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Extracellular vesicles (EVs) are a heterogeneous group of nano-sized membranous
structures increasingly recognized as mediators of intercellular and inter-organ
communication. EVs contain a cargo of proteins, lipids and nucleic acids, and
their cargo composition is highly dependent on the biological function of the
parental cells. Their cargo is protected from the extracellular environment by the
phospholipid membrane, thus allowing for safe transport and delivery of their
intact cargo to nearby or distant target cells, resulting in modification of the
target cell’s gene expression, signaling pathways and overall function. The highly
selective, sophisticated network through which EVs facilitate cell signaling and
modulate cellular processes make studying EVs a major focus of interest in
understanding various biological functions and mechanisms of disease. Tracheal
aspirate EV-miRNA profiling has been suggested as a potential biomarker for
respiratory outcome in preterm infants and there is strong preclinical evidence
showing that EVs released from stem cells protect the developing lung from the
deleterious effects of hyperoxia and infection. This article will review the role of
EVs as pathogenic messengers, biomarkers, and potential therapies for neonatal
lung diseases.
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1. Introduction

Airway cells are often exposed to microbes, environmental insults such as hyperoxia,

hypoxia, and mechanical stimuli. These ecological cues induce airway injury,

inflammatory responses, and repair processes in the respiratory system. Coordinated

intercellular communication is required to maintain lung homeostasis. However, constant

exposure to these environmental insults can damage the epithelial barrier leading to

excessive inflammatory responses and lung pathology. In the last decade, extracellular

vesicles (EVs) have been recognized as important mediators of lung homeostasis and

disease (1).

EVs are nano-sized particles characterized based on their physical properties such as size

(small EVs are <200 nm and large or medium EVs are >200 nm) or density (low, middle or

high), biochemical composition (CD63+/CD81− EVs, Annexin A5 EVs, etc.) and description

of conditions or cells of origin (lung epithelial cell-derived EVs, podocyte-derived EVs,

hypoxia-induced EVs, etc.) (2). EVs contain a cargo of cell-specific lipids, proteins,
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metabolites, and nucleotides that influence the molecular and

functional properties of neighboring and distant target cells (2).

EVs are also categorized based on how they are generated (2).

EVs generated by directly budding of the cell plasma membrane

have been termed microvesicles, and these are typically 100–

1,000 nm in size (3). On the other hand, exosomes (30–100 nm

in diameter) are formed from exocytosis of intraluminal vesicles

(ILVs). ILVs are generated by endocytosis of cellular cargo

(proteins, lipids, metabolites, nucleotides), forming endosomes

and subsequently multivesicular bodies (MVBs). MVBs are

transported to the plasma membrane through the cytoskeletal

and microtubule network. They undergo fusion with the plasma

membrane and secretion of ILVs into the extracellular space as

exosomes (4). This is regulated by various signaling mechanisms

and stimuli, including receptor activation by adenosine

triphosphate (ATP) and lipopolysaccharide (LPS) (5, 6). The

process also involves the assembly of SNAREs (soluble

N-ethylmaleimide-sensitive fusion protein attachment protein

receptors) complexes, which draw opposing membranes together

to create the energy required for membrane fusion (7).

Microvesicles are released through the outward budding and

fission of the plasma membrane; this is calcium dependent and

associated with cytoskeleton remodeling (3, 8–10).

Specific combinations of proteins and lipids such as

tetraspanins, adhesion molecules, glycoproteins, cholesterol,

sphingomyelin, and antigen presenting molecules are present on
FIGURE 1

Structure, cargo and function of extracellular vesicles. Extracellular vesicles (EV
cargo consisting of proteins, mRNA, miRNA, DNA, and lipids. EVs can be isola
1,000 nm. EVs isolated from the lung fluids and peripheral blood can be use
the pathogenesis neonatal lung diseases. Mesenchymal stromal cell (MSC)
neonatal lung diseases.
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the surface of EVs (2). The exact composition is however

dependent on the EV cellular origin, pathogenic conditions, and

the mechanism of biogenesis (2). These proteins and lipids

influence cellular transport, target cell identification and

reception, cargo sorting, and cell programming (8).

EVs are produced by almost all cell types in the respiratory

tract (11). Cell types already studied include alveolar type II

pneumocytes, pulmonary vascular endothelial cells (PVECs),

macrophages, mast cells, and fibroblasts. Under stress such as

infection, oxidative stress, and mechanical stress, EVs released by

injured lung cells contribute to the development of lung

pathologies (12). In addition, lung cell-derived EVs may serve as

biomarkers for lung disease risk and severity (11). We will review

the mechanisms by which EVs induce lung pathology, the role of

EVs as biomarkers in both adult and neonatal lung diseases, and

the potential of EVs as vehicles for drug delivery (Figure 1).
2. EV isolation

The EV membrane is composed of a phospholipid bilayer

containing major histocompatibility complex molecules and

tetraspanins. A major challenge of EV research however is

achieving high purity EVs while maintaining their integrity and

biological activity. Table 1 summarizes common methods of EV

isolation.
s) are composed of a lipid bilayer containing transmembrane proteins with
ted from various body fluids and have diverse sizes ranging from 100 to
d as biomarkers for neonatal lung diseases. EVs have also been linked to
-derived EVs and bioengineered EVs are potential novel therapies for
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TABLE 1 Isolation of EVs.

Method Advantages Disadvantages References
Ultracentrifugation • Gold-standard

• Cost-effective
• High yield

• Time-consuming
• Costly
• Easily contaminated
• Poor preservation of EV integrity and bioactivity due to high G force

(13, 14)

Ultrafiltration • Simple
• Cheap

• Low-yield
• Poor preservation of EV integrity

(15)

Size-exclusion
chromatography

• Cheap
• Biologically intact EVs
• Consistent yield

• Time-consuming but quicker than ultracentrifugation (15–17)

Polymer precipitation • Quick, simple process
• Cost-effective

• Only smaller volume samples
• Extremely prone to contamination by precipitation with non-exosome particles
• Inconsistent results

(18, 19)

Immunoaffinity • Quick, simple process
• High purity

• Costly
• Only smaller volume samples

(11, 13)

Membrane-based separation • Quick
• High yield
• High purity

• Specific sample types only (e.g. urine), unable to handle samples with heterogenous cell types–
will affect purity

• Membrane clogging

(16)

Microfluidic platforms • High-throughput
• High yield
• High purity

• Lack of standardization of devices resulting in heterogenous data
• Only smaller volume samples

(20)
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Ultracentrifugation is considered the gold standard. It utilizes

extremely high centrifugal forces to separate EVs from other

biological particles, is affordable and requires little technical

skill. However, ultracentrifugation as a purification method is

time-consuming, prone to contamination by other particles of

similar weight and density, and EV integrity and bioactivity may

not be preserved after ultracentrifugation (13, 14, 21).

Ultrafiltration employs physical filters of varying pore sizes

and properties like application of electric charge and

transmembrane pressure. Ultrafiltration can also be combined

with other techniques such as low-speed centrifugation,

ultracentrifugation, or size-exclusion chromatography (15).

The process of ultrafiltration is simple to perform. However,

there are limitations to sample processing – low-yield,

membranes clogging, damage to EVs, types of samples that can

be ultrafiltered, and the process of ultrafiltration is time-

consuming (9).

Size-exclusion chromatography (SEC) is an increasingly

popular technique that involves running samples through porous

beads leading to separation of molecules by size. EVs isolated by

SEC are biologically intact, making this method ideal for

functional research (16). When used in conjunction with

ultracentrifugation, EV yield and purity are significantly

increased (17). The polymer precipitation method utilizes

reagents such as polyethylene glycol (PEG) to cause precipitation

of EVs, allowing isolation of EVs by simple centrifugation,

making it cost-effective and efficient, but prone to contamination

(18).

The immunoaffinity technique is done by priming a medium

with target antibodies to bind with specific surface antigens or
Frontiers in Pediatrics 03
receptors present on EVs of interest. This isolates EVs with high

purity, but this method is costly and difficult to sustain.

Membrane-based separation methods isolate EVs through

binding of membrane hydrophilic phosphate of EVs to metal

oxides or the negatively charged membranes to positively

charged molecules. This method is high yield, efficient and has

high purity rates (19).

Microfluidic platforms are sophisticated networks utilizing

various methods of purification organized in a miniature device.

Purification methods include immunoaffinity, membrane-based

filtration, nanowire trapping, acoustic nanofiltration,

deterministic lateral displacement, and viscoelastic flow sorting.

Microfluidic devices can achieve high throughput, high yield and

high purity EVs, but there is a lack of standardization of devices

contributing to heterogeneity of results reported by multiple

investigators utilizing various devices (20).
3. EV characterization

Analyzing the particle size, morphology and biocomposition of

EVs by multiple, complementary techniques is critical in evaluating

the likelihood that biomarkers or functions are associated with EVs

and not other co-isolated materials (2).

The International Society for Extracellular Vesicles has

proposed the Minimal Information for Studies of Extracellular

Vesicles-2018 (MISEV2018) guidelines, which recommends that

the source and preparation of the EV must be described

quantitatively (2). MISEV2018 also recommends using

techniques that provide images of single EVs at high resolution
frontiersin.org
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such as electron microscopy, using single particle analysis

techniques that estimate biophysical features of EVs, and

assessing the topology of EV-associated components (2). The

commonly used EV characterization techniques are listed in

Table 2.

Dynamic light scattering can be used to measure particle size,

but analysis is limited when EVs of various sizes are present, and

this cannot be used for functional analysis (22, 23). High

resolution flow cytometry is a reliable and popular technique that

enables structural analysis, quantification, and functional EV

characterization (26). Nanoparticle tracking is a method by

which the concentration, size distribution and particle velocity of

EVs are measured. In nanoparticle tracking, specific antigens can

also be identified with fluorescent tagged antibodies, providing

more functional information (22). Atomic force microscopy is a

technique that provides outputs of EV quantity, morphology,

structural and functional analysis at a molecular level. This

technique also preserves the integrity and bioactivity of EVs (24).

Electron microscopy (EM) can also be used for structural

characterization of EVs. EVs can be visualized with transmission

EM, with a characteristic cup-shaped appearance of EVs due to

dehydration during sample processing (25). Cryo-EM, on the

other hand, allows for visualization of intact EVs without

dehydration, enabling ultrastructural analysis of EV membranes

and contents (31). EV membrane and cargo components can be

analyzed with techniques according to molecule type, such as

Western Blot and mass spectroscopy for proteins, and microarray

and next generation sequencing for DNA or RNA (27–30).
TABLE 2 Characterization of EVs.

Technique Main features
Nanoparticle tracking
analysis (NTA)

• One of the most used methods
• Provides parameters of concentration and particle
size (10–2,000 nm)

• C
th

Dynamic light scattering
(DLS)

• Used for size measurements in the range of 1–
6,000 nm

• Possible recovering samples after analysis

• D
sm

Atomic force microscopy
(AFM)

• Detects the morphology of the sample in three-
dimensional space

• Generates topographic images of the samples with a
resolution limit around 1 nm

• M
lim
va

Transmission electron
microscopy (TEM)

• Images of high-resolution particles
• Using immunogold-labeling to further reveal EV
proteins

• Lo
• La

Flow cytometry • Records both the scattering and fluorescence signals
• Analyzes multiple labels on individual particles
• Identifies various types and subsets

• Lo
• Lo
• Li
flu

Protein content of EVs • Proteomics technology allows the creation of large-
scale profiling of proteins secreted through EVs

• Immunoblotting can be used to detect EV markers
and target proteins

• E
• So
• N
un

RNA content of EVs • High-throughput RNA-seq
• Validates by RT-qPCR

• Lo
co
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Given the wide range of techniques available for both isolation

and characterization of EVs with varying qualities, and with

numerous research studies focusing on EVs that have been

reported and are ongoing, there is a need for standardization of

research protocols and techniques to maximize knowledge-

sharing and productivity of the scientific community. Efforts are

being made through the International Society for Extracellular

Vesicles (ISEV) to create task forces and research guidelines to

overcome these challenges (32, 33).
4. EVs in the pathogenesis of lung
diseases

Increasing evidence indicates that EVs play essential roles in

the pathogenesis of various adult lung diseases, including acute

lung injury (ALI), acute respiratory distress syndrome (ARDS),

asthma, chronic obstructive pulmonary disease (COPD), and

pulmonary hypertension. The involvement of EVs in neonatal

lung diseases has also been reported in bronchopulmonary

dysplasia (BPD), but much less is known.
4.1. EVs and adult lung diseases

ALI and ARDS are devastating and rapidly progressive

respiratory disorders that are characterized by disruption of the

integrity of alveolar and vascular endothelial barriers (34–36). In
Drawbacks References
ritical parameters for success of NTA are sample preparation and
e correct dilution factor

(2, 22)

etection of smaller particles becomes challenging in the mixture of
all and large particles

(22, 23)

easures samples in their native condition, which can turn into a
itation of the method as native state of different samples can be
ried

(24)

ss of material during extensive sample preparation
ck of multiparametric phenotyping and low throughput capacity

(25)

w sensitivity to discriminate small size EVs
w fluorescence being emitted by labeled EVs
mited feasibility of post-stain washing to reduce background
orescence

(26)

Vs must be broken prior to analysis
me of the makers are not present in every/each EV
o single protein or combination of proteins can be recommended as
iversal EV markers

(27–30)

w yield of materials often below the detection limit of the most
mmon quantification techniques

(27–30)
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response to inflammatory stimuli, EVs and microparticles (MPs)

are released from circulating inflammatory cells, damaged

PVECs, and epithelial cells (37). In preclinical models, PVEC-

derived EVs induce significant lung injury, as demonstrated by

alveolar-capillary barrier failure, lung edema, and neutrophil

infiltration in mice (38). These pathological effects are linked to

and presumably at least in part mediated by the detrimental

effects of PVEC-derived EVs on endothelial function. In ALI

models, PVEC-derived EVs induce a reduction in endothelial

nitric oxide (NO) production and an increased release of lung

inflammatory cytokines (39).

Alveolar macrophage derived EVs are also abundant in the

bronchoalveolar lavage fluid (BALF) in animal models of ALI.

They are capable of inducing inflammatory responses both in

vivo and in vitro (37, 40–42). Alveolar macrophage derived EVs

trigger EV release by epithelial cells and neutrophils and deliver

high concentrations of TNF-α to alveolar epithelial cells, leading

to increased production of keratinocyte-derived chemokine and

intercellular adhesion molecule-1 (37, 40–42), inducing a vicious

cycle of inflammatory injury.

Alveolar epithelial cell derived EVs are also important

mediators of ALI. In hyperoxia-induced ALI, alveolar epithelial

cell-derived EVs are increased in BALF and serum (43) and they

activate proinflammatory responses in systemic and pulmonary

macrophages leading to disease progression (44).

COPD is characterized by severe airway inflammation and

subsequent lung parenchymal damage. Mononuclear/

macrophage-derived EVs rich in inflammatory mediators such as

cytokines, chemokines, adhesion molecules, and proteases have

been linked to alveolar wall destruction and emphysema, the

hallmarks of COPD (11, 45). Endothelial-derived microparticles

can promote the progression of COPD by inducing apoptosis of

neighboring health endothelial cells upon delivery of

inflammatory cargo (46). Epithelial-derived EVs have also been

linked to the pathogenesis of COPD. Cigarette smoke stimulates

human bronchial epithelial cells to release EVs enriched in full-

length CYR61/CTGF/NOV family 1 (CCN1) protein that not

only mediates IL-18 induced inflammation but also helps

maintain lung homeostasis by increasing the levels of vascular

endothelial growth factor (VEGF) (47). Cigarette smoke extract-

induced human bronchial epithelial cell-derived EVs promote

myofibroblast differentiation of lung fibroblasts, leading to the

development of fibrosis (48). Cigarette smoke-exposed lung

epithelial cells also release EVs that contain pro-inflammatory

cytokines and Wnt-5a into the circulation, and these EVs can

reach distant cells and organs (49).

EVs are also implicated in the pathogenesis of pulmonary

hypertension. Patients with pulmonary arterial hypertension

(PAH) have increased endothelial-derived CD62e microparticles

in their pulmonary arterial blood (50). PAH patients also have

increased microparticles positive for endothelial PECAM and

VE-cadherin in their plasma samples (51). In monocrotaline-

induced PAH, lung- and plasma-derived small-sized EVs isolated

from monocrotaline-exposed mice induce PAH in healthy mice

(52). EVs from PAH mice and patients contain elevated levels of

miR-19b, miR-20a, miR-20b, and miR-145, known to target bone
Frontiers in Pediatrics 05
morphogenesis protein receptor signaling, apoptosis, and cell

proliferation. EVs from the lungs of PAH mice reduce apoptosis

of PVECs (53). Furthermore, EVs released by PVECs from

PAH mice convert healthy bone marrow-derived endothelial

progenitor cells into a pathological progenitor phenotype. These

cells induce pulmonary vascular remodeling when injected into

the lungs of healthy mice (54).
4.2. EVs and bronchopulmonary dysplasia
(BPD)

BPD is the most common adverse outcome of extreme

prematurity (55). It is the result of antenatal injury to the

developing lung combined with repetitive and multiple post-natal

insults, including oxygen therapy and ventilation, leading to

alveolar simplification and vascular rarefaction (55). Not much

is, however, known about the role of EVs in BPD pathogenesis.

Genschmer and collaborators compared the function of EVs

derived from BALF from BPD and non-BPD infants in a murine

model (56). Intriguingly, mice that received intranasal BPD-

derived EVs had significant alveolar hypoplasia and right

ventricular hypertrophy, suggesting a role for EVs in BPD

pathogenesis (56).

Recently, Lal et al. also demonstrated that the tracheal aspirate

of infants with severe BPD had higher EV particle concentrations

as compared to control infants, and the majority of these EVs

were derived from epithelial cells (57). EVs shed from hyperoxia

and LPS-exposed epithelial cells had reduced miR-876-3p. Gain

of miR-876-3p in murine models attenuated hyperoxia and LPS-

induced alveolar simplification, highlighting a potential critical

role of lung epithelial cell-derived EV-miRNAs in the

pathogenesis of BPD (57). miRNAs are non-coding RNAs that

bind to sequences in the 3′ untranslated region (3′UTR) of

target mRNA, resulting in the destruction of target mRNA or its

repression (58).

Recently, our laboratory investigated the critical role of

circulating EVs from hyperoxia-exposed and mechanical

ventilated newborn rats in inducing brain injury in healthy

newborn rats (59, 60). In the hyperoxia model, newborn rats

were exposed to room air or 85% oxygen for two weeks, and

circulating EVs were isolated from the plasma of these rats.

Fluorescence activated cell sorting (FACS) and Western blot

analyses demonstrated that the EVs from hyperoxia-exposed

rats contain increased levels of both surfactant C (SPC) and

gasdermin D (GSDMD), a key executor of inflammasome-

induced cell pyroptosis. When these EVs were adoptively

transferred into healthy newborn rats by intra-tail vein

injection, they were taken up by the lung and brain. In the

lung, the EVs from the hyperoxia-exposed rats induced

inflammation, indicated by increased inflammatory cell

infiltration in the alveolar airspaces and expression of

inflammatory cytokines and chemokines. Furthermore,

alveolarization and vascular density were drastically reduced in

the lungs that received EVs from hyperoxia-exposed rats. In

vitro experiments with PVECs demonstrated reduced cell
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proliferation and increased cell death when cultured with EVs

from hyperoxia-exposed rats (59). Upon examining the brain,

EVs from hyperoxia-exposed rats induced brain inflammation

by activating microglia and increasing expression of pro-

inflammatory cytokines. These changes were associated with

increased cell death in the cortex, subventricular zone, and

subgranular zone. Additionally, in vitro experiments showed

that neural stem cells (NSC) had decreased proliferation and

increased cell death when cultured with EVs from hyperoxia-

exposed rats (59). EVs from cultured hyperoxia-exposed lung

epithelial cells induced pyroptosis in NSC (59). This data

revealed a novel lung-brain crosstalk mediated by lung

epithelial-derived EVs in both lung and brain injury.

This EV-mediated lung-brain crosstalk was further investigated

in mechanical ventilation-associated brain injury in newborn rat

models (60). We demonstrated that injurious mechanical

ventilation induced similar markers of inflammation and

pyroptosis, such as IL-1β and activated caspase-1/GSDMD in

both lung and brain, in addition to inducing microglial activation

and cell death in the brain (60). EVs isolated from neonatal rats

with ventilator-induced lung injury had increased caspase-1.

Adoptive transfer of these EVs into healthy newborn rats led to

neuroinflammation with microglial activation and activation of

caspase-1 and GSDMD in the brain, similar to that observed in

neonatal rats that were mechanically ventilated (60). Thus,

circulating EVs can contribute to brain injury and possibly poor

neurodevelopmental outcomes in preterm infants exposed to

hyperoxia and mechanical ventilation (60).
5. EVs as biomarkers for lung diseases

The stability of EVs is a potential advantage over traditional

biomarkers. Traditional biomarkers such as proteins and RNA

molecules are often unstable and susceptible to degradation over

time, making them less reliable for diagnostic purposes. In

contrast, EVs are surrounded by a protective lipid membrane

that helps to stabilize their contents, including proteins, nucleic

acids, and other molecular components (61). Proteomic and

phosphoproteomic studies conducted on EVs from different cell

types have suggested that they transport a diverse range of

biologically relevant molecules, such as lipids, carbohydrates,

RNAs, and some are believed to exhibit heterogeneity in

composition, which is dependent on their cellular origin (62).

EVs can carry specific proteins or RNA molecules that are

unique to lung diseases. For example, sputum of patients with

severe asthma has elevated levels of miR-142-3p, miR-629-3p,

and miR-223-3p (63), and sputum-derived EVs from idiopathic

pulmonary fibrosis (IPF) patients show an aberrant expression of

miR-142-3p, miR-33a-5p, and let-7d-5p compared to healthy

subjects (64).

There are few reports that EV-miRNAs can be used as

biomarkers for BPD (65). In the study by Lal et al., EV miR876-

3p was a potential biomarker for severe BPD in preterm infants.

Decreased expression of EV miR-876-3p at birth predicted the

future development of severe BPD in ELBW infants (57). This
Frontiers in Pediatrics 06
study established the predictive potential and causative role of

microbiota-regulated miR-876-3p in severe BPD (57).

More recently, Ransom et al. characterized tracheal aspirate EVs

in preterm infants between 22- and 35-week gestational age. Across

all gestational ages, the majority of tracheal aspirate EVs expressed

epithelial and immune cell markers. Moreover, infants who

developed BPD had increased CD14+ EVs in their first tracheal

aspirate obtained within 24 h of birth (66).
6. EVs as therapies for neonatal lung
diseases

Mesenchymal stromal cells (MSCs) have regenerative

properties and it is increasingly known that MSC-derived EVs

replicate many of the beneficial effects of MSCs. EVs may also be

bioengineered for drug delivery and genetically modified to carry

specific target molecules. Although these therapeutic strategies

are in the early stage of development, the prospect of using them

in newborn infants is encouraging.
6.1. Stem cell derived EVs for newborn lung
diseases

MSCs are efficacious in neonatal lung injury models (67–69).

The pleiotropic properties of these cells make them particularly

attractive and given their paracrine-mediated mechanism of action,

MSC-derived EVs have been investigated as potential therapies.

In an experimental model of chorioamnionitis, antenatal

administration of MSC-EVs reduced placental inflammation, and

preserved lung structure, suggesting that antenatal MSC-EVs are

efficacious in alleviating the deleterious effects of intrauterine

inflammation. In experimental pre-eclampsia, MSC-EVs restore

placental vascularity and preserve neonatal lung structure (70). In

experimental BPD models, MSC-derived EVs restore alveolar

structure, prevent lung vascular rarefaction, and alleviate PH by

altering macrophage polarization, reprogramming bone marrow

myeloid cells and increasing pro-angiogenic signaling pathways

(70–77).

We recently compared the therapeutic efficacy of intra-tracheal

(IT) and intravenously (IV) delivered MSC-EVs in a preclinical

model of BPD. We demonstrated that systemically and IT

delivered MSC-EVs have similar beneficial effects in experimental

BPD (78). This finding is promising as IV MSC-EVs may also

have beneficial effects on the developing brain (79). Another

important question which we recently sought to address is the

duration of MSC-EV therapeutic effects in experimental BPD.

We administered MSC-EVs to neonatal pups with hyperoxia-

induced BPD on postnatal day 3 and followed the pups into

young adulthood (78). We found that one dose of MSC-EVs at

postnatal day 3 had persistent beneficial effects at three month

follow up (78). Importantly, late administration of MSC-EVs in

an established BPD model was also found to partially reverse

lung injury (79, 80). Clinical trials are now on the horizon but

identifying the ideal patient will be critical.
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6.2. Engineered EVs

EVs are also being investigated as “drug vehicles” (81). The

ability of EVs to target a particular tissue or cell could be used to

deliver drugs to intended targets while avoiding off-targets

selectively (81). The “drug cargo” is selectively loaded into the EVs

and the EVs are engineered to have specific properties to enhance

their targeting and biomimetic features (82, 83). The lower

number of transmembrane proteins, such as MHC complexes on

their surface, make EVs less immunogenic than their parental

source (84, 85). In addition, EVs do not replicate after injection.

Thus, EVs are less likely to transfer latent viral pathogens or

enable tumor generation (86). Compared to synthetic drug

carriers, the intrinsic ability of EVs to cross cell barriers and

penetrate tissues gives them an advantage (87). Synthetic drug

carriers such as polymeric micelles and lipid nanoparticles cause

high toxicity and immunogenicity compared to EVs (88). As

therapeutic EVs are derived from benign biological or autologous

sources, they are less likely to induce adverse effects.

Harnessing these unique properties of EVs to develop smart

drug delivery systems with enhanced targeting, safety and

pharmacokinetics has however been challenging (89). One study

showed that that after intravenous injection, EVs are rapidly

distributed and retained in the liver, spleen, gastrointestinal tract

and lungs (90). Another study however showed rapid clearance

of plasma-derived EVs following intravenous administration,

with a half-life of approximately 7 min (91). Moving forward,

more studies will be needed to understand EV circulation

kinetics, biodistribution, cell tropism, and intracellular trafficking

routes as the cellular origin, dose and route of administration

may affect EV biodistribution pattern (92).

Other obstacles such as low isolation yield, the lack of

purification protocols, large-scale clinical grade production,

parental cell-dependent composition, and inefficient drug

payload of the EVs continue to hamper the therapeutic ability of

EVs (93). To improve de novo EV yield and therapeutic efficacy,

re-engineering of the parental cell has been done through

genome modification, stimulation with exogenous biomolecules

and specific environmental factors (93). Bioreactors are also

being extensively used to scale up the production of cell-based

therapy and EVs. Bioreactors provide well-controlled nutrients,

uniform culture conditions and biomimetic stimuli to regulate

cell growth, differentiation and tissue development (94). While

bioengineering of the parental cell predictably loads only a small

proportion of the modified content into EVs, direct modification

of isolated EVs may be another strategy to enrich EVs (95). For

example, hydrophobically modified small interfering RNAs

efficiently load into EVs upon coincubation, without altering EV

size or integrity (96). Active EV loading can also be done by

electroporation, sonication, extrusion, freeze-thawing and by

surfactant-assisted loading, where surfactant saponin disrupts the

membrane and increases its permeability (97).

Another option currently being investigated is the development

of artificial EVs, namely the top-down and bottom-up approaches.
Frontiers in Pediatrics 07
The top-down approach is based on the disruption of the cultured

cells to produce membrane fragments that will be used to form

vesicles, while retaining the same membrane features of the

initial cell (98). The bottom-up approach starts from small

components of molecular building blocks to create complex

structures, namely synthetic EVs (99).
7. Conclusion

We presented the evidence for lung-derived EVs as novel

biomarkers and mediators for neonatal lung diseases and the

potential for MSC-derived EVs as novel therapeutic modalities

for neonatal lung diseases. Many of the studies discussed in this

review are preclinical investigations that require successful

translation from the bench to the bedside. Given that lung

diseases are among the most common complications in preterm

infants, with few effective therapies, it is crucial to continue

discovering and understanding how EVs contribute to neonatal

lung diseases and how to harness EVs to prevent and treat

neonatal lung diseases. The incredible features of EVs in terms of

their biocompatibility, cargo loading, cellular uptake, and

escaping the immune system make them an appealing

therapeutic strategy, but determining the ideal patient, route,

dosing and timing will be essential to move forward.

Procurement of EVs from physiologically relevant environments,

the ability to scale up their manufacturing, optimize their

biodistribution, and in vivo kinetics will also be crucial (93). This

will contribute immensely to increasing the potential of EVs as

acellular nanoscale therapeutics for neonatal lung diseases.
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