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Aim: This prospective pilot study evaluated inflammatory and intestinal barrier
biomarkers and the effects of a synbiotic in obese adolescents.
Methods: Eighteen obese and 20 eutrophic adolescents were evaluated for body
composition using bioimpedance analysis (BIA), body mass index (BMI), IL-6 and
lipopolysaccharide (LPS) serum levels, CD4 and FoxP3 Treg lymphocytes and
monocytes. Synbiotic supplementation for 60 days was also evaluated for these
parameters only in obese adolescents.
Results: We observed an increase in CD4 lymphocyte (18.0 ± 12.4 vs. 8.9 ± 7.5;
p < 0.01), IL-6 (0.30 ± 0.06 vs. 0.20 ± 0.06; p= 0.02) and LPS (0.18 ± 0.15 vs.
0.08 ± 0.05; p < 0.01) levels in obese compared to eutrophic adolescents. After
synbiotic supplementation, FoxP3 Treg lymphocytes increased (14.0 ± 6.7 vs.
9.9 ± 5.4; p= 0.02) in obese adolescents.
Conclusions: Obese adolescents presented a state of microinflammation and
intestinal barrier breakdown, and synbiotic supplementation increased the
expression of FoxP3 Treg lymphocytes, an anti-inflammatory regulator. Whether
the increase in FoxP3 Treg lymphocytes may have an impact on inflammation
and outcomes in obese adolescents deserves further evaluation.
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Introduction

The largest global epidemiological study of underweight, overweight and obesity rates,

involving more than 130 million people, showed that the number of children and

adolescents affected by obesity has increased tenfold over the past four decades (1).

The impact of obesity on health and disease has been linked to the development of type 2

diabetes mellitus (T2DM) (2), hypertension, cardiovascular disease and cancer (3).

In the long term, obesity in childhood and adolescence is associated with increased

morbidity and mortality in adulthood due to an increased risk of coronary heart disease

and cancer (4–6). It has been reported that adolescents aged 12–19 years have the highest

prevalence of obesity at 20.6%, compared to 18.4% for youth aged 6–11 years and 13.9%

for children aged 2–5 years (7).
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Similar to adult obesity, adolescent obesity promotes

inflammation and increases the risk of developing chronic

diseases into and throughout adulthood (8).

Recent evidence indicates that visceral obesity depends not

only on the release of proinflammatory adipokines but also on

the immune cell mechanisms present in adipose tissue (9). In

lean individuals, visceral adipose tissue (VAT) is characterized

by the presence of high levels of FoxP3 + regulatory

T lymphocytes (FoxP3+ Tregs) and the expression of cytokines

such as IL-4, IL-5, IL-10, and IL-13 (10). These factors

contribute to the polarization of macrophages in the VAT from

an M1 (proinflammatory) phenotype to an M2 phenotype

characterized by anti-inflammatory activity. However, in obese

individuals, the hypertrophied VAT is characterized by lower

FoxP3+ Treg expression (11) and higher levels of CD8 and

CD4 lymphocytes that secrete IFN-ɣ, favoring the polarization

of macrophages to an M1 phenotype and producing

cytokines with proinflammatory activity, including IL-1β, IL-6,

and TNF-ɑ (12, 13).

Obese adolescents present elevated levels of IL-6 (14, 15), TNF-

α and oxidative stress (16), but data on obesity and FoxP3+ Tregs

in obese adolescents are scarce.

In recent years, the role of the gut in the development of

obesity has been increasingly recognized. Obesity is associated

with intestinal barrier dysfunction and dysbiosis, which

contributes to the activation of local inflammation, contributing

to systemic inflammation (17–19). Studies conducted with animal

models provided evidence that inflammation may originate in the

gut owing to modulation of gut barrier function leading to

metabolic endotoxemia (20, 21) with an increase in gut-derived

plasma lipopolysaccharide (LPS) levels, which may result in low-

grade systemic inflammation (22). LPSs are an indicator of

impaired intestinal epithelial barrier function, also known as

“leaky gut” syndrome. Accordingly, studies have found high

levels of gut-derived bacterial products in the blood of obese

patients (23).

Some recent studies have shown that the use of prebiotics,

probiotics, and synbiotics can contribute to restoring the

intestinal microbiota, resulting in protection of the

intestinal barrier and reduction of local and systemic

inflammation (24, 25).

Thus, the objectives of this pilot study were to evaluate

inflammatory, intestinal barrier, and immune cell biomarkers in

obese adolescents and to assess the effects of synbiotic

supplementation in these adolescents on the same parameters

described above.
Methods

Study design

Phase 1 was a convenience sample cross-sectional study

comparing obese and eutrophic adolescents with regard to BMI,

metabolic parameters, immune cells, inflammation, and intestinal

barrier biomarkers.
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Phase 2 was a prospective longitudinal study that evaluated the

effects before and after the use of synbiotic supplementation in the

obese group on all the parameters described above.

A measurement at or above the 85th percentile and below the

95th percentile on the age- and sex-specific growth charts indicates

overweight status, while a measurement at or above the 95th

percentile indicates obesity (26).

Adolescents of both sexes aged 11–17 years were evaluated and

classified according to the body mass index curve in the Z score,

where the obese index = a Z score > + 2 SDs and the eutrophic

index = a Z score≤ + 1 SD. The interpretation of cutoffs was as

follows: obese adolescents: > + 2 SDs (equivalent to a BMI >

25 kg/m2 from 11 to 17 years), and eutrophic adolescents: <1 SD

>1 SD) (equivalent to a BMI > 16 kg/m2 and <20 kg/m2 from 11

to 17 years) (27).

Adolescents with a BMI less than 14 kg/m2 or greater than

40 kg/m2, genetic syndromes, hypothyroidism and/or type 1

diabetes, immunodeficiencies, degenerative diseases and eating

behavior disorders (anorexia, bulimia, eating disorder not

otherwise specified), use of dietary and/or medication treatment

for obesity or dyslipidemia, or use of corticosteroids, anti-

inflammatory or antibiotic drugs were not included in this study.

In addition, as usual during a medical consultation, a 24 h food

recall, an anamnesis that included questions about drugs and

medicines used, and a sleep inquiry were performed. Thirty-eight

adolescents (11–17 years old) were included in this pilot study

between June 2020 and March 2022: 18 were obese, with a BMI

> 25 kg/m2 (obese group), and 20 were eutrophic, with a BMI >

16 kg/m2 and < 20 kg/m2 (eutrophic group).

All participants and their legal guardians signed informed

consent forms. This study was approved by the Ethics

Committee No. 2.962.852 CAAE: 93900718.0.0000.5511

[Universidade Nove de Julho (UNINOVE), Sao Paulo, Brazil], in

accordance with the Declaration of Helsinki.

Phase 1
The adolescents underwent a psychiatric consultation for

medical history, physical examination, measurements of weight,

height, abdominal and cervical circumferences, blood pressure,

and body composition by BMI and by bioelectrical impedance

analysis (BIA). During the consultation, clinical aspects and

pubertal staging of the adolescent were evaluated according to

Tanner’s tables.

Five milliliters of peripheral venous blood was collected for the

determination of total cholesterol, high-density lipoprotein (HDL),

low-density lipoprotein (LDL), very low-density lipoprotein

(VLDL), triglycerides, glycemia, glycated hemoglobin (HBA1c),

insulin, proinflammatory cytokines (IL-6), and intestinal barrier

biomarkers (LPSs). An additional 5-ml aliquot of peripheral

venous blood was collected in a tube with anticoagulant (EDTA)

for evaluation of FoxP3+ Tregs and monocytes.

Phase 2
Synbiotic supplementation: Only obese adolescents were

provided with one (01) sachet/day for 60 days (post-

intervention) of the synbiotic compound (Simbioflora®, Invictus
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Brasil FQM, SP, Brazil) (tasteless sachets containing 5.5 g of

prebiotic (fruit oligosaccharide) and probiotics Lactobacillus

acidophilus 109 CFU, Lactobacillus rhamnosus 109 CFU,

Lactobacillus paracasei 109 CFU and Bifidobacterium lactis 109

CFU, without gluten, lactose or glucose). After 60 days of

supplementation with Simbioflora, the following parameters were

evaluated: BMI, BIA, FoxP3+ Tregs, monocytes, inflammation,

and intestinal barrier biomarkers (LPSs).
Anthropometric data

Body weight was measured and evaluated using an electronic

scale (Seca®, Germany) with 100 g increments and expressed in

kilograms (kg). The adolescent was instructed to stand upright,

with arms at both sides, in the center of the weighted platform,

wearing light clothing and no shoes and not holding any objects.

Body mass index (BMI) was calculated as weight in kg divided

by height in meters squared (kg/m2). Bioelectrical impedance

analysis (BIA) is a method that uses a low-amplitude, high-

frequency electric current passed through the body to estimate

weight and total body fat percentage. BIA was performed with

the adolescent lying on a hospital gurney, wearing light clothing

and no shoes and not holding any objects. Body composition

analyzers from RJL Systems (Michigan, USA) were used

according to the manufacturer’s recommendations.
Measurement of Il-6 and LPS serum levels

IL-6 was quantified by immunoenzymatic assay (ELISA)

(minimum detection limit of 0.09 pg/ml) (HS600B, R&D

Systems) according to the manufacturer’s recommendations.

Gram-negative bacterial endotoxin and lipopolysaccharides

(LPSs), were analyzed by the Limulus amebocyte lysate (LAL)

chromogenic endpoint assay (minimum detection limit of

0.04 EU/ml) (HIT302, Hycult Biotech) according to the

manufacturer’s recommendations.
Measurement of Cd4 T lymphocytes
(Cd4), Cd14 (M1), and Cd16 (M2) monocytes
and FoxP3 regulatory T lymphocytes (FoxP3
Tregs)

Blood samples from the adolescents were collected in a tube

containing EDTA; 100 μl was transferred to tubes for

monoclonal antibody labeling. Briefly, 100 μl of blood was

incubated for 30 min at +4°C with antibodies specific for cell

surface antigens (PE-labeled anti-CD4, APC-labeled anti-CD14,

and FITC-labeled anti-CD16 for CD4 lymphocytes and

monocytes M1 and M2, respectively) (eBioscience). In the other

tube, 100 μl of blood was treated with fixation/permeabilization

buffer (eBioscience) at +4°C for 40 min and after incubation

washed three times with permeabilization buffer to allow

intracellular staining with APC specific for FoxP3 antibody
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(eBioscience) at +4°C for 30 min. After one wash, the cells were

incubated with PE-labeled anti-CD25 and FITC-labeled anti-CD3

(eBioscience) for 30 min at +4°C. For both staining procedures,

appropriate isotype-matched controls were used. Acquisition

(100,000 events) and analysis of cell populations were performed

by flow cytometry (ACCURI, Becton & Dickinson) and

presented as the mean fluorescence intensity (MFI).
Statistical analysis

The Kolmogorov‒Smirnov test was used to determine the

normality of the data. Categorical variables are presented as

absolute and relative frequencies. Student’s t-test was used to

compare variables between two independent groups with a

parametric distribution, and the Mann‒Whitney U test was used

for nonparametric variables. The chi-squared test was used for

the analysis of categorical variables. The paired t-test was used

for the analysis of parametric samples at two time points, while

the Wilcoxon test was used for nonparametric samples (before

and after synbiotic supplementation). The significance level was

set at 5% (p < 0.05), and the Spearman test was used to analyze

correlations. Statistical analysis was performed with the Statistical

Package for the Social Sciences (SPSS 25.0, IBM Sofware, USA)

software.
Results

As expected, we found that obese adolescents had a higher

weight, neck and abdominal circumference, BMI, and percent fat

mass (FM) and decreased fat-free mass (FFM), dry lean mass

(DLM), and total body water as analyzed by bioimpedance (BIA)

measurements compared to eutrophic adolescents. Although still

within the normal range, the obese adolescent group showed an

increase in systolic blood pressure compared to the eutrophic

group (Table 1). In addition, all adolescents enrolled in this

study reported having a sleep duration above 7 h a day and self-

reported good quality of sleep. Furthermore, according to the

24 h food recall, all volunteers reported having a typical Brazilian

diet, considering the timing of meals and the type of foods and

amount of macronutrients (carbohydrates, proteins and fat).

Table 2 displays the drugs used by the adolescents enrolled in

this study in both the eutrophic and obese groups.

We observed high levels of insulin, triglycerides, VLDL

cholesterol, CD4 lymphocytes, serum IL-6 and LPSs in obese

adolescents compared to eutrophic adolescents (Table 3).

Table 3 shows the biochemical data, cellular immunity, and

inflammatory and intestinal barrier biomarkers in the eutrophic

and obese groups pre-intervention.

No differences were observed in the anthropometric or body

composition parameters assessed before and after the synbiotic

intervention in obese adolescents (Table 4).

After supplementation with the synbiotic in obese adolescents,

we observed a significant increase in CD4 lymphocyte (p = 0.002)
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TABLE 2 Description of the drugs used by the patients enrolled in this
study.

Drugs used Eutrophicgroup
(n = 20)

Obese
group
(n = 20)

Metformin chlorhydrate (1,000 mg/day) 0 2

Gestodene (75 mcg) + Ethinylestradiol
(30 mcg)/day

0 1

Dimesylate lisdexamfetamine (50 mg)/day 0 1

Sodium levothyroxine (50 mcg)/day 0 1

Nasal fluticasone (50 mcg)/day 0 1

Fexofenadine (120 mg)/day 1 0

Sodium montelukast (5 mg)/day 1 0

Oral immunotherapy (dust and mite) 2 0

Growth hormone (0,8 ml/day) 1 0

Sertraline (50 mg/day) 1 0

Isotretinoin (20 mg/day) 1 0

mg, milligram; mcg, microgram; mL, milliliter.

TABLE 1 Anthropometric, bioimpedance and blood pressure results of
eutrophic and obese adolescents pre-intervention.

Variables Eutrophic
group
(n = 20)

Pre-
intervention
Obese group

(n = 18)

p

Male 13 (65.0%) 11 (61.1%) 0.80a

Age (Years) 14 ± 1 14 ± 2 0.86

Weight (kg) 45.9 ± 6.9 83.4 ± 21.8 <0.001

NC (cm) 31.6 ± 2.1 36.5 ± 3.8 <0.001

AC (cm) 64.8 ± 4.3 95.9 ± 14.6 <0.001

BMI (kg/m2) 17.5 ± 1.9 31.0 ± 6.0 <0.001

FM (%-BIA) 13.8 ± 5.6 38.4 ± 5.1 <0.001

FFM (%-BIA) 86.2 ± 5.6 61.6 ± 5.1 <0.001

Total Body Water (%-BIA) 64.4 ± 5.0 45.6 ± 4.5 <0.001

Total DLM (%-BIA) 21.8 ± 1.9 16 ± 1 <0.001

BMI (kg/m2 BIA) 17.5 ± 1.9 30.6 ± 5.5 <0.001

SBP (mmHg) 101 ± 9 109 ± 9 0.009

DBP (mmHg) 69 ± 7 72 ± 8 0.16

Significance = p values < 0.05 in the unpaired Student’s t-test or chi-square test
aNC, neck circumference; AC, abdominal circumference; BMI, body mass index;

FM, fat mass; FFM, fat-free mass; DLM, dry lean mass; BIA, bioelectrical

impedance analysis; SBP, systolic blood pressure; DBP, diastolic blood pressure.

TABLE 3 Characteristics of metabolic variables, cellular immunity,
inflammatory and intestinal permeability biomarkers of the eutrophic
and preintervention obese groups.

Metabolic variables,
cellular immunity
and biomarkers

Eutrophic
(n = 20)

Preintervention
Obese (n = 18)

p

Mean ± DP Mean ± DP
Glycemia (mg/dl) 87 ± 8 86 ± 8 0.68

HbA1c (mg/dl) 5.3 ± 0.3 5.5 ± 0.3 0.14

Insulin (mU/L) 9.6 ± 3.7 18.9 ± 8.9 0.02

Triglycerides (mg/dl) 71 ± 23 104 ± 45 0.01

Total Cholesterol (mg/dl) 149 ± 37 158 ± 30 0.40

LDL-c (mg/dl) 81 ± 30 90 ± 27 0.33

HDL-c (mg/dl) 51 ± 9 47 ± 6 0.18

VLDL-c (mg/dl) 15 ± 5 21 ± 9 0.02

TSH (ulU/ml) 2.27 ± 0.95 1.86 ± 0.93 0.22

Free T4 (ng/dl) 1.06 ± 0.18 1.07 ± 0.21 0.89

T-CD4+ (MFI) 8.9 ± 7.5 18.0 ± 12.4 0.01

FoxP3+ Treg lymphocytes
(MFI)

9.9 ± 6.6 9.9 ± 5.4 0.99

M1-CD14+ monocytes (MFI) 69.5 ± 17.5 74.9 ± 15.3 0.32

M2-CD16+ monocytes (MFI) 24.4 ± 16.0 31.3 ± 22.7 0.28

IL-6 (pg/ml) 0.26 ± 0.06 0.30 ± 0.06 0.02

LPSs (EU/ml) 0.08 ± 0.05 0.18 ± 0.15 0.01

Significance = p values < 0.05 by Student’s t-test.

MFI, mean fluorescence intensity; EU, endotoxin units; IL-6, interleukin 6;

LPSs, lipopolysaccharides.
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and FoxP3 Treg (p = 0.02) levels, while the other parameters

remained unchanged (Table 5).

In addition, we observed a significant positive correlation

between BMI and SBP, DBP, CD4 lymphocytes, IL-6 and LPSs

(Table 6). No differences were observed between the other

variables.
Discussion

The present study showed that obese adolescents had a higher

BMI and cervical and abdominal circumference compared to

eutrophic adolescents. The obese adolescents showed a

proinflammatory state and intestinal barrier dysfunction

characterized by increased CD4 + lymphocyte, IL-6 and LPS

levels. Synbiotic supplementation in obese adolescents increased
Frontiers in Pediatrics 04
FoxP3+ Treg lymphocytes, an anti-inflammatory modulator. As

expected, BMI was higher in adolescents affected by obesity. To

better assess lean and fat mass indices, BIA was used, and we

found that fat mass was higher while fat-free lean mass and dry

lean mass were lower in obese adolescents. Although we did not

assess outcomes in this population in the present study, higher

abdominal circumference and excess fat mass have been

associated with inflammation, atherosclerosis, metabolic diseases,

and diabetes mellitus (28, 29). A higher concentration of insulin

was observed in obese adolescents than in eutrophic adolescents.

It has also been reported that fat mass correlates with increased

insulin and other metabolic changes, such as triglycerides (30).

However, except for a significant increase in VLDL-c in obese

adolescents, we did not observe changes in the concentrations of

total cholesterol or fractions of cholesterol.

As described above, obesity contributes to an inflammatory

state. If an unhealthy dietary pattern is maintained, the increase

in proinflammatory markers in obesity is a risk factor for the

development of metabolic changes (3). In our study, we did not

change the diet of the participants. We observed a higher serum

concentration of IL-6 in obese adolescents, suggesting subclinical

inflammation, probably due to hypertrophy of visceral fat.

The role of FoxP3+ Treg lymphocytes in obesity is still

controversial and limited in human studies, especially in

children. Similar to our findings, Calcaterra V et al. did not find

a significant difference in Treg levels between obese and control

groups (31). In contrast, Wen J et al. reported a significant

decrease in FoxP3+ Treg lymphocytes in obese children (11). In

studies among obese adults and children, FoxP3+ Treg

lymphocytes were reduced (32, 33). Although we observed no
frontiersin.org
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TABLE 4 Data on anthropometric, body composition and blood pressure values for obese adolescents pre- and post-supplementation with a synbiotic.

Variables Pre-intervention Post-supplementation Post- vs. Pre-variation p
BMI (kg/m2) 31.0 ± 6.0 30.3 ± 4.6 −0.7 ± 4.5 0.22

WC 95.9 ± 14.5 94.8 ± 14.3 −1.1 ± 3.5 0.18

NC (cm) 36.5 ± 3.8 36.5 ± 3.7 0.0 ± 0.7 0.92

Total body water (%-BIA) 45.6 ± 4.5 45.3 ± 4 −0.3 ± 1.8 0.54

FM (%-BIA) 38.4 ± 5.1 38.8 ± 4.7 0.3 ± 1.8 0.46

Total FFM (%-BIA) 61.6 ± 5.1 61.3 ± 4.7 −0.3 ± 1.8 0.46

Total DLM (%-BIA) 16.0 ± 1.0 16 ± 1.1 −0.1 ± 0.2 0.24

BMI (kg/m2−BIA) 30.6 ± 5.5 30.9 ± 5.5 0.3 ± 0.7 0.10

SBP (mmHg) 109 ± 9 108 ± 9 0 ± 8 0.88

DBP (mmHg) 72 ± 8 74 ± 7 2 ± 9 0.38

Significance = p values < 0.05 in the paired Student’s t-test or Wilcoxon test.

WC, waist circumference; NC, neck circumference; FM, fat mass; FFM, fat-free mass; DLM, dry lean mass; BIA, bioelectrical impedance analysis; BMI, body mass index;

SBP, systolic blood pressure; DBP, diastolic blood pressure.

TABLE 5 Data on inflammatory and intestinal barrier biomarkers in obese
adolescents pre- and post-supplementation with a synbiotic.

Biomarkers Pre-
intervention

Post-
intervention

Post- vs.
Pre-

variation

p

CD4+ T
lymphocytes
(MFI)

18.0 ± 12.4 29.6 ± 10.6 11.6 ± 13.6 0.002

FoxP3 +Treg
lymphocytes
(MFI)

9.9 ± 5.4 14.0 ± 6.7 4.1 ± 7.1 0.020

M1-CD14+

monocytes (MFI)
74.9 ± 15.3 72.6 ± 15.1 −2.3 ± 18.5 0.600

M2-CD16+

monocytes (MFI)
31.3 ± 22.7 41.6 ± 23.6 10.3 ± 30.2 0.160

IL-6 (pg/ml) 0.30 ± 0.06 0.32 ± 0.14 0.0 ± 0.1 0.550

LPSs (EU/ml) 0.18 ± 0.15 0.15 ± 0.12 −0.03 ± 0.12 0.280

Significance = p values < 0.05 in the paired t-test.

MFI, mean fluorescence intensity; EU, endotoxin units; IL-6, interleukin-6; LPSs,

lipopolysaccharides.

TABLE 6 Analysis of correlations between BMI and blood pressure, CD4
lymphocytes, IL-6 and LPSs in obese adolescents.

Variable Correlation coefficient (r) p
SBP 0.64 <0.001

DBP 0.41 0.002

CD4 lymphocytes 0.39 0.003

IL-6 0.32 0.01

LPSs 0.56 <0.001

Statistical analyses were calculated using Spearman’s correlation coefficient.

Significance: p value≤ 0.05.

BMI, Body mass index (kg/m2); SBP, systolic blood pressure; DBP, diastolic blood

pressure; IL-6, interleukin-6; LPSs, lipopolysaccharides.
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difference regarding the predominance of M1 or M2 monocytes or

FoxP3+ Treg lymphocytes between the groups studied, we found

that obese adolescents had a higher expression of CD4

lymphocytes, suggesting that obesity may activate a greater

proliferation of these cells and amplify the inflammatory state.

Adolescents who had infections were excluded from this

study, so the increase in CD4 and IL-6 levels seems to be

associated with obesity. Reinforcing this hypothesis, a positive

correlation between BMI and IL-6 and CD4 lymphocytes was

also observed.

Recently, it has been reported that obese individuals have an

imbalance in the microbiota (dysbiosis), which alters the

intestinal barrier and contributes to local and systemic

inflammation (34–36). Higher serum IL-6 levels are associated

with microbiota imbalance, reinforcing the role of dysbiosis in

microinflammation. In addition, dysbiosis contributes to changes

and breakdown in the permeability of the intestinal epithelial

barrier, resulting in an increased inflammatory response due to

the translocation of pathogenic microorganisms or endotoxin

(LPS) from gram-negative bacteria, an important factor in local

and systemic inflammatory responses (37, 38).
Frontiers in Pediatrics 05
We observed that obese adolescents showed a significant

increase in serum LPS levels compared to eutrophic adolescents,

which could be due to a breakdown of the intestinal barrier.

However, this is a hypothesis because we did not investigate the

microbiota of these adolescents.

The use of prebiotics, probiotics and synbiotics has been

reported to restore the intestinal microbiota, which could

contribute to less breakdown of the intestinal barrier and

improve local and systemic inflammation (39, 40).

In the present study, we conducted an interventionwith a synbiotic

compound for 60 days in obese adolescents without dietary restriction

to assess whether this supplement would modulate anthropometric,

intestinal barrier and inflammatory biomarkers.

We observed no changes in BMI, BIA, IL-6 or LPSs after 60

days of synbiotic supplementation. However, we observed an

increase in CD4 and FoxP3+ Treg lymphocytes. The high CD4

lymphocytes were probably due to obesity itself, and synbiotics

were not able to downregulate them, at least during the 60 days

of intervention.

In our study, we observed the upregulation of FoxP3+ Treg

lymphocytes by synbiotic supplementation. FoxP3+ Treg

lymphocytes contribute to anti-inflammatory systemic and local

responses. In an experimental model of colitis, increases in

FOXP3+ Treg lymphocytes were associated with preservation of

intestinal mucosal integrity and an anti-inflammatory response

(41). It is possible that modulation of FoxP3+ Treg lymphocytes

in obesity may be a promising alternative treatment.
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This study has some limitations. Our results should be

interpreted with caution due to the small sample size and lack

of inclusion of a group of obese adolescents who did not

receive synbiotics. In addition, we did not control for

confounding variables such as diet, timing of eating, or quality

of sleep, which could have interfered with the results of the

intervention with the synbiotic. On the other hand, we

included 2 tables, demonstrating in Table 2 the drugs used by

each of the participants and in Table 3 the caloric and

macronutrient consumption of participants, to better

characterize our patients. In addition, we described the sleep

quality and duration of all participants. Despite these study

limitations, it should be emphasized that only a few studies

have evaluated LPSs as a biomarker of intestinal barrier

breakdown and upregulation of FoxP3+ Treg lymphocytes by

synbiotic supplementation in obese adolescents. To our

knowledge, the current study is the first to evaluate these

parameters in obese adolescents.

In conclusion, this study found that obese adolescents had a

higher degree of inflammation (IL-6), with activation of CD4 +

lymphocytes and a breakdown of the intestinal barrier (increase in

LPS levels). The use of synbiotic supplementation increased the

number of FoxP3+ Treg lymphocytes, so the use of synbiotics can

be added as an adjunctive treatment until a normal BMI is

achieved in obese adolescents with a proper nutritional diet.

However, further studies should be conducted with a larger

sample size and a control group composed of obese adolescents

who do not take supplementation to investigate our hypothesis

and the outcomes associated with obesity in adolescents.
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