, promoters, transcription factor motifs) from relevant

tissues and the covariates of sample phenotypes to identify

potential regulatory regions affected by the noncoding variants.
tion, including SNVs, indels and CNVs; (B) Application of AI models in the
, splicing, and noncoding); (C) Application of AI models in the research of

frontiersin.org

https://doi.org/10.3389/fped.2023.1203289
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Lin et al. 10.3389/fped.2023.1203289
The developers applied MARVEL to the WGS data of 431 short-

segment Hirschsprung disease (S-HSCR) cases and 487 ethnically

matched controls. Together with ChIP-seq and ATAC-seq data

of the human pluripotent stem cell (hPSC)-derived enteric

NC-like cells (hNC), they uncovered multiple novel genes

implicated in S-HSCR by affecting neural crest migration and

development (45).
4. Current advances and challenges in
variant interpretation

While AI-based tools have made significant contributions to

the detection and prioritization of disease-causing variants

(Table 1), a persistent challenge in genomic research lies in

variant interpretation. In 2015, the ACMG/AMP published an

authoritative guideline to standardize variant interpretation,

which categorizes variants into five classes ranging from benign

to pathogenic (30). Subsequently, multiple platforms were

developed for automated variant interpretation based on the

ACMG/AMP criteria, such as VarSome, VSClinical, and AION

from Nostos genomics. However, although these platforms have

facilitated the effective and efficient prioritization of pathogenic

or likely pathogenic variants along with their supporting

evidence, they still face challenges in interpreting variants of

uncertain significance (VUS).
5. Conclusion

AI makes it possible to integrate and model vast amounts

of genomic data quickly and accurately, facilitating the

identification, annotation and prioritization of genetic

mutations that contribute to disease development (Figure 2).

However, large amounts of diverse data are required to train

the AI models. Small sample sizes and the lack of diversity

in the data available for genomic analysis can limit the

accuracy and reliability of the results generated by these

models. Moreover, due to the potential variability in

predicted outputs generated by distinct AI models, clinicians

and researchers may encounter difficulties discerning the

most precise outcome and interpreting the underlying
Frontiers in Pediatrics 07
pathomechanisms of congenital diseases. Overall, AI has

been confirmed to be a powerful tool that revolutionizes

disease-specific genomic analysis by providing speedy and

precise insights into the complex relationship between

genetics and disease development. Ultimately, these findings

that traditional methods might have missed will lead to

earlier diagnosis and better prognoses for patients with

complex congenital disorders.
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