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Mechanical ventilation induces
brainstem inflammation in
preterm fetal sheep
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Valerie A. Zahra1, Alison Thiel1, Hui Lu1, Yen Pham1, Nhi Thao Tran1,2,
Beth J. Allison1,2, Eric Herlenius3, Stuart Hooper1,2,
Robert Galinsky1,2*† and Graeme R. Polglase1,2*†

1The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia, 2Department of
Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia, 3Department of Women’s and
Children’s Health, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden

Background: Preterm infants have immature respiratory drive and often require
prolonged periods of mechanical ventilation. Prolonged mechanical ventilation
induces systemic inflammation resulting in ventilation-induced brain injury,
however its effect on brainstem respiratory centers is unknown. We aimed to
determine the effects of 24 h of mechanical ventilation on inflammation and
injury in brainstem respiratory centres of preterm fetal sheep.
Methods: Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to
provide mechanical ventilation in utero. At 112± 1 d gestation, fetuses received
either mechanical ventilation (VENT; n= 7; 3 ml/kg) for 24 h, or no ventilation
(CONT; n= 6). At post-mortem, fetal brainstems were collected for assessment
of mRNA and histological markers of inflammation and injury.
Results: In utero ventilation (IUV) did not alter any blood-gas parameters. IUV
significantly increased systemic IL-6 and IL-8 concentrations over the 24 h
period compared to CONT. The number of ameboid microglia within the
nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses
(p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not
significantly higher within the preBötzinger complex (p= 0.067) and
retrotrapezoid nucleus and parafacial respiratory group (p=0.057) in VENT
fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells
were similar between groups. Gene expression (mRNA) levels of inflammation,
injury, cell death and prostaglandin synthesis within the brainstem were similar
between groups.
Conclusion: Mechanical ventilation induces a systemic inflammatory response
with only moderate inflammatory effects within the brainstem respiratory
centres of preterm fetal sheep.
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Introduction

Preterm birth (<37 weeks’ gestation) is a major contributor to neonatal mortality

globally (1, 2) and is also a risk factor for lifelong morbidity including motor deficits such

as cerebral palsy and learning deficits (3). Preterm newborns have an immature

respiratory system and as such, are often unable to breathe on their own at birth.

Consequently, the majority (60%–95%) of extremely and very preterm infants require
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respiratory support at birth (4), with a median duration of 21.4

days per infant (5, 6). Furthermore, 30% of intubated and

ventilated infants fail to resume unassisted breathing upon

extubation because of poor respiratory drive (7). It is therefore

critical to understand how prolonged mechanical ventilation

affects respiratory drive in extremely preterm infants to develop

strategies that enhance postnatal breathing.

The brainstem is responsible for controlling vital autonomic

functions, including breathing. The brainstem contains multiple

bundles of neurons responsible for different aspects of respiratory

function, termed respiratory centres (8–10). The brainstem

respiratory centres control and generate respiratory rhythm and

depth, expiratory and inspiratory timing, opening, and closing of

the larynx, and innervate the diaphragm and the tongue (8–10).

Recent studies have demonstrated that inflammation within

brainstem respiratory centres is associated with inhibition of

breathing (11, 12). Exposure of rat pups (10–12 days postnatal

age) to intrapulmonary lipopolysaccharide (LPS) upregulated

cytokine expression, particularly IL-1β, within the brainstem (13).

This brainstem inflammatory response was shown to be at least

partially mediated by the vagus nerve and was associated with

attenuated ventilatory responses to hypoxia (13). Furthermore,

progressive systemic inflammation induced by increasing doses of

intravenous LPS in late gestation fetal sheep resulted in

inhibition of fetal breathing movements in utero, astrocyte loss in

the retrotrapezoid nucleus and parafacial respiratory group

(RTN/pFRG) and activation of microglia in the RTN/pFRG, the

preBötzinger complex (pre-Bötc), nucleus tractus solitarius (NTS)

and the raphe nucleus (RN) (14, 15). Increased circulating

prostaglandin concentrations have been shown to independently

modulate breathing rhythm (16). Upregulation of prostaglandin

E synthase (PGE2) within the brainstem is also associated with

blunting of chemosensitivity and reduced fetal breathing

movements in utero (12, 17). Taken together, these data suggests

that systemic inflammation can directly impact brainstem

cardiorespiratory centres and inhibit breathing. While preterm

human and animal studies have demonstrated a strong association

between mechanical ventilation, systemic inflammation and

subsequent brain injury and neurodevelopmental impairments

(18–23), the effect of prolonged mechanical ventilation on

brainstem inflammation and injury is unknown.

We have previously established a model of in utero ventilation

(IUV) in preterm fetal sheep (24, 25). Previous IUV studies have

limited their ventilation durations to 12 h. In this study we have

expanded the timing of ventilation to understand the relationship

between prolonged ventilation, systemic inflammation, and

localised brainstem inflammation and injury. Using this model,

we can determine the impact of mechanical ventilation in the

absence of potential confounders of brainstem injury associated

with delivery and intensive care of preterm lambs ex utero,

which at this gestational age have lungs equivalent to a human at

22–24 weeks of gestation (26). These include oxygen

supplementation, corticosteroids, nutrition, and anaesthetics. In

this study, we aimed to determine the effect of 24 h of

mechanical ventilation on inflammation and injury in key

brainstem respiratory centres. We hypothesised that 24 h of IUV
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would increase systemic pro-inflammatory cytokines and result

in histological evidence of inflammation and injury in brainstem

respiratory centres of preterm fetal sheep at a time when brain

development is comparable to a very to moderately preterm

human infant (27, 28).
Materials and methods

Ethics approval

All procedures were approved by the Hudson Institute of

Medical Research Animal Ethics committee [approval number

MMCA (Monash Medical Centre Animal Ethics Committee)

2020/15]. All methods were conducted in accordance with the

National Health and Medical Research Council Code of Practice

for the Care and Use of Animals for Scientific Purposes (Eighth

Edition).
Fetal surgery

Thirteen pregnant Mixed Breed ewes bearing singleton or twin

fetuses underwent aseptic surgery at 110 ± 1-day gestational age

(term = 147 days). Fetuses were then randomised to one of two

groups:

(1) Un-ventilated controls (CONT; n = 6)

(2) In utero ventilation (VENT; n = 7)

Food but not water was withheld approximately 16–18 h before

surgery. Ewes were anaesthetised by i.v injection of sodium

thiopentone (20 ml) and maintained using 2%–3% isoflurane in

oxygen (Bomac Animal Health, Hornsby, NSW, Australia) via a

positive pressure ventilator (EV500 Anaesthesia Ventilator,

ULCO Medical Engineering, NSW, Australia). Ewes received

prophylactic antibiotics (Ampicillin, 1 g i.v; Austrapen, Lennon

Healthcare, St Leonards, NSW, Australia, and 500 mg engemycin

i.v; Coopers Animal Health, VIC, Australia) before surgery.

Levels of isoflurane, heart rate and respiratory rate were

continuously monitored throughout surgery by trained

anaesthetic staff.
Fetal instrumentation

A midline maternal laparotomy was performed to expose the

fetus. The fetal head and the left forelimb were exteriorised for

instrumentation. Instrumentation procedures and details of

catheters have been previously described (24). Briefly, fetuses

randomised to the VENT group, underwent a tracheostomy

procedure, and were instrumented with a ventilation circuit

(Figure 1). Fetuses randomised to CONT also underwent a

tracheostomy procedure, but a single non-occlusive tracheal

catheter (ID 8.6 mm, OD 3.46 mm) was inserted. All fetal

catheters were exteriorised via the right maternal flank.

Postoperative analgesia was maintained for 3 days via a

transdermal fentanyl patch on the left hind leg of the ewe
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FIGURE 1

Schematic outlining the in-utero ventilation (IUV) experimental design. At 109 d gestation, fetuses were instrumented with a mechanical ventilation circuit
consisting of a lower (pink) tracheal tube, connected to a large bore (blue) ventilation tube. The upper (green) tracheal tube was connected to the
mechanical ventilation tube (A) to create an extension of the trachea, allowing for normal flow of lung liquid prior to initiation of IUV. At the initiation
of the experiment, the ventilation circuit was cut, and the tube connected to the ventilator (A’’). Fetuses were instrumented with catheters inserted
into the (A) amniotic sac, (B) brachial artery and (C) the jugular vein.
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(75 µg/h; Jansen Cilag, North Ryde, NSW, Australia). Antibiotics

were administered i.v to the ewe (ampicillin, 800 mg and

engemycin, 500 mg) and the fetus (ampicillin, 200 mg) for 3

consecutive days following surgery. Three days of post-

operative recovery were allowed prior to commencing the

experiment.
Experimental protocol

At 112 ± 1 d gestation, the tracheal loop of VENT animals was

cut, and lung liquid passively drained prior to initiation of

ventilation for 24 h. Lung liquid volume was measured, recorded,

and discarded. The tracheal tube was connected to a neonatal

ventilator (Drager 8,000+, Lübeck, Germany; Figure 1) and

ventilation was initiated in pressure support mode with a peak
FIGURE 2

Experimental design and timeline. During the 24 h protocol, arterial blood gas
15 min, and 1, 3, 6, 9, 12 and 24 h (red circles). Additional arterial blood gas me
starting in utero ventilation. Following the 24 h IUV or sham IUV period, ewes
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inflation pressure (PIP) set to a maximum of 45 cmH2O and a

positive end-expiratory pressure of 5 cmH2O to target a tidal

volume (VT) of 3 ml/kg. An inspiratory flow of 10 L/min,

respiratory rate of 60 breaths/min and fraction of inspired

oxygen (FiO2) of 0.21 were used. Fetuses were ventilated with

non-humidified gas.

Fetal arterial blood and plasma samples were collected at

baseline (prior to experimentation), at the onset of ventilation

(or equivalent for CONT groups), at 15, 30, and 45 min, and at

1, 3, 6, 9, 12 and 24 h after starting ventilation for analysis of

blood gases, glucose and lactate concentrations (ABL90 Flex Plus

analyser, Radiometer, Brønshøj, Denmark) and for plasma

collection for cytokine analysis (Figure 2).

Following 24 h of ventilation (or equivalent for CONT groups),

ewes and fetuses were humanely killed via an overdose of sodium

pentobarbitone (100 mg/kg i.v., Virbac, NSW, Australia).
measurements and plasma sample collection occurred at baseline (PRE),
asurements were made on day 111 and day 112 at 30 and 45-minutes after
and fetuses were euthanised.
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Tissue collection

At post-mortem, cerebral spinal fluid (CSF) was collected from

the 4th ventricle before the brain was removed. The brainstem was

isolated at the levels of the peduncles and thalamus, bisected in the

sagittal plane before the left side was dissected into the pons and

medulla with portions of each frozen in liquid nitrogen. The

right brainstem was immersion-fixed in 10% phosphate buffered

formalin for 7 days at 4°C before it was embedded and sectioned

as previously described (14). Brainstem respiratory centres of

interest included the retrotrapezoid nucleus and parafacial

respiratory group (RTN/pFRG), the preBötzinger complex (pre-

BÖTC), the nucleus tractus solitarius (NTS), the raphe nucleus

(RN) and the nucleus ambiguus (NA) (Figure 3). The RTN/

pFRG is involved with expiration and central chemosensitivity

including CO2 and pH. The NTS is involved in peripheral

chemosensitivity (O2, CO2, pH). The NA is involved in

maintaining upper airway patency, the RN is responsible for

central chemosensitivity and the pre-BÖTC for inspiratory

generation and drive.
Fetal cytokine measurements

Arterial blood samples were analysed at timepoints pre-

ventilation (CONT equivalent), 1, 3, 6, 9, 12 and 24 h for

assessment of plasma proteins IL-6 and IL-8. Plasma proteins

IL-6 and IL-8 were quantified by a sandwich enzyme-linked

immunosorbent assay (ELISA) kit as described previously (29).

Details of the primary, secondary, and tertiary detecting

antibodies can be found in Table 1. In brief, flat-bottom 96-well

plates (Nunc MaxisorpTM) were coated with mouse-anti-sheep

IL-6 and mouse-anti-sheep IL-8 antibodies and incubated

overnight at 4°C. Plasma samples were diluted with diluting

buffer and incubated in duplicates in the 96-well plates for 1 h at

room temperature. The next day, the plates were washed and

coated with rabbit-anti-sheep IL-6 or rabbit-anti-sheep IL-8 for

1 h at room temperature. Plates were then washed and incubated
FIGURE 3

Brainstem respiratory centres of interest. Schematic diagram of brainstem re
(A) RTN/pFRG and (B) Pre-Bötc, NA, NTS, and RN.
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with horse-radish peroxidase (HRP)-conjugated swine-anti-rabbit

Ig for 1 h at room temperature. Plates were washed, plates were

developed with 3.3′, 5.5′-tetramethylbenzidine (TMB chromogen

solution; Invitrogen, CA, USA) for 20 min in a dark room at

room temperature. Reactions were stopped with 0.5M H2SO4.

Plates were quantified on a plate reader at 450 nm (SpectraMax

i3 Multi-Mode Platform, Molecular devices, San Jose, CA, USA).

Each group has a sample number of 5 per group, due to inability

collect plasma samples from one CONT and two VENT fetal

sheep during the experimental timeline.
Fetal cerebrospinal fluid (CSF) protein
analysis

CSF samples collected at post-mortem were assessed for

proteins IL-1β, IL-6, IL-8. IL-10, tumor necrosis factor (TNF)

and interferon γ-produced protein (IP-10) using Milliplex MAP

bovine cytokine magnetic bead panel assay kits (cat#: BCYT1-

33K; MerckMillipore, Burlington, MA, USA) as previously

described (15). In brief, 96 well plates were first washed and

coated in sample, assay buffer, serum matrix, and antibody-

immobilised beads. The plates were incubated overnight at 4°C.

Following overnight incubation, the plates were washed and

incubated with the detection antibodies for 1 h. Streptavidin-

phycoerythrin was added to the plates for 30 min at room

temperature. Sheath fluid was then added to each of the plates.

Protein concentrations were quantified using a Bio-Plex MAGPIX®

Multiplex reader with xPOTENT® software (Bio-Rad, CA, USA).

Internal quality controls were included in each assay kit. Cytokine

levels were within detection limit in all samples. Standards

were bovine recombinant IL-1 β (range, 12.8–200,000 pg/ml;

assay sensitivity, 3.9 pg/ml), IL-6 (range, 7.7–120,000 pg/ml;

assay sensitivity, 0.65 pg/ml), IL-8 (range, 0.77–12,000 pg/ml; assay

sensitivity, 1.62 pg/ml), IL-10 (range. 1.6–25,000 pg/ml; assay

sensitivity, 0.86 pg/ml), TNF (range, 48–750,000 pg/ml;

assay sensitivity, 9.34 pg/ml), and IP-10 (range, 0.77–12,000 pg/ml;

assay sensitivity, 0.46 pg/ml).
spiratory centres analysed and representation of location in the medulla.
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TABLE 1 Reagents used in enzyme-linked immunosorbent assays for detection of plasma IL-6 and IL-8.

Target Type Reagent details Dilution Source
IL-6 Cytokine standard Recombinant ovine (ROV) IL-6 5 µg/ml, at 1:50 Kingfisher Biotecha RP0367V-005

Primary/coating Ab Mouse anti-sheep IL-6 monoclonal Ab IgG 1:200 Bio-Radb MCA1659

Secondary/capturing Ab Rabbit anti-sheep IL-6 polyclonal Ab 1:500 Bio-Radb AHP424

Tertiary Ab Swine anti-rabbit Ig-HRP conjugated 1:2,000 DAKOc P0217

IL-8 Cytokine standard ROV IL-8 N/A Kingfisher Biotecha RP0488V-005

Primary/coating Ab Mouse anti-ovine IL-8 monoclonal Ab IgG 1:1,000 Bio-Radb MCA1660

Secondary/capturing Ab Rabbit anti-ovine IL-8 polyclonal Ab 1:4,000 Bio-Rabb AHP425

Tertiary Ab Swine anti-rabbit Ig/HRP conjugated polyclonal Ab 1:2,000 DAKOc P0217

aKingfisher: Kingfisher Biotech, Inc., MN, USA.
bBio-Rad: Bio-Rad Laboratories, Inc., CA, USA.
cDAKO: Agilent Technologies, Inc., CA, USA.

TABLE 2 List of taqMan gene array ovine-specific probes for qPCR.

Genes/Probe Assay ID
IL-1α Oa04658682_m1

IL-1β Oa04656322_m1

IL-6 Oa04656315_m1

IL-8 Bt03211906_m1

IL-10 Oa03212724_m1

IL-18 Oa04658606_m1

TNF Oa04656867_g1

NFκB Oa04837805_m1

CXCL-10 Oa04655788_g1

HMGB1 Ch04812286_s1

FOXP3 Oa03233950_g1

MMP-9 Oa03215996_g1
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Gene analysis

The left side of the brainstem was weighed to 100–150 mg,

homogenised, and mRNA extracted according to manufacturer’s

instructions using the RNeasy Midi RNA Extraction Kit (Qiagen,

Venlo, Netherlands) and reverse transcribed into single stranded

cDNA (Superscript III First-Strand Synthesis, Invitrogen, MA,

USA). High throughput real-time quantitative polymerase chain

reaction (RT-qPCR) was performed using the microfluidic

technology Fluidigm Access Array System (Fluidigm

Corporation, CA, USA). Genes of interest included inflammatory

cytokines interleukin (IL)-1A, IL-1B, IL-6, IL-8, IL-10, IL-18,

tumor necrosis factor (TNF); markers of inflammation nuclear

factor kappa B (NFκB), CXC motif chemokine ligand 10 (CXCL-

10), high mobility group box 1 (HMGB1), FOXP3, matrix

metallopeptidase 9 (MMP-9), myeloperoxidase (MPO), serum

amyloid A (SAA), toll-like receptor (TLR)-4; markers of cell

death/damage, caspase (CASP)-1, CASP-3, CASP-8, heat shock

protein-70 (HSP70); markers of prostaglandin synthesis

prostaglandin E synthase (PTGES) and prostaglandin-

endoperoxide synthase-2 (PTGS-2). Quality control testing was

performed for the housekeeping genes 18S, B2M and S29 using

Sybr chemistry. The expression of genes were normalised to

housekeeping genes by first calculating a geometric mean and

then by subtracting the Ct value for the geometric mean for all

samples of housekeeping genes from the Ct value of the genes of

interest (ΔCt). mRNA levels of the genes of interest were

normalised using the formula 2−ΔCt and the results expressed as

fold-change from control. Details of the primers are presented in

Table 2.
MPO Oa04654413_g1

SAA Oa04924154_s1

TLR-4 Oa04656419_m1

CASP-1 Oa04775045_m1

CASP-3 Oa04817361_m1

CASP-8 Oa04779925_m1

HSP70 Oa04849683_g1

PTGES Oa04920211_s1

PTGS-2 Oa04657348_g1

S18 Oa4906333_g1

B2M Oa04900279_Mh

S29 Ch04807765_gH
Immunofluorescence

Immunofluorescence was used to double label astrocytes

[mouse anti-glial fibrillary acidic protein (GFAP), 1:500, Sigma,

cat#. G3893], and microglia [rabbit anti-ionized calcium binding

adaptor molecule (Iba-1), 1:500, Wako, 019–19,741]. Brainstem

sections were incubated at 60°C for 30 min and then dewaxed in

xylene, rehydrated in ethanol, and washed in 0.1 mol/l phosphate

buffer saline (PBS; pH 7.4). Heat mediated antigen retrieval was
Frontiers in Pediatrics 05
performed in citrate buffer (pH 6) using a microwave for 15 min.

10% normal goat serum (NGS) in 0.1% PBS + Triton X-100

(PBST) was used for non-specific antigen blocking. Sections were

incubated in primary antibody and 0.1% PBST and 2% NGS

overnight at 4°C. Negative controls omitting the primary

antibody were included to confirm the absence of non-specific

staining. Sections were incubated in 1:200 goat anti-mouse-

Alexa Fluor 594 (Cat#: 115-585-003, Jackson ImmunoResearch,

West Grove, PA, USA) and 1:200 goat-anti-rabbit- Alexa Fluor

488 (Cat#: 111-545-144, Jackson ImmunoResearch) in 0.1%

PBST and 2% NGS for 2 h at room temperature. 1:1,000

HOECHST 33342 trihydrochloride, trihydrate (Cat#: H3570,

Invitrogen, ThermoFisher Scientific) was used for nuclei staining,

slides incubated for 5 min. Slides were washed in PBS and

coverslipped using DAKO anti-fade mounting medium (Cat#:

GM30411-2, Agilent technologies, CA, USA).
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Immunohistochemistry

Brainstem slides were baked at 60°C for 30 min, de-waxed and

rehydrated. Antigen retrieval was performed in citrate buffer

(pH 6) using a microwave for 15 min. Endogenous peroxide

quenching was performed by incubating slides in 0.1% H2O2 in

methanol. 3% NGS in 1 × PBS was used to prevent non-specific

binding. Sections were labelled with 1:800 rabbit-anti-Caspase 3

(R&D systems, cat#: AF835) in 3% NGS and incubated overnight

at 4°C. Slides were then incubated in biotin conjugated IgG

[1:200 goat anti-rabbit (DAKO, Victoria, Australia)] secondary

antibody for 3 h at room temperature before being incubated in

avidin-biotin complex (Sigma-Aldrich) for 45 min. Sections were

reacted with 3,3′-diaminobenzidine tetrahydrochloride (Sigma-

Aldrich). Terminal deoxynucleotidyl transferase dUTP nick end

labelling (TUNEL) was used to identify cells undergoing in-situ

apoptosis using the ApopTag® Peroxidase Kit as per

manufacturer’s instructions (Millipore S7100; CA, USA).

Brainstem sections stained with both caspase-3 and ApopTag

were then incubated in anti-digoxigenin conjugate for 30 min at

room temperature, before being incubated with diaminobenzidine

peroxidase substrate. PBS was used to stop the reaction. Slides

were then dehydrated, and cover slipped.
Quantification of histology

Sections were imaged at 20 ×magnification using QuPath

imaging software [Version 0.2.3 (30)]. Four random non-

overlapping fields of view (length: 1,200 µm; width: 1920µm;

area: 2.3mm2) were taken from each section. All sections were

coded and assessed by a single observer blinded to the treatment

group (KV). Immunoreactivity (% area fraction of staining) or

numbers of positive cells were quantified from each brainstem

respiratory centre of interest from 2 sections per subject using

ImageJ software (v2.00, LOCI, University of Wisconsin). GFAP+

astrocyte staining was expressed as % area fraction staining per

field of view (FOV). Numbers of microglia (Iba-1+ cells) were

quantified according to their morphology, either ramified (small

cell body with >1 branching process) (31) or ameboid (large cell

bodies, with ≤1 branching process) (32, 33). Caspase-3+ cells

displaying both immunostaining and cell morphology resembling

karyorrhexis (nuclear breakdown) or vacuolisation were counted

(34). ApopTag (TUNEL)+ cells were quantified as total numbers

of immunopositive cells. Data are presented for both the whole

medulla and the individual cardiorespiratory centres.
TABLE 3 Fetal characteristics. Data are mean ± SEM.

CONT VENT
Number (n) 6 7

Body weight (kg) 2.7 ± 0.4 2.6 ± 0.5

Sex (male:female) 4:2 4:3

Twin (twins:singletons) 5:1 4:3

Brain weight (g) 36.3 ± 2.8 35.8 ± 2.6
Statistical analysis

Data were analysed using GraphPad Prism Software (version 9;

GraphPad Software, CA, United States). Parametric fetal

characteristics, brainstem gene expression and histological data

were analysed by an un-paired t-test. Non-parametric fetal

characteristics, brainstem gene expression and histology were

analysed using Mann-Whitney test. To account for baseline
Frontiers in Pediatrics 06
variability in both groups, circulating cytokines have been

expressed as fold-change from baseline. A two-way analysis of

variance (ANOVA) with repeated measures (treatment and time

as independent factors) was used to analyse blood biochemistry

and circulating plasma cytokines. For blood biochemistry and

cytokines, when statistical significance was found between groups

or groups and time, post-hoc comparisons were made using a

Holm-Sidak test. For cytokines, area under the curve (pAUC)

analysis was used to evaluate differences between groups when

statistical significance was found between groups or group and

time. Power analysis of areal density of GFAP+ astrocytes

suggested that the study had 80% power to detect a 25% increase

in areal density of GFAP + astrocytes between groups, with an

alpha of 0.05. Statistical significance was accepted when p < 0.05.

Data are presented as scatter plots with mean ± standard error of

the mean (SE).
Results

Fetal characteristics

Fetal body weight (kg), sex (%male), rate of twin pregnancies

(%), and brain weight (g) were not different between CONT and

VENT groups (Table 3). Fetuses within the VENT group

received a mean VT of 2.8 ml/kg (range 2.5–3.1 ml/kg).
Fetal biochemistry

The partial pressure of arterial carbon dioxide and oxygen

(PaCO2 and PaO2), arterial oxygen saturation (SaO2) and the

concentrations of arterial glucose and lactate were not different

between CONT and VENT groups at any of the timepoints

assessed (Table 4).
Plasma cytokines

Plasma IL-6 (pAUC= 0.047) and IL-8 (pVENT= 0.04) protein

concentrations were increased in VENT fetuses compared to

CONT fetuses throughout the IUV protocol (Figure 4).
Cerebrospinal fluid protein

In the cerebral spinal fluid, protein concentration of the

chemokine IP-10 was increased in VENT exposed fetuses
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FIGURE 4

Plasma interleukin (IL)-6- and 8-fold change from baseline (1 h pre-ventilation) for control (CONT; grey circles; n= 5) and ventilated (VENT; purple circles;
n= 5) fetuses over 24 h. Data are mean ± SEM. *p < 0.05.

TABLE 4 Arterial blood pH, gases, glucose, and lactate concentrations. Data are mean ± SEM.

Baseline 15 min 30 min 45 min 1 h 3 h 6 h 9 h 12 h 24 h

pH
CONT 7.42 ± 0.01 7.42 ± 0.00 7.41 ± 0.01 7.41 ± 0.00 7.41 ± 0.01 7.41±±0.01 7.41 ± 0.01 7.41 ± 0.01 7.41 ± 0.01 7.42 ± 0.01

VENT 7.40 ± 0.01 7.40 ± 0.00 7.40 ± 0.01 7.40 ± 0.00 7.40 ± 0.00 7.40 ± 0.01 7.40 ± 0.00 7.40 ± 0.00 7.40 ± 0.00 7.41 ± 0.00

PaCO2

CONT 48.0 ± 0.91 48.9 ± 0.82 46.9 ± 1.13 46.1 ± 1.37 49.8 ± 1.17 49.7 ± 1.36 49.3 ± 1.52 49.3 ± 1.26 50.3 ± 1.30 49.5 ± 1.07

VENT 49.2 ± 1.01 49.4 ± 1.2 47.9 ± 1.34 48.5 ± 1.31 49.4 ± 1.39 49.8 ± 1.19 49.8 ± 1.67 50.2 ± 1.22 50.8 ± 1.15 50.2 ± 0.85

PaO2

CONT 22.0 ± 0.63 21.6 ± 0.69 22.6 ± 0.95 22.2 ± 0.95 21.2 ± 0.42 22.8 ± 0.65 22.3 ± 0.42 21.9 ± 0.52 21.9 ± 0.41 21.6 ± 0.82

VENT 21.7 ± 0.54 21.7 ± 0.36 22.0 ± 0.64 22.0 ± 0.68 22 ± 0.56 23.4 ± 0.70 22.9 ± 0.54 22.1 ± 0.55 22.1 ± 0.68 23.1 ± 0.52

SaO2

CONT 69.2 ± 2.09 68.0 ± 2.11 70.2 ± 2.25 69.5 ± 3.01 67.9 ± 1.71 70.1 ± 1.40 69.2 ± 1.26 69.5 ± 2.76 69.6 ± 2.01 67.0 ± 2.28

VENT 66.0 ± 2.18 66.1 ± 1.22 66.7 ± 2.39 66.9 ± 2.14 66.4 ± 1.81 69.2 ± 1.66 68.8 ± 1.05 67.8 ± 2.55 66.2 ± 1.73 69.9 ± 1.43

Glucose
CONT 0.97 ± 0.15 0.93 ± 0.18 0.87 ± 0.17 0.83 ± 0.15 0.83 ± 0.15 0.77 ± 0.15 0.78 ± 0.13 0.95 ± 0.19 0.95 ± 0.14 0.88 ± 0.12

VENT 1.09 ± 0.12 1.04 ± 0.14 1.00 ± 0.12 0.96 ± 0.13 0.96 ± 0.13 0.96 ± 0.09 0.94 ± 0.10 0.96 ± 0.10 1.00 ± 0.12 0.94 ± 0.10

Lactate
CONT 1.15 ± 0.11 1.15 ± 0.11 1.05 ± 0.11 1.03 ± 0.11 1.05 ± 0.07 1.00 ± 0.07 0.98 ± 0.07 1.12 ± 0.12 1.05 ± 0.08 1.28 ± 0.11

VENT 1.24 ± 0.09 1.20 ± 0.09 1.11 ± 0.07 1.07 ± 0.07 1.10 ± 0.07 1.11 ± 0.07 1.19 ± 0.10 1.16 ± 0.06 1.11 ± 0.07 1.14 ± 0.09

Vidinopoulos et al. 10.3389/fped.2023.1225294
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FIGURE 5

Cerebral spinal fluid (CSF) protein expression of interleukin (IL)-1β, IL-6, IL-8, IL-10, tumor necrosis factor (TNF) and IP-10 in control (CONT; grey circles;
n= 6) and ventilated (VENT; purple circles; n= 6) fetuses. Data are mean ± SEM. *p < 0.05.

Vidinopoulos et al. 10.3389/fped.2023.1225294
(p = 0.0284) compared to CONT. Protein concentrations of IL-1β,

IL-6, IL-8, IL-10 and TNF were not different between VENT and

CONT groups (Figure 5).
Gene analysis

In the brainstem, mRNA expression of inflammatory cytokines

IL-1A, IL-1B, IL-6, IL-8, IL-10, IL-18, TNF; markers of

inflammation NFκB, CXCL-10, HMGB1, FOXP3, MMP-9, MPO,

SAA, TLR-4; markers of cell death/damage CASP-1, CASP-3,

CASP-8, HSP70; markers of prostaglandin PTGES and PTGS-2

were not different between CONT and VENT groups (Figure 6).
Histopathology

In the medulla, GFAP + astrocyte staining (measured as % area

fraction/field of view) was not significantly higher in the VENT

group compared to CONT (p = 0.054, Figure 7B). Similarly, the

% area fraction of GFAP + stained astrocytes was not significantly

higher in the RTN/pFRG (p = 0.057) and the pre-BÖTC

(p = 0.067) in the VENT group compared to CONT. The total

number of IBA-1 + cells were increased in the RN (p = 0.033,

Figure 8B). Subclassification of IBA-1 + cells showed that the

number of ramified IBA-1 +microglia were lower in the pre-
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BÖTC of the VENT group compared to CONT (Figure 8B). The

numbers of IBA-1 + ameboid microglia were higher in VENT

group compared to CONT in the medulla (p = 0.004), NTS

(p = 0.002) and the RN (p < 0.0001; Figure 8C). In the medulla,

numbers of caspase-3 positive cells undergoing karyorrhexis or

vacuolisation were not different between CONT and VENT

(Figures 9A,B) groups, and there were no differences between

groups within individual brainstem regions (Figure 9A’ and 9B’;

RTN/pFRG, pre-BÖTC, NA, NTS and RN). There were no

differences in numbers of TUNEL positive cells between CONT

and VENT groups in the whole medulla or individual brainstem

respiratory centres (Figure 10B).
Discussion

Very preterm infants <32 weeks of gestational age often require

extensive periods of respiratory support (5, 6) which increases the

risk and severity of preterm brain injury leading to long term

neurodevelopmental deficits (35). Many of these infants have

difficulty in establishing independent breathing following

prolonged periods of respiratory support. Several studies have

reported decreased brainstem volumes in preterm infants

following prolonged mechanical ventilation (36–38), however,

little is known about the effects of prolonged mechanical

ventilation on inflammation and injury within brainstem
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FIGURE 7

Area fraction of GFAP staining (%) in brainstem respiratory centres. (A, A’) Representative photomicrographs of GFAP (red) staining in the retrotrapezoid
nucleus and parafacial respiratory group (RTN/pFRG) in CONT and VENT exposed fetuses. Scale = 20 µm (B) Percentage area fraction of GFAP+ staining
in the whole medulla and regional respiratory centres including the retrotrapezoid nucleus and parafacial respiratory group (RTN/pFRG), PreBötzinger
complex (Pre- Bötc), nucleus ambiguus (NA), nucleus tractus solitarius (NTS) and raphe nucleus (RN) in control (CONT; grey circles; n= 6) and
ventilated (VENT; purple circles; n= 7) fetuses. Data are mean ± SEM.

FIGURE 6

mRNA expression of inflammatory cytokines IL-1A, IL-1B, IL-6, IL-8, IL-10, IL-18, TNF; markers of inflammation NF-κB, CXCL-10, HMGB1, FOXP3, MMP9,
MPO, SAA, TLR-4; markers of cell death/damage CASP-1, CASP-3, CASP-8, HSP70; markers of prostaglandin synthesis PTGES, PTGS-2 in control (CONT;
grey circles; n= 6) and ventilated (VENT; purple circles; n= 7) fetuses. Data are mean ± SEM.

Vidinopoulos et al. 10.3389/fped.2023.1225294
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FIGURE 8

Ionised calcium binding adaptor molecule (IBA-1+) cells in brainstem respiratory centres. (A) Total Ionised calcium binding adaptor molecule (IBA-1+),
(B) Ramified IBA-1 + cells and (C) ameboid IBA-1 + cells per field in the whole medulla and regional respiratory centres: retrotrapezoid nucleus and
parafacial respiratory group (RTN/pFRG), preBötzinger complex (Pre- Bötc), nucleus ambiguus (NA), nucleus tractus solitarius (NTS) and raphe nucleus
(RN) in control (CONT; grey circles; n= 6) and ventilated (VENT; purple circles; n= 7) fetuses. (D, D’) Representative photomicrographs of IBA-1
(green) staining in the RN of CONT and VENT exposed fetuses. Scale = 20 µm. Representative images of ramified (D’’) and ameboid (D’’’) microglial
phenotypes. Data are mean ± SEM. ****p < 0.0001, **p < 0.001, *p < 0.05.
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respiratory centres. We investigated whether 24 h of in utero

mechanical ventilation would increase systemic inflammation and

cause inflammation and injury within the brainstem respiratory

centres of preterm fetal sheep. We found that mechanical

ventilation increased systemic concentrations of cytokines IL-6

and IL-8, cerebrospinal fluid concentrations of IP-10, and

increased numbers of ameboid microglia compared to controls

but did not cause cell death in brainstem respiratory centres.

Taken together, these data indicate that mechanical ventilation

induced a systemic inflammatory response that was associated

with histological evidence of inflammation within brainstem

respiratory centres.

We demonstrated a prolonged increase in systemic

proinflammatory cytokines, IL-6 and IL-8, in response to

mechanical ventilation. The cause of the systemic inflammatory

response during mechanical ventilation is thought to arise from

the repeated volutrauma and barotrauma associated with

mechanical ventilation of the structurally immature lung (39, 40).

In preterm fetal sheep of a similar gestational age, mechanical

ventilation for 12 h using similar tidal volumes was associated

with pulmonary inflammation and tissue injury (24, 41). These
Frontiers in Pediatrics 10
data, together with our findings, indicate that mechanical

ventilation can cause a pulmonary inflammatory response which

results in a systemic inflammatory cascade, that is initiated

within hours, and remains elevated through the first 24 h of

mechanical ventilation. This inflammatory response was activated

despite achieving a tidal volume (2.8 ml/kg) that was only

slightly above the expected dead space volume of the lung. Thus,

it is likely that only a small part of the lung was aerated, and

that the entirety of the tidal volume was entering and ventilating

a small region, resulting in inflammation and injury.

Importantly, this highlights that injuring even a small portion of

the lung has potentially significant downstream consequences.

Consistent with our findings, an acute systemic inflammatory

response during respiratory support was shown in term and late

preterm human neonates, who showed increased plasma pro-

inflammatory cytokines IL-8 (2.5-fold), IL-1β (7.5-fold) and TNF

(10-fold), and decreased anti-inflammatory cytokine IL-10 (by

90%) from only 2 h after the initiation of mechanical ventilation

(21). Furthermore, ventilation of extremely preterm infants for

14 days increases circulating concentrations of IL-1β, TNF and

IL-8 (22). In our study, we showed IL-6 and IL-8 were increased
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FIGURE 9

Caspase-3 + cells in brainstem respiratory centres. (A) Total caspase-3 positively stained cells per field in the whole medulla and regional respiratory
centres (A’): retrotrapezoid nucleus and parafacial respiratory group (RTN/pFRG), preBötzinger complex (Pre- Bötc), nucleus ambiguus (NA), nucleus
tractus solitarius (NTS) and raphe nucleus (RN). (B) Caspase-3 positive cells with morphological features of karyorrhexis or vacuolisation per field in
the whole medulla, and regional respiratory centres (B’): retrotrapezoid nucleus and parafacial respiratory group (RTN/pFRG), preBötzinger complex
(Pre- Bötc), nucleus ambiguus (NA), nucleus tractus solitarius (NTS) and raphe nucleus (RN) in control (CONT; grey circles; n= 6) and ventilated
(VENT; purple circles; n= 7) fetuses. (C,C’) Representative photomicrographs of caspase-3 + staining in the NTS of CONT and VENT exposed fetuses.
Black arrows point to cells with positive staining. Scale = 20 µm. Representative images of vacuolisation (C’’) and karyorrhexis (C’’’). Data are mean ± SEM.
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throughout the 24 h of IUV. Upregulation of IL-6 and IL-8 are

strongly associated with adverse neurodevelopmental outcomes

(22, 29, 42, 43). For example, increased plasma IL-6 in preterm

neonates is an independent risk factor for intraventricular

haemorrhage and periventricular leukomalacia during the early

postnatal period (44, 45). Increased circulating IL-8 in preterm

neonates has been associated with an increased requirement for

mechanical ventilation and impaired cognition in early childhood

(22, 46).

The mechanisms through which the brainstem may become

injured are potentially multifactorial. Systemic inflammation has

the potential to cause an immune response in the central

nervous system (CNS). There are several possible mechanisms by

which this may occur. Firstly, systemic cytokines can stimulate

the production of matrix metalloproteases, causing breakdown of

the normally impermeable BBB (47, 48). Studies have shown a

reduction in tightness and an increase in leakiness of the BBB

following inflammation, allowing for the entry of systemic pro-

inflammatory cytokines and peripheral leukocytes into the

central nervous system (47, 49). Following ventilation at high

tidal volumes, the BBB of fetal lambs was more permeable, as

shown by increased blood vessel protein extravasation in the

white matter (33). Secondly, systemic pro-inflammatory cytokines

may enter the CNS via tissues that are devoid of a BBB,
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including the choroid plexus which is the site of the blood-CSF

barrier (49, 50). Like the BBB, the blood-CSF barrier is also

vulnerable to systemic inflammation. IL-1β, IL-6 and IFN have

been implicated in compromising the integrity of this barrier and

allowing for entry and an inflammatory response to occur within

the CSF which may further manifest into the brain/brainstem

tissue (51, 52). Lastly, systemic inflammatory cytokines can cause

an immune response in the CNS by entering the brain and the

brainstem via saturable transport. Whilst the role of the BBB is

to regulate the movement of a number of proteins and cells into

the brain, systemic cytokines are able to enter the CNS via BBB

which serves as an interface for cytokine transport and entry

(53). This mechanism has been demonstrated in a murine model

where radioactively labelled IL-1β and IL-6 were able to cross an

intact BBB via saturable transport (54). It is possible that

through any of these mechanisms, increased systemic IL-6 and

IL-8 may have increased inflammation within the CSF and

brainstem tissue of ventilated preterm fetal sheep.

The entry of pro-inflammatory cytokines and peripheral

leukocytes into the CNS can lead to microglial and astrocyte

recruitment, proliferation, and activation (49, 55, 56). The

initiation of a localised inflammatory response within the central

nervous system (CNS), including activation of glial cells, can

promote chronic CNS inflammation via the release of
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FIGURE 10

TUNEL-positive cells in brainstem respiratory centres. Representative photomicrographs of TUNEL + staining in the RN of CONT (A) and VENT (A’)
exposed fetuses. Black arrows point to cells with positive staining. (B) TUNEL + cells per field in the whole medulla and regional respiratory centres:
retrotrapezoid nucleus and parafacial respiratory group (RTN/pFRG), preBötzinger complex (Pre- Bötc), nucleus ambiguus (NA), nucleus tractus
solitarius (NTS) and raphe nucleus (RN) in control (CONT; grey circles; n= 6) and ventilated (VENT; purple circles; n= 7) groups. Data are mean ± SEM.

Vidinopoulos et al. 10.3389/fped.2023.1225294
pro-inflammatory mediators including cytokines, reactive oxygen

and nitrogen species, excitatory amino acids, and BBB

dysfunction, allowing further infiltration of inflammatory

mediators (39, 57, 58). Following 24 h of IUV, the numbers of

ameboid microglia were higher in the NTS of ventilated fetal

sheep when compared to controls. The NTS is composed of a

compact network of neurons and is the first site of

cardiovascular afferent terminals including carotid body afferents

responsible for coordinating cardiorespiratory responses to

hypoxia (59, 60). Vagal afferents innervating the airways and the

lungs terminate in the NTS, responsible for coordinating

immune to brain communication (61, 62). A previous study

highlighted a similar increase in the proportion of activated

microglia and IL-1β within the NTS following systemic

inflammation induced by intravenous infusion of LPS to 8-week

old male Wistar rats (63). The NTS expresses receptors for PGE2
(64) Activation of these receptors is associated with a reduction

in firing amplitude and frequency in respiration-related

brainstem neurons and consequently breathing activity (65). The

NTS is the first site of termination and integration of respiratory

sensory information, responding to pulmonary stretch receptors

(66). Therefore, it is postulated that inflammation in the NTS

may present clinically as an inhibition to respond and adapt to

respiratory-related challenges including, but not limited to,

hypoxia and hypercapnia. By contrast, microglial activation

within the NTS has also been associated with increased

cardiorespiratory reflex sensitivity. These data raise the possibility
Frontiers in Pediatrics 12
that microglial activation within the NTS may promote an

endogenous protective response to systemic inflammation (60, 61).

The number of ameboid microglia within the RN of ventilated

fetal sheep were higher compared to unventilated fetal sheep.

Neurons of the RN are highly sensitive to changes in systemic

pH and CO2. In response to acidosis, chemosensitive neurons of

the RN release neurotransmitters such as serotonin (5-HT),

which is thought to regulate increased ventilation and modulate

autonomic control in response to changes in blood pH (67). In

acute brainstem slices, neurons of the RN increase their action

potential firing rate 3-fold in response to mild changes in pH

(pH of 7.4 to 7.2) (68). The RN has been previously shown to be

vulnerable to the effects of systemic inflammation (69–71). The

RN is located adjacent to the cerebral aqueduct, a major source

of CSF flow. Previous studies have shown that LPS

administration to brainstem slices reduce the number of

serotonergic neurons in the RN (72). Systemic administration of

IL-1β, TNF and LPS have also been shown to alter serotonergic

neurotransmitter excitability and release of 5-HT, as well as

microglial activation in the RN (70, 73, 74). It is possible that

inflammation within the CSF of ventilated fetal sheep may

account for the increased activation of microglia within the RN.

The RN is responsible for modulating responses to central

chemosensitivity and respond to several visceral afferents (75).

Together with the NTS, both respiratory centres have a central

role in modulating responses to altered partial pressures of

oxygen and carbon dioxide. Studies have increasingly highlighted
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that systemic transfusion of LPS, IL-1β and PGE2 result in apnoea

and autoresuscitation inhibition following anoxia (11, 16, 76).

PGE2 has also been shown to inhibit fetal breathing movements

in several large animal models (14, 77). It is therefore postulated

that increased inflammation in brainstem respiratory centres,

particularly those responsible for controlling peripheral and

central chemosensitivity, may result in inadequate responses to

hypoxia, inhibition of gasping as well as limited capacity to auto

resuscitate. This may clinically present as an increased

requirement for respiratory support, as well as increased

desaturations, apnoeas and bradycardias as described previously

(12). Further studies are now required to determine whether the

increased microglial activation within the NTS and the RN

impact cardiorespiratory reflex responses and adaptations to

chemosensitive changes during and after mechanical ventilation.

Furthermore, whilst there is growing evidence that brainstem

inflammation/injury may have profound influences on

cardiorespiratory control in preterm infants, its influence on

immediate and long-term neonatal outcomes, particularly

neurological, have not been elucidated, and warrants further

investigation.

Mechanical ventilation did not significantly increase astrocyte

coverage in the medulla of VENT fetuses compared to CONT.

Nevertheless, there was a trend for increased astrocyte coverage

within the medulla (p = 0.054). Similarly, we observed a trend for

increased astrocyte coverage within the RTN/pFRG and the

pre-Bötc of VENT fetuses compared to CONT (p = 0.057

and 0.067 respectively) after 24 h of mechanical ventilation.

Astrocytes within the brainstem respiratory centres are highly

chemosensitive and respond to physiological changes in pH by

calcium fluctuations and release of adenosine triphosphate (ATP)

(78). The pre-Bötc and the RTN/pFRG are medullary respiratory

centres (8). The pre-Bötc is responsible for generating inspiratory

rhythmogenesis and plays a role in controlling upper airway

patency to regulate the passage of air into the lungs (8, 79). The

RTN/pFRG contains neurons that provide rhythmogenic

expiratory activity and is an important site of chemoreception

(80). Furthermore, the astrocytes of the RTN/pFRG are highly

chemosensitive, responding to decreases in blood and brain pH

by increasing intracellular calcium and release of ATP which in

turn activates chemoreceptor neurons to increase breathing (78).

Pre-Bötc astrocytes function in a similar way, where they have

important signalling function which are mediated by vesicular

release of gliotransmitters that control breathing rate and

rhythm, and regulate respiratory responses to hypoxia and

hypercapnia (81). For example, blocking vesicular release in Pre-

Bötc astrocytes reduced resting breathing rate, decreased

breathing rhythm variability, impaired respiratory responses to

hypoxia and hypercapnia, and reduced exercise capacity in adult

male rats. These data demonstrate Pre-Bötc astrocytes play a key

role in adaptive respiratory responses during conditions of

increased metabolic demand (81), which may include perinatal

infection/inflammation (82). We did not observe changes in

arterial blood gases or lactate concentrations in the VENT group

compared to CONT. These data are consistent with previous

studies (24) and confirm that in utero ventilation does not alter
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placental function or affect the fetal cardiopulmonary circulation,

where the lungs do not support gas exchange and receive

minimal (10%–15%) right-ventricular output (83). Overall, our

data suggests that astrogliosis and microgliosis in key brainstem

respiratory centres may alter their function. Whether this inhibits

or augments the ability to breath independently or adapt to

physiological challenges in the preterm fetus or neonate is an

area that requires further investigation.

We observed no changes in brainstem mRNA levels of pro-

inflammatory cytokines, markers of tissue injury and death, and

prostaglandin synthesis in VENT fetuses compared to CONT

after 24 h of IUV. It is possible that differences in gene

expression profiles did not manifest within the 24-hour IUV

period. The moderate level of brainstem gliosis and the lack of

cell death and apoptosis observed in the VENT group compared

to CONT would support this hypothesis. Alternatively, it is

possible that differences in mRNA expression between the groups

had resolved by the time of tissue collection. We have previously

shown increased mRNA expression of pro-inflammatory

cytokines IL-1β, IL-6 and IL-8 in the white matter of preterm

lambs ventilated with higher tidal volumes (7–15 ml/kg) within

2 h of ventilation onset (84, 85). However, these differences had

resolved after 24 h (86).

The experimental model of in utero ventilation has several

advantages, including ventilation of preterm sheep at gestations

younger than what would be feasible ex utero, and in the absence

of other factors required for supporting preterm neonates that in

of themselves can cause brain inflammation and injury (24, 25).

For example, the intact placental circulation maintains

cardiovascular stability and supports nutritional, and oxygen

demands of the fetus (87–89). Overall, this allows us to improve

our understanding of the impact of mechanical ventilation on

the preterm brainstem in isolation of additional factors required

for supporting mechanically ventilated preterm neonates.

However, the use of the ovine model of prematurity does come

with limitations. The timing of development of the respiratory

system and the central nervous system of the fetal sheep differs.

At 112 d gestation, the fetal sheep lung is equivalent to human

lung development between 22 and 24 weeks, defining the

extremely preterm infant (27). However, white matter

development equates to approximately 30–35 weeks’ gestation,

the very or moderately preterm infant (27, 28).
Conclusion

This study has described for the first time that moderate

inflammation is present within the brainstem respiratory centres

of preterm fetal sheep following 24 h of in utero mechanical

ventilation. We demonstrated that ventilation results in a

sustained increase in systemic pro-inflammatory cytokines over

24 h. Furthermore, we show moderate changes to microglial

morphology towards an activated state within the NTS, and a

trend for increased astrocyte coverage in ventilated fetuses,

particularly within the RTN/pFRG and the pre-Bötc. Given that

many preterm neonates are ventilated for significantly longer
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durations than 24 h (90), further studies are required to determine

the impact of longer durations of mechanical ventilation on

brainstem inflammation and injury. In addition, determining

whether these histological changes result in functional

consequences to cardiorespiratory control and independent

breathing in preterm neonates requires further study.
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