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Clinical hypoxemia score for
outpatient child pneumonia care
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Background: Pulse oximeters are not routinely available in outpatient clinics in
low- and middle-income countries. We derived clinical scores to identify
hypoxemic child pneumonia.
Methods: This was a retrospective pooled analysis of two outpatient datasets of
3–35 month olds with World Health Organization (WHO)-defined pneumonia in
Bangladesh and Malawi. We constructed, internally validated, and compared fit &
discrimination of four models predicting SpO2< 93% and <90%: (1) Integrated
Management of Childhood Illness guidelines, (2) WHO-composite guidelines, (3)
Independent variable least absolute shrinkage and selection operator (LASSO);
(4) Composite variable LASSO.
Results: 12,712 observations were included. The independent and composite
LASSO models discriminated moderately (both C-statistic 0.77) between children
with a SpO2< 93% and ≥94%; model predictive capacities remained moderate
after adjusting for potential overfitting (C-statistic 0.74 and 0.75). The IMCI and
WHO-composite models had poorer discrimination (C-statistic 0.56 and 0.68)
and identified 20.6% and 56.8% of SpO2< 93% cases. The highest score stratum
of the independent and composite LASSO models identified 46.7% and 49.0% of
SpO2< 93% cases. Both LASSO models had similar performance for a SpO2< 90%.
Conclusions: In the absence of pulse oximeters, both LASSO models better
identified outpatient hypoxemic pneumonia cases than the WHO guidelines.
Score external validation and implementation are needed.
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Introduction

The burden of child pneumoniamortality predominantly occurs in

low-income andmiddle-income countries (LMICs) (1). Hypoxemia—a

low blood oxyhemoglobin saturation—conveys increased pneumonia

mortality risk, yet most children in LMICs lack pulse oximeter access

(2, 3). Pulse oximeters identify hypoxemia by non-invasively

measuring the peripheral arterial oxyhemoglobin saturation (SpO2)

(4). To simplify diagnosis in LMICs the World Health Organization

(WHO) Integrated Management of Childhood Illness (IMCI)

guidelines consider pneumonia a clinical syndrome (5). Although

IMCI recommends oximeter use when available, it also provides

guidance for settings without pulse oximetry (5).

There are challenges in the application of the IMCI algorithm for

pneumonia management, which have remained largely unchanged

since their inception in the mid-1990s. Since then, the guidelines

have undergone one technical update that recommends children

with chest indrawing but without clinical danger signs no longer

require hospital referral (6, 7). Evidence suggests that gaps remain

with the IMCI case management strategy, especially regarding use

of the algorithm without pulse oximetry. Specifically, research

reported IMCI missed ∼70% of outpatient child pneumonia cases

with a SpO2< 90% in Malawi and ∼90% in Bangladesh (8, 9).

However, a stronger emphasis on the integration of pulse oximetry

into IMCI guidance—while an important next step—is unlikely to

immediately solve this issue as healthcare providers in most high

pneumonia burden LMICs lack access to pulse oximeter devices in

outpatient settings where children usually present to care first. High

quality, affordable devices designed for the needs of infants and

children in LMICs are not yet available. As a result, healthcare

providers instead rely on clinical signs included in the IMCI

guidelines to aid in the management of pneumonia cases. As most

children first access health systems at outpatient clinics, improving

outpatient hypoxemia identification may be key to reducing LMIC

pneumonia mortality (4).

Prior research attempted to determine whether clinical signs

accurately identify a SpO2< 90% in hospitalized children as current

guidelines limit severe case definitions to SpO2 measurements <90%

(10, 11). While these hospital-based studies report high specificity of

clinical signs for a SpO2 < 90%, sensitivity was low (10, 11). Similar

studies in outpatient contexts are lacking, and may reveal new

evidence than research from hospitals relying on study populations

of more severely ill children not representative of outpatient settings.

In settings where pulse oximeters are available, recent data also

showed elevated mortality among children with a SpO2 90%–92% or

93%, as compared to higher SpO2 levels (8, 12–14). These findings

further challenge the current guidelines, which recommend SpO2<

90% threshold for hospitalization and oxygen treatment in LMICs.

Given the need for healthcare providers in low-resource

settings to rely mainly on IMCI-derived clinical signs for

outpatient child pneumonia management, we sought to utilize

two unique, contemporary outpatient pediatric pneumonia

datasets from Bangladesh and Malawi to accomplish three

objectives (15, 16). We first sought to evaluate the performance of

IMCI clinical signs for identifying hypoxemia at a higher SpO2

threshold (<93%) than recommended. Second, we examined
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whether other combinations of clinical features not included in

IMCI guidelines better identify children with a SpO2< 93%,

followed by development and internal validation of pragmatic

hypoxemia clinical scores that could be implemented where pulse

oximeters remain unavailable. Third, we repeated these analyses

using the currently recommended SpO2< 90% threshold.
Materials and methods

Settings

We used data fromMalawi and Bangladesh. Malawi is an African

country with an under 5 mortality rate of 49/1,000 births (17). This

study included 18 clinics in Mchinji and Lilongwe districts with a

1.2 million population catchment area, at 1,000–1,100 m altitude

(16). From October 2011 to June 2014, non-physician clinicians and

nurses at clinics were IMCI trained and documented care of 0–59

month olds with WHO-defined pneumonia (16). Providers used

Acare® pulse oximeters with adult clip probes on the big toe if <2

years old or weighing <10 kg (9). Training, data collection, and

supervision methodology has been published (16).

Bangladesh has an under 5 mortality rate of 27.3/1,000 live births

(18). Since 2001, Projahnmo, a partnership of Johns Hopkins

University with the Government of Bangladesh’s Ministry of Health

and Family Welfare, International Centre for Diarrhoeal Disease

Research, Bangladesh, Shimantik, and the Child Health Research

Foundation conducted community-based surveillance in Zakiganj

subdistrict of Sylhet district in Bangladesh (15). From May 2015 to

September 2017 Projahnmo expanded surveillance into two

additional subdistricts (Kanaighat, Beanibazar) and augmented

IMCI clinic care of three government Upazila Health Complexes

(15). Altogether these subdistricts have a 770,000 population at 17–

23 m altitude. Upazila Health Complexes provide outpatient and

emergency care and limited inpatient pediatric services. IMCI clinic

care was provided by Projahnmo physicians per IMCI guidelines

(15). From October 2017 Projahnmo physicians measured the SpO2

of 3–35 month olds with suspected pneumonia using a Masimo

Rad-5® pulse oximeter with a LNCS® Y-I wrap sensor on the big

toe. Parent study methodology is published (15).
Inclusion and exclusion criteria

We generated an analytic sample of healthcare visits from

Bangladesh and Malawi datasets. Inclusion criteria were: valid SpO2,

IMCI-defined non-severe or severe pneumonia (2014 guidelines),

(5) and age 3–35 months, as the Bangladesh study population with a

SpO2 was limited to this age (19). See Supplementary Material for

study definitions. Implicit to this analysis we assumed SpO2 was

unavailable and excluded it from pneumonia definitions.
Variables

Our primary outcome was a SpO2< 93%; SpO2< 90% was

secondary. We explored associations between clinical variables
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and SpO2 ranges to evaluate <93% as the primary outcome. We

selected variables a priori: sex, age, weight-for-age z-score

(WAZ), chest indrawing, wheezing, severe respiratory distress

(grunting, head nodding, nasal flaring, and/or severe

fast breathing), cyanosis, fever (temperature ≥38 °C), and WHO-

defined general danger signs (stridor, inability to feed/drink,

convulsions, and/or lethargy) (8, 18). Severe fast breathing was

defined as follows: respiratory rate ≥60 breaths/min for 3–11

month olds, ≥50 breaths/min for 12–59 month olds (20).
Analysis

We evaluated missingness using a 5% threshold. We used Chi-

squared and Fisher’s exact tests for proportions, Wilcoxon rank-sum

for non-parametric data, and Student’s t-test for normally

distributed data comparisons. We reviewed individual-level variables

and their associated SpO2< 93% and <90% predictive quality. For

SpO2< 93% and <90% model development we randomly split the

dataset into derivation (70%) and validation (30%) sets balanced by

outcome and country. For each model we fit a logistic regression

model with hypoxemia as the binary outcome measure. We allowed

selection of country as a fixed effect to account for significant

differences by country. Thereafter, we used a random intercept in

each post selection model to control for country after interrogating

the suitability of this approach with the Hausman test (21). All

analyses were by Stata 16.1 (StataCorp, College Station, TX).
Model development
IMCI guidelines (IMCI model) and composite WHO
guidelines (WHO-composite model)
The IMCI model reflects 2014 IMCI referral criteria

(Supplementary Material) (5). The WHO-composite model is a

composite of four WHO guidelines (5, 22–24). We fit both

models using the logistic command for implementing

multivariable, maximum-likelihood logit models to obtain odds

ratios (and 95% confidence intervals) comparing the odds of

hypoxemia vs. non-hypoxemia.
Independent variable LASSO model (independent LASSO
model) and composite variable LASSO model (composite
LASSO model)
We used the least absolute shrinkage and selection operator

(LASSO) reduction method, testing two selection modes [(1) 10-

fold cross-validation selection and (2) adaptive selection] using the

derivation dataset to develop both models from an expanded

variable list of the IMCI and WHO-composite models

(Supplementary Material) (25, 26). For Independent LASSO we

used singular variables (i.e., independent) whereas for Composite

LASSO we used composite variables for “danger signs” (WHO-

defined general danger signs) and “severe respiratory distress.” For

both models we compared the two methods using the C-statistic

based on predicted estimates, sensitivity, and specificity. If we

found no statistical difference between methods, we used the

selection results from the simplest model to implement an
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unsupervised approach (i.e., selection of the full variable rather

than one category of a three-category variable) to refit both models.
Hypoxemia score development and validation
We compared discriminatory power and model fit [C-statistic

and Bayesian Information Criteria (BIC)] of the four maximum-

likelihood logit models using the derivation dataset models

(27, 28). Using an unsupervised approach (i.e., if only two age

groups were selected, we retained all age categories), each of the

LASSO model covariates were kept on the log scale, rounded to

the nearest 0.5, and doubled to form an integer (14, 29, 30). We

then split the score into approximately equally sized quintiles to

create hypoxemia risk categories.

Using the validation dataset, LASSO model scores were

estimated by child, and score discriminatory power to identify

children with and without hypoxemia was determined. Scores

were not developed using IMCI and WHO-composite models. The

C-statistic, sensitivity, specificity, positive and negative predictive

value (PPV and NPV), and positive and negative likelihood ratios

(LR+ and LR−) were compared across all models. We adjusted C-

statistics for optimism by bootstrapping (200 repetitions) to

account for any overfitting (31). A C-statistic 0.71–0.80 was

considered moderate and >0.80 as excellent discriminatory power

(32). We applied the same analysis methodology for SpO2< 90%.
Results

Study population

We included 12,712 pneumonia cases; 63.6% (n = 8,081) were

from Bangladesh (Supplementary Material). Table 1 shows all

participant characteristics by SpO2. A SpO2< 93% was in 10.4%

(1,328/12,712) of cases and 63.6% (845/1,328) of SpO2< 93% cases

were in Malawi. Most SpO2< 93% cases had non-severe pneumonia

(1,065/1,328; 81.4%) and, without a SpO2 measurement, were

hospitalization ineligible per IMCI guidelines. A larger proportion of

severe (263/1,198, 21.9%) than non-severe (1,065/11,514, 9.2%)

cases had a SpO2< 93%. A SpO2< 90% was in 4.6% (602/12,712) of

cases and in 3.8% (434/11,514) with non-severe disease. 2014 IMCI

hospital referral criteria missed 72.0% (434/602) of SpO2< 90%

cases. While Bangladesh and Malawi case characteristics differed in

frequency, other than WAZ<−3 and danger signs, they had similar

crude associations with a SpO2< 93% (Supplementary Material).

We assessed the relationship between referral criteria and

hypoxemia at SpO2< 90%, 90%–92%, and <93% for the IMCI

and WHO-composite models (Table 2). WAZ≤−3, in both

models, was associated with a SpO2 90%–92% and <93% but not

<90%. In the WHO-composite model severe respiratory distress

was associated with an increased adjusted odds of an abnormal

SpO2 regardless of SpO2 range. While in the IMCI model danger

signs were associated with hypoxemia, including respiratory

distress in the WHO-composite model attenuated its effect at

each SpO2 threshold. Respiratory distress was associated with

each SpO2 threshold in the WHO-composite model.
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TABLE 1 Patient characteristics by SpO2< 93% ( full dataset, N = 12,712).

Characteristics Total SpO2≥ 93% SpO2< 93% p-value

N = 12,712 N = 11,384 (89.6%) N = 1,328 (10.4%)
Study country, n (%) <0.001

Bangladesh 8,081 (63.6%) 7,598 (66.7%) 483 (36.4%)

Malawi 4,631 (36.4%) 3,786 (33.3%) 845 (63.6%)

Child age (months), median (IQR) 12 (6, 19) 12 (6, 20) 10 (6, 17) <0.001

Child sex, n (%) 0.36

Male 6,895 (54.2%) 6,207 (54.5%) 688 (51.8%)

Female 5,530 (43.5%) 4,950 (43.5%) 580 (43.7%)

Missing 287 (2.3%) 227 (2.0%) 60 (4.5%)

Weight for age z-score, n (%) 0.056

≥ −2.0 9,441 (74.3%) 8,463 (74.3%) 978 (73.6%)

−3.0≤ z-score≤ −2.0 2,080 (16.4%) 1,899 (16.7%) 181 (13.6%)

< −3.0 852 (6.7%) 760 (6.7%) 92 (6.9%)

Missing 339 (2.7%) 262 (2.3%) 77 (5.8%)

WHO danger signs, n (%) 364 (2.9%) 183 (1.6%) 181 (13.6%) <0.001

Stridor at rest 126 (1.0%) 65 (0.6%) 61 (4.7%) <0.001

Unable to feed 187 (1.5%) 74 (0.7%) 113 (8.5%) <0.001

Lethargy or unconscious 58 (0.5%) 29 (0.3%) 29 (2.2%) <0.001

Convulsions 62 (0.5%) 35 (0.3%) 27 (2.0%) <0.001

Severe respiratory distress, n (%) 2,352 (18.5%) 1,667 (14.6%) 685 (51.6%) <0.001

Grunting 399 (3.1%) 179 (1.6%) 220 (16.7%) <0.001

Head nodding 636 (5.0%) 402 (3.5%) 234 (17.8%) <0.001

Nasal flaring 1,219 (9.6%) 776 (6.8%) 443 (33.5%) <0.001

Severe fast breathinga 993 (7.8%) 739 (6.5%) 254 (19.4%) <0.001

Central cyanosis, n (%) 104 (0.8%) 26 (0.2%) 78 (6.0%) <0.001

Temperature ≥38° C, n (%) 3,540 (28.4%) 3,009 (26.8%) 531 (41.9%) <0.001

Chest indrawing, n (%) 3,944 (31.0%) 3,126 (27.5%) 818 (61.6%) <0.001

Wheezing, n (%) 462 (3.6%) 248 (2.2%) 214 (16.1%) <0.001

Non-severe IMCI pneumoniab, n (%) 11,514 (90.8%) 10,449 (91.9%) 1,065 (81.4%) <0.001

Severe IMCI pneumoniac, n (%) 1,198 (9.4%) 935 (8.2%) 263 (19.8%) <0.001

SpO2 indicates peripheral arterial oxyhemoglobin saturation; IQR, interquartile range; WHO, World Health Organization; IMCI, integrated management of childhood illnesses.
aRespiratory rate ≥70 breaths/min for 3–11 month olds, ≥60 breaths/min for 12–59 month olds.
bCough and/or difficult breathing plus fast breathing for age (respiratory rate ≥50 breaths/min for 3–11 month olds, ≥40 breaths/min for 12–59 month olds) or chest wall

indrawing without any WHO danger signs (stridor at rest, unable to feed, lethargy or unconscious, convulsions).
cCough and/or difficult breathing plus at least one WHO danger sign (stridor at rest, unable to feed, lethargy or unconscious, convulsions), WAZ <−3, or HIV-infection with

chest indrawing.

Schuh et al. 10.3389/fped.2023.1233532
Multivariable predictive model comparison
and score development

Derivation (n = 3,813) and validation (n = 8,899) datasets have

similar patient characteristic distributions (Supplementary Material,

all p > 0.05). Table 3 presents adjusted odds ratios (aORs) for SpO2<

93% using model-specific predictors from the derivation dataset. In

the independent LASSO model, individual predictor scores ranged

from −1 to 3. The composite LASSO model scores ranged from −1 to
4. Overall predictive performance of the independent (C-statistic =

0.774) and composite LASSO models (C-statistic = 0.773) was

moderate (Table 3) and did not differ in discriminatory power (p =

0.480), with total score ranges in the Supplementary Material. Model

fit improved from the IMCI (BIC 5,536.5) and WHO-composite

models (BIC 5,155.9) to the independent (BIC 4,650.6) and

composite LASSO models (BIC 4,712.2). Overall, the independent

(C-statistic = 0.774) and composite LASSO models (C-statistic =

0.773) better discriminated between children with and without a

SpO2< 93% than the IMCI (C-statistic = 0.661) and WHO-composite

models (C-statistic = 0.734). SpO2< 90% score development and

cross-model comparison are in the Supplementary Material.
Frontiers in Pediatrics 04
Clinical scoreperformance—validationdataset

In the validation dataset, independent (C-statistic = 0.745) and

composite LASSO model (C-statistic = 0.752) scores moderately

discriminated between SpO2< 93% and ≥94% cases (Figure 1).

When examining the C-statistics adjusted for optimism, there was

minimal C-statistic change for both scores (Table 4), and

independent and composite LASSO model discriminatory power did

not differ (p = 0.480). For the independent and composite LASSO

models about 4% of children with a score in the first stratum had

SpO2< 93% compared to >35% in the last stratum (Table 4).
Cross-model comparison: discriminating
between hypoxemic and non-hypoxemic
children

Among IMCI and WHO-composite model classified cases,

23% and 24% had a SpO2< 93%, while among non-cases 9% and

6% had a SpO2< 93% (Table 4). The ability to discriminate
frontiersin.org
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TABLE 2 Association of IMCI guideline and WHO-composite models with SpO2 ranges (full dataset, N = 12,712).

Characteristics SpO2 < 90%a SpO2 90%–92%a SpO2 < 93%a

n = 11,986 n = 12,110 n = 12,712

aOR 95% CI p-value aOR 95% CI p-value aOR 95% CI p-value

IMCI guideline model
Intercept 0.04 (0.02, 0.10) <0.001 0.06 (0.03, 0.12) <0.001 0.11 (0.05, 0.23) <0.001

WHO danger signsa 9.01 (7.08–11.47) <0.001 2.29 (1.60–3.28) <0.001 5.70 (4.57–7.12) <0.001

Weight for age z-score≤−3 1.24 (0.86–1.80) 0.206 1.51 (1.14–2.01) 0.005 1.43 (1.13–1.81) 0.003

WHO-composite model
Intercept 0.02 (0.01, 0.05) <0.001 0.05 (0.03, 0.08) <0.001 0.07 (0.04, 0.13) <0.001

WHO danger signsa 4.82 (3.72–6.24) <0.001 1.41 (0.97–2.04) 0.080 3.22 (2.54–4.09) <0.001

Weight for age z-score≤−3 1.20 (0.82–1.74) 0.354 1.47 (1.10–1.97) 0.008 1.40 (1.10–1.78) 0.007

Severe respiratory distressb 5.74 (4.77–6.91) <0.001 3.52 (2.99–4.14) <0.001 4.59 (4.04–5.20) <0.001

SpO2 indicates peripheral arterial oxyhemoglobin saturation; IMCI, integrated management of childhood illnesses; WHO, World Health Organization.
aStridor at rest, unable to feed or drink, convulsions, lethargy or unconscious.
bGrunting, nasal flaring, head nodding, or severe fast breathing (≥70 breaths/min among 3–11 month olds, and ≥60 breaths/min among 12–35 month olds).

TABLE 3 Clinical hypoxemia score for identifying a SpO2< 93% (derivation dataset).

Characteristics IMCI guideline model WHO-composite
model

Independent LASSO model Composite LASSO model

Log
(odds)

95% CI Log
(odds)

95% CI Log
(odds)

95% CI Score Log
(odds)

95% CI Score

WHO danger signsa 1.724** (1.458, 1.990) 1.140** (0.853, 1.426) 0.521** (0.173, 0.870) 1

Weight for age
z-score≤ −3

0.321* (0.039, 0.603) 0.298* (0.007, 0.588) 0.312* (0.005, 0.620) 1 0.302+ (0, 0.605) 1

Severe respiratory
distressb

1.564** (1.413, 1.715) 0.990** (0.813, 1.168) 2

Grunt – – – – 0.740** (0.407, 1.073) 1 –

Nasal flaring – – – – 0.531** (0.314, 0.749) 1 –

Head nodding – – – – 0.788** (0.523, 1.053) 2 –

Severe fast breathingc – – – – 0.773** (0.541, 1.004) 2 –

Age categories in months
3–5 – – – – Ref – Ref –

6–11 – – – – −0.057 (0.269, 0.154) 0 −0.069 (−0.278, 0.140) 0

12–23 – – – – −0.444** (−0.663, −0.224) −1 −0.407** (−0.621, −0.193) −1
24–35 – – – – −0.562** (−0.844, (−0.280) −1 −0.509** (−0.785, −0.234) −1

Unable to feed – – – – 0.444 (−0.113, 1.001) 1 – – –

Lethargy or
unconscious

– – – – −0.332 (1.275, 0.611) −1 – – –

Cyanosis – – – – 1.701** (1.052, 2.350) 3 1.763** (1.171, 2.355) 4

Temperature ≥38° C – – – – 0.217* (0.051, 0.383) 0 0.212* (0.048, 0.375) 0

Chest indrawing – – – – 1.060** (0.880, 1.240) 2 1.090** (0.915, 1.264) 2

Wheezing – – – – 1.156** (0.860, 1.453) 2 1.103** (0.822, 1.3840 2

B0 intercept −2.246** (−3.015,
−1.476)

−2.692** (−3.328,
−2.057)

−2.855** (−3.597, −2.113) – −2.905** (−3.635, −2.175) –

N 8,899 8,899 8,675 8,724

C-statistic 0.560 (0.546, 0.573) 0.702 (0.684, 0.719) 0.774 0.756, 0.792 0.773 0.755, 0.791

BIC 5,536.5 5,155.9 4,650.6 4,712.2

SpO2 indicates peripheral arterial oxyhemoglobin saturation; IMCI, integrated management of childhood illnesses; WHO, World Health Organization; LASSO, least absolute

shrinkage and selection operator reduction method for selection; all models represented here were fit using mixed effects logistic regression with a random effect for

country (after selection and refitting for independent and composite LASSO models); BIC, Bayesian information criterion.

All models include a random effect to account for the clustering effect of country.

+p < 0.1.

*p < 0.05.

**p < 0.001.
aStridor at rest, unable to feed or drink, convulsions, or lethargy or unconsciousness.
bGrunting, nasal flaring, head nodding, or severe fast breathing.
cRespiratory rate of ≥70 breaths/min if 3–11 months old; ≥60 breaths/min if 12–35 months old.
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between SpO2< 93% and ≥94% cases using the IMCI (C-statistic =

0.563) and WHO-composite model (C-statistic = 0.677) criteria

was low. Based on model fit and discrimination, the composite

LASSO model was the most predictive of SpO2< 93%, identifying

49.0% of SpO2< 93% cases. The independent LASSO model

performed similarly, followed by WHO-composite and IMCI

models. SpO2< 90% results on score validation and ability to

discriminate hypoxemia from non-hypoxemia cases are in the

Supplementary Material.
Clinical signs for a SpO2 < 93%

The Supplementary Material includes the diagnostic

performance of individual clinical signs for a SpO2< 93% and

<90% using the validation datasets.
Discussion

Using pooled data from 12,712 IMCI-defined child pneumonia

cases evaluated at 21 clinics in Malawi and Bangladesh we examined

WHO IMCI guideline hypoxemia identification performance and

developed and internally validated clinical hypoxemia scores for

use in LMICs where pulse oximeters suitable for pediatric

outpatient care are scarce. Our findings suggest more hypoxemic

children could be identified during outpatient care lacking pulse

oximeters if additional signs of respiratory distress are

incorporated into IMCI. Notably, >80% of hypoxemic cases with a

SpO2< 93% and >70% with a SpO2< 90% were misclassified by
FIGURE 1

Comparison of ROC curves for identifying SpO2< 93% cases (validation datas
oxyhemoglobin saturation; IMCI, integrated management of childhood illnes
and selection operator reduction method.
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IMCI as ineligible for hospital referral when pulse oximeters are

unavailable. The independent LASSO model added age, severe

respiratory distress, chest indrawing, cyanosis, fever, and wheezing

parameters into the base IMCI guideline model and better

identified children with a SpO2< 93% than the IMCI and WHO-

composite models. The composite LASSO model’s simplified

composite variables may facilitate implementation. Both LASSO

models also achieved excellent discrimination of SpO2< 90% cases.

Unlike other studies evaluating hypoxemia predictors we

focused on ambulatory rather than hospital settings. This

distinction is important as our findings should therefore be

generalizable to outpatient settings without oximeters and with

lower hypoxemia prevalence than hospitals (33, 34). Notably,

individual variable sensitivity and specificity for hypoxemia are

largely similar to hospital-based studies (11). However, our

WHO-composite model and two LASSO models have good to

excellent discriminatory values distinguishing between hypoxemic

and non-hypoxemic pneumonia cases, contrasting to other work

with smaller samples that limited analyses (11). An exception is a

large, multi-center, hospital-based Nigerian study that found a

combination of respiratory distress, inability to feed, cyanosis,

lethargy and severe tachypnea had lower discrimination

(C-statistic = 0.655) for SpO2< 90% amongst respiratory and non-

respiratory cases than in our data (10). The lower C-statistic may

reflect the authors inclusion of older children <15 years.

It is also important our results are interpreted within the broader

child pneumonia context of known mortality risk factors. In the

IMCI and WHO-composite models WAZ≤−3 was not associated

with a SpO2< 90%, yet is a known mortality risk factor (14, 35).

Conversely wheezing was retained in both LASSO models but,
et). ROC, receiver operating characteristic curve; SpO2, peripheral arterial
ses; WHO, World Health Organization; LASSO, least absolute shrinkage
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TABLE 4 Model performance for identifying a SpO2< 93% (validation dataset).

Hypoxemia risk
(n/N )a

Crude OR
(95% CI)

Mean predicted
hypoxemia, %

C-statistic (adjusted for
optimism;b 95% CI)

Sensitivity Specificity PPV NPV

IMCI guideline model
Non-case 316/3,460 Ref 9.1% 0.563 (0.564; 0.528, 0.600) 20.6% 92.1% 23.2% 90.9%

Case 82/353 3.011 (2.292, 3.955) 23.2% –

Total 398/3,813 – –

WHO-composite model
Non-case 172/2,857 Ref 6.0% 0.677 (0.677; 0.635, 0.712) 56.8% 78.6% 23.6% 94.0%

Case 226/956 4.833 (3.900, 5.989) 23.6% –

Total 398/3,813 – –

Independent LASSO model
−2 to −1 46/1,124 Ref 4.1% 0.745 (0.742; 0.696, 0.779) 46.7% 90.7% 36.9% 93.6%

0 57/1,179 1.191 (.800, 1.771) 4.8% –

1–2 109/1,006 2.848 (1.995, 4.065) 10.8% –

3–13 186/504 13.707 (9.697, 19.376) 36.9% –

Total 398/3,813 –

Composite LASSO model
−1 44/1,117 Ref 3.9% 0.752 (0.750; 0.701, 0.787) 49.0% 89.5% 35.3% 93.8%

0 53/1,164 1.163 (.773, 1.750) 4.6% –

1 42/458 2.462 (1.589, 3.814) 9.2% –

2 64/522 3.408 (2.286, 5.079) 12.3% –

3–11 195/552 13.320 (9.402, 18.871) 35.3% –

Total 398/3,813

SpO2 indicates peripheral arterial oxyhemoglobin saturation; OR, odds ratio; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; IMCI,

integrated management of childhood illnesses; WHO, World Health Organization; LASSO, least absolute shrinkage and selection operator reduction method for selection;

all models represented here were fit using mixed effects logistic regression with a random effect for country (after selection and refitting for the independent and

composite LASSO models).

Hypoxemia risk: numerator (number of hypoxemia cases) and denominator (total number of children with the relevant clinical score).

The independent and composite LASSO models AUC compared using Delong method with Bonferroni correction (p=0.480).
an is the number of observed hypoxemic participants; N is the total number of participants.
bC-statistics are adjusted for optimism.
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when identified alone without accompanying respiratory distress, it

is not associated with radiographic pneumonia or in-hospital

mortality (Supplementary Material) (14, 36). Isolated wheeze

usually reflects milder, self-limited viral illness (e.g., bronchiolitis)

and is susceptible to non-differential misclassification when

confused with transmitted upper respiratory sounds.

While our pooling of data from studies in South Asia and Africa

aimed to improve generalizability, there are several differences

between the settings and studies that may be limitations. Malawi

data had a higher frequency of hypoxemia, danger signs, and

respiratory distress than Bangladesh data. Alternatively, WAZ≤−3
was more frequent in Bangladesh than Malawi. These differences,

in part, may reflect higher HIV and malaria prevalence or modestly

higher altitude in Malawi. These diseases increase susceptibility for

hypoxemia or, for malaria, increase the frequency of signs

overlapping with IMCI pneumonia (37). Although the designs

differed, all personnel were similarly trained per IMCI and followed

similar data collection procedures. Two different pulse oximeter

devices were used in each study. In Malawi, healthcare workers

used Acare pulse oximeters with the adult clip probes while in

Bangladesh study staff used Masimo Rad5 pulse oximeters with

wrap sensors. Although the devices differed, healthcare workers

followed similar measurement procedures that relied on SpO2

measurement of the child’s big toe, which mitigated probe fit issues

with the Acare device. Additionally, while pulse oximeter
Frontiers in Pediatrics 07
manufacturer algorithms for SpO2 calculation may differ, we do not

expect systematic, clinically relevant differences in population-level

SpO2 summary statistics between these devices as both were used

similarly on patients by frequently supervised healthcare workers,

met ISO 80601-2-61:2017 requirements for the basic safety and

essential accuracy performance of pulse oximeters during laboratory

testing, are CE marked, and commercially available. Lastly, the

under 5 mortality rate in Malawi is higher than Bangladesh, (17,

18) which aligns with our results suggesting Malawi cases were

more severe. Nevertheless, we attempted to account for unmeasured

confounders from epidemiological, health system, and

methodological differences by fitting models with a country variable.

We recognize that the future use of a clinical hypoxemia

score would require further external validation and evaluation

of implementation acceptability, feasibility, fidelity, and other

early implementation indicators. Broader use of such clinical

scores largely depend on health system capacity—for example,

developing and maintaining well-trained clinical staff who can

recognize the clinical features that comprise the score and who

accept new guidelines, local expertise for overseeing and

advising any adapted implementation, and, most importantly,

resources such as oxygen and antibiotics to act on these

symptoms and improve care with resultant improved

outcomes. To optimize implementation further studies are

needed to examine and adapt to changes to clinical procedure
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flows as well as assessment and adaptation of health system

dynamics that include the capacity to handle additional

referrals. These steps should be conducted within the context of

strengthening the outpatient system for subsequent pulse

oximeter implementation when appropriate, high quality devices

for infants and children become accessible (38).

In sum, these findings may improve hypoxemic pneumonia

identification in clinics either without pulse oximetry at all or

lacking pulse oximeters suitable for pediatric use. Given a SpO2 <

93% is highly associated with mortality, (3, 12, 14) earlier

hypoxemic case identification with successful referral may reduce

fatality. While these models could advance care for hypoxemic

children they are an inadequate substitution for pulse oximeters.

Pulse oximetry scale up in ambulatory settings must be prioritized,

as should pulse oximeter device development targeted for young

children in LMICs. Where pulse oximetry is unavailable for

children, our models suggest children with chest indrawing and/or

with other signs of respiratory distress could be referred. To

successfully implement these models ambulatory health workers of

varying pediatric experience will need further training to recognize

signs of respiratory distress in children. Understanding how these

changes may affect referral quality, uptake, and hospitalizations is

critical. Next steps include external validation and research

evaluating implementation feasibility of the hypoxemia scores.
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