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Moving from an era of invasive ventilation to that of non-invasive respiratory
support, various modalities have emerged resulting in improved neonatal
outcomes. Respiratory distress is the commonest problem seen both in preterm
and term neonates, and the use of appropriate respiratory support could be
lifesaving. This article reviews the currently available non-invasive ventilation
(NIV) strategies in neonates including nasal continuous positive airway pressure,
nasal intermittent positive pressure ventilation (NIPPV), bi-level CPAP, heated
humidified high flow nasal cannula, nasal high-frequency ventilation (NHFV) and
non-invasive neutrally adjusted ventilatory assist (NIV-NAVA). Though multiple
systematic reviews and meta-analyses have indicated the superiority of
synchronized NIPPV over the other forms of non-invasive respiratory support in
neonates, there is no single NIV modality that universally suits all. Hence, the
choice of NIV for a neonate should be individualized based on its efficacy, the
disease pathology, resource settings, the clinician’s familiarity and parental
values. Future studies should evaluate emerging modalities such as NIV-NAVA
and NHFV in the respiratory management of neonates as the evidence
pertaining to these is insufficient.
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Introduction

The incidence of preterm births has shown a steady increase over the past few decades

globally (1). Since prematurity is one of the leading causes of neonatal mortality, this has had

a significant impact on childhood mortality rates as it forms the major proportion of under-5

mortality, especially in low- and middle-income countries (LMICs) (2, 3). The occurrence of

respiratory distress syndrome (RDS) is postulated to be around 12% among those born

preterm. RDS is not only associated with significant short- and long-term morbidities but

is also one of the commonest causes of mortality in preterm neonates (3). Moreover,

mortality attributed to RDS is 10 times higher in LMICs when compared to high-income

countries (4). Administration of antenatal corticosteroids, exogenous surfactant therapy

and respiratory support (invasive or non-invasive) form the basis of prevention and

treatment of RDS. Over the period of past few decades, invasive mechanical ventilation

(IMV) has been supplanted by non-invasive ventilation (NIV) as IMV has been shown to

be associated with major morbidities. One of the severe morbidities attributed to IMV is

bronchopulmonary dysplasia (BPD) (5, 6). BPD itself has been associated with various
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adverse outcomes such as pulmonary hypertension, increased

susceptibility to respiratory infections during infancy,

neurodevelopmental impairment and cerebral palsy (7). Despite

advances and improvements in IMV strategies, only volume-

targeted ventilation (VTV) has been shown to reliably reduce the

occurrence of BPD (8–10).

As early as 1987, Avery et al. had reported a reduced incidence

of BPD with the use of nasal continuous positive airway pressure

(CPAP) (11). Rapid strides in the field of NIV have happened

since then (12). Currently, multiple NIV modalities are being

used in treating respiratory distress in neonates. These include

heated humidified high flow nasal cannula (HHHFNC), CPAP,

bilevel CPAP (BiPAP), non-invasive positive pressure ventilation

(NIPPV), nasal high-frequency ventilation (NHFV) and non-

invasive ventilation with a neurally adjusted ventilatory assist

(NIV-NAVA). These modalities vary with respect to many

factors such as their mechanism of action, efficacy, safety cost

and healthcare provider’s familiarity with their use. Multiple

systematic reviews and meta-analyses have been published on

NIV and its various aspects in the recent years. The objective of

our review was to summarize the findings of these systematic

reviews so that it would aid the clinicians to interpret the

evidence with ease and hence, guide safe clinical practice.

NIV includes respiratory support modalities that do not require

the insertion of an endotracheal tube. The basic layout of the devices

utilized for NIV consists of a source of oxygen and airflow, an air-

oxygen blender, a servo-controlled humidifier and a nasal

interface. Depending on the complexity of the device, a single or

double-pressure generator, expiratory flow sensors and sensors for

assessing diaphragmatic movement are its various components.
CPAP

The earliest documented use of CPAP in preterm neonates for

providing respiratory support was in 1971 by Gregory et al. (13).

CPAP administered through nasal prongs or mask was the most

prevalent form of non-invasive respiratory support during those

times (14, 15). Subsequently, with the introduction and

refinement of IMV in neonates, use of CPAP declined in the

subsequent decade. This trend changed with the landmark

publication by Avery et al. in 1987 (11). They reported the

incidence of chronic lung disease (BPD) in 8 tertiary care

neonatal intensive care units (NICUs) in North America,

specifically to evaluate the likely causes for the difference in the

incidence of BPD between these NICUs. The group found that

the University of Columbia which used CPAP quite extensively

with restricted IMV use had the lowest incidence of BPD. This

reinvigorated the interest in CPAP globally, with its use being

researched in various disease settings in neonates.

The mechanism of action of CPAP is multi-faceted as listed

below:

• It improves the functional residual capacity (FRC) and hence

decreases the work of breathing (16).

• It decreases intrapulmonary shunting (17).
Frontiers in Pediatrics 02
• It stabilizes the compliant chest wall of preterm neonates and

splints the airway (18, 19).

• It decreases thoracoabdominal asynchrony in the neonate (20).

• It aids in accelerating the growth of the immature lung and

improves protein content per gram of the lung tissue (21).

• It reduces alveolar edema, conserves surfactant and decreases

the occurrence of apnea, especially in preterm infants (22).

A recent systematic review of pre-clinical studies assessed the

short- and long-term effects of CPAP use. This review reported

that CPAP use in animal neonatal models resulted in improved

ventilation and oxygenation (23). CPAP did not disrupt alveolar

architecture or pulmonary microvasculature when compared to

other non-ventilated or ventilated animal models. It was also

shown that early weaning from IMV to CPAP prevents lung

injury. Finally, CPAP not only improved the lung mechanics

such as its compliance, it also increased the phosphatidylcholine

levels which is essential for surfactant production (23).
Generation and delivery of CPAP

It requires 3 major components: (a) flow generator, (b) positive

pressure generator device and (c) airway interface.

Flow generation
A source of warm, humidified, blended air-oxygen mixture

with an inline flow generator is present. The flow could be either

constant or variable.

Constant flow devices provide a constant flow of gases as set by

the clinician. These include the commonly used low-cost bubble

CPAP and CPAP delivered through a ventilator. Variable flow

devices provide a differential flow of incoming gases which is

dependent on the phase of respiratory cycle of the spontaneously

breathing neonate. Since this decreases the work of breathing, it

has gained popularity since its introduction in 1988 (24). These

devices use the Bernoulli principle and gas entrainment

mechanisms to create a fluidic flip effect causing the change in

direction of incoming gases during the expiratory phase of the

neonate, and hence decrease the work of breathing (25, 26).

There are several variable flow devices which are presently

available for use.

Positive pressure delivery
The positive pressure delivered during CPAP may be generated

through one of the following techniques:

• The expiratory valve of the ventilator which adjusts the

expiratory pressure.

• Adjustment of the inspiratory flow through flow drivers or

ventilators.

• The Bubble CPAP system produces a positive pressure by

placing the far end of the expiratory tubing under water. The

pressure is adjusted by altering the depth of the tube under

the surface of the water.

Underwater bubble CPAP systems are most widely used globally,

and more so in low-resource settings. The predominant reasons
frontiersin.org
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for their popularity are the low cost and maintenance, simplicity of

use coupled with almost equal effectiveness as the other CPAP

devices (27–31). Multiple studies have reported that bubble

CPAP is as effective as or even better than ventilator-delivered

CPAP for delivering effective positive pressure ventilation (27, 28).

A Cochrane review (27) published in 2023 investigated the

efficacy and safety of bubble CPAP compared to other forms of

CPAP namely, ventilator-driven and variable flow CPAP. The

meta-analysis included 15 studies (1437 neonates) and reported

that there was a reduced risk of treatment failure with bubble

CPAP compared to the other forms [Risk Ration (RR) (95%

confidence interval (CI)): 0.76 (0.60–0.95)]. The number needed to

treat (NNT) for an additional beneficial outcome was 20.

However, bubble CPAP was shown to be associated with an

increased risk of nasal injury when compared to the other CPAP

devices [RR (95% CI): 2.29 (1.37–3.82)]. There were no significant

differences in the risk for mortality [RR (95% CI): 0.93 (0.64–

1.36)], pneumothorax [RR (95% CI): 0.73 (0.40–1.34)] or BPD

[RR (95% CI): 0.76 (0.53–1.10)].

Bharadwaj et al. (28) performed a meta-analysis (19 studies) to

investigate the efficacy of bubble CPAP vs. other forms of CPAP

devices in preterm neonates. The authors reported that the

primary outcome of treatment failure was significantly lesser in

neonates treated with bubble CPAP [RR (95% CI): 0.75 (0.57–

0.98)]. There were no differences in the risk of mortality [RR

(95% CI): 0.82 (0.47–1.42)], BPD [RR (95% CI): 0.8 (0.53–1.21)]

and air leak [RR (95% CI): 0.80 (0.42–1.55)]. However, the risk

of nasal injury was higher with bubble CPAP when compared to

the other forms [RR (95% CI): 2.04 (1.33–3.140)].

A recent cross-over study evaluated the inspiratory efforts in

preterm neonates when 3 different types of variable flow CPAP

devices were used. This study did not find any difference

between the devices (32).

Airway interface
Following nasal interfaces are used in neonates:

• Long nasal prongs/nasopharyngeal prongs.
TABLE 1 Summary of recent meta-analyses comparing nasal mask and short

Author
year

Study population
(n)

Intervention

Treatment
failure (RR,
95% CI)

m

Prakash
et al. 2022
(35)

1,604 neonates
12 studies 26–34 w

Nasal mask vs. nasal
prong for CPAP
delivery

0.72 (0.58–0.90)b

Razak et al.
2020 (36)

1,091 neonates 11
studies All GA (1 trial
included <28 w GA)

Nasal mask vs. nasal
prong for CPAP
delivery

0.72 (0.58–0.90)b

King et al.
2019 (37)

665 neonates 7 studies
26 to <37 w

Nasal mask vs. nasal
prong for CPAP
delivery

0.72 (0.53–0.97)b

Jasani et al.
2018 (38)

544 neonates 5 studies
26 to <37 w

Nasal mask vs. nasal
prong for CPAP
delivery

0.63 (0.45–0.88)b

aRisk ratio not mentioned in the paper but reported as no significant difference.
bPrimary outcomes; RR, risk ratio; CI, confidence interval; GA, gestational age; w, wee
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• Short binasal prongs.

• Nasal masks.

• Nasal cannula with long and narrow tubing (CLNT) (RAM

cannula, Neotech, Valencia) (33).

Traditionally, short binasal prongs used to be the most commonly

used interface. This is due to their effectiveness, and hence had

replaced the older interfaces namely, single nasal and

nasopharyngeal prongs (34). Nasal masks are more

contemporary in the evolution of CPAP interfaces, and are much

smaller than face masks. Further, nasal masks have been

associated with reduced risk of nasal trauma. An adequate seal

avoiding leak at the nasal end is paramount for CPAP delivery,

which was a cause of concern with the use of nasal masks.

The latest Cochrane review (2022) compared the use of nasal

masks vs. nasal prongs for delivery of CPAP (12 studies, 1,604

neonates). The authors reported that the use of nasal masks was

associated with lower treatment failure rates and decreased nasal

injury (including moderate-severe injury). There was no

difference in the outcomes of mortality, BPD or pneumothorax

between the two groups (35) (Table 1). Similar results were

reported by Razak et al. (36), King et al. (37) and Jasani et al.

(38) in their respective meta-analyses. Moreover, King et al. also

reported that there was a decreased risk of moderate to severe

BPD and need for second dose of surfactant in the nasal mask

group when compared to the short binasal prongs group (low to

very low certainty of evidence) (37).
CPAP application in the Delivery room (DR)

Earlier, extremely preterm and very preterm neonates were

routinely intubated, and given surfactant in the DR

prophylactically. This was followed by a multitude of studies

investigating the use of DR CPAP to avoid routine intubation in

the DR. The current evidence suggests that early use of CPAP in

the DR with selective use of early rescue surfactant using lesser

invasive modalities is beneficial and preferable over prophylactic
binasal prongs for delivery of NCPAP.

Outcomes

All-cause
ortality (RR,
95% CI)

Pneumothorax
(RR, 95% CI)

Nasal injury
(RR, 95% CI)

BPD (RR,
95% CI)

0.83 (0.56–1.22)b 0.93 (0.45–1.93) 0.55 (0.44–0.71) 0.69 (0.46–1.03)

0.85 (0.59–1.22) 1.03 (0.53–2.00) 0.64 (0.55–0.74) 0.84 (0.53–1.33)

0.91 (0.59–1.38) 0.70 (0.27–1.82) 0.71 (0.59–0.85)b 0.94 (0.70–1.26)

—a —a 0.41 (0.24–0.72) —a

ks; CPAP, continuous positive airway pressure; BPD, bronchopulmonary dysplasia.
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surfactant use followed by IMV in preterm neonates (39–45).

CPAP provided in DR has also been found beneficial for late

preterm and term neonates (46).

Subramaniam et al. (Cochrane 2021) (44) reported in a meta-

analysis of 8 RCTs that prophylactic use of CPAP (application

within 15 min of birth in DR) or very early CPAP (application

within 60 min of birth) in preterm neonates led to decreased

treatment failure (need for IMV) when compared to supportive

treatment alone (supplemental oxygen) [RR (95% CI): 0.60

(0.49–0.74)]. However, the risk of BPD was similar between the

two groups [RR (95% CI) 0.76 (0.51–1.14)]. The results were

also comparable for the outcomes of mortality, BPD or

mortality, pulmonary air leaks and intraventricular hemorrhage

(IVH) grade >2. Use of prophylactic or very early CPAP was

also compared to IMV with or without surfactant therapy. It

was reported that the former decreased the risk of the

combined outcome of BPD or death, BPD alone and failure of

treatment with no effect on the outcomes of mortality,

pulmonary air leak or IVH grade >2. The third comparison by

the authors was between prophylactic and very early CPAP. The

results were derived from a single RCT which reported no

difference in mortality or BPD between the two groups. This

meta-analysis included neonates of gestational age 24–32 weeks’

gestation age (GA).

A network meta-analysis (NMA) published in 2022 compared

the use of DR CPAP vs. other interventions. A trend towards

decreased risk of IMV was indicated [RR (95% CrI) 0.75 (0.56–

1.00)] (45). NMA is a statistical method to compare the efficacy

and safety of multiple competing interventions in a single

analysis. The final effect estimate is a combination of direct

(from RCTs between two interventions) and indirect evidence

(where RCTs between two interventions are not available, effect

estimate being derived from other RCTs in the network). It

provides more robust evidence than pairwise meta-analysis for

comparisons where RCTs are available as indirect evidence is

also added to the direct evidence from RCTs to derive the final

NMA effect estimates. The NMA mentioned here included

studies from LMICs only (7 RCTs, 4 observational studies; 4,210

neonates). The authors suggested future studies for evaluating the

barriers in improving the effectiveness of DR CPAP in LMICs.

Another systematic review investigated the benefits of DR

CPAP in late preterm and term neonates. The authors (2 RCT,

323 neonates) reported a significantly reduced need for

admission to the NICU and need for respiratory support in the

NICU. However, another systematic review including two

observational studies enrolling 8,476 neonates reported that DR

CPAP was associated with an increased risk of air leak

syndromes when compared with no DR CPAP (46, 47).
CPAP for RDS as primary respiratory
support

CPAP is widely used as a primary respiratory support modality

in neonates with RDS (48). CPAP for management of neonates

with RDS should be initiated in the DR and continued while the
Frontiers in Pediatrics 04
neonate is being shifted to the NICU. Initiation of CPAP at birth

in neonates who are relatively at higher risk of RDS (like those

born prior to 30 weeks’ GA) has been recommended by the

European consensus guidelines for the management of RDS (49).

In a systematic review assessing the effect of early CPAP

(initiated at the beginning of respiratory distress) compared to

delayed CPAP (initiated when FiO2 was near 0.60), Ho et al.

(48) found that there was no difference in the need for IMV

[RR (95% CI): 0.77 (0.43–1.38)], mortality [RR (95% CI): 0.93

(0.43–2.03)], air leak [RR (95% CI): 1.09 (0.39–3.04)] and BPD

[RR (95% CI): 1.42 (0.10–20.49)]. Only 4 RCTs (119 neonates,

GA: 31–34 weeks) were included in the meta-analysis. These

RCTs were performed in the 1970s and early 1980s, an era

when both antenatal administration of steroids and respiratory

management of preterm neonates were in their nascent stages.

Another Cochrane systematic review compared the initiation of

CPAP with low pressure (5 cm H2O or less) vs. moderate to high

pressure (>5 cm H2O) in both the settings of primary respiratory

support and post-extubation support (50). For primary

respiratory support, only 1 RCT with 271 preterm neonates was

found to be eligible for inclusion. There was no significant

difference in any of the outcomes namely, mortality or BPD [RR

(95% CI): 1.02 (0.56–1.85)], mortality [RR (95% CI): 1.04 (0.51–

2.12)], BPD [RR (95% CI): 0.80 (0.25–2.57)] or treatment failure

[RR (95% CI): 1.00 (0.63–1.57)]. Two RCTs (117 neonates) were

eligible for inclusion in the post-extubation setting. The results

were quite similar with no significant difference in the composite

outcome of mortality or BPD [RR (95% CI): 0.87 (0.51–1.49)],

mortality [RR (95% CI): 2.94 (0.12–70.30)], BPD [RR (95% CI):

0.87 (0.51–1.49)] and treatment failure [RR (95% CI): 1.52 (0.92–

2.50)] (50).
CPAP for apnea of prematurity

CPAP has been reported to reduce the incidence of mixed and

obstructive apnea in preterm neonates (51). It has also been

proposed to reduce the frequency and duration of desaturation

episodes in central apnea (52). An RCT conducted by

Pantalitschka et al. (53) reported that variable flow devices are

better than underwater bubble CPAP systems in reducing the risk

of apnea of prematurity with median [Interquartile range (IQR)]

event rates per hour being 2.8 (1.5–7.7) and 5.4 (3.0–9.8) in

variable flow CPAP and constant flow bubble CPAP, respectively.

A Cochrane systematic review to assess the efficacy of various

CPAP devices in decreasing apnea of prematurity compared to

supportive treatment or IMV is currently underway (54).
CPAP for transient tachypnea of newborn
(TTN)

CPAP helps in TTN by facilitating the clearance of lung fluid

and helps to reduce the duration of NICU stay (55). A

retrospective cohort study had evaluated the use of CPAP when

compared to nasal cannula in late preterm and term neonates
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with TTN. The authors reported that after adjusting for birth

weight and GA, CPAP decreased the maximal FiO2 requirement

[Incidence rate ratio (IRR) (95% CI): 0.85 (0.76–0.96)] (56).

A recent Cochrane review assessed the efficacy of CPAP in TTN

compared to other NIV modalities. Only 3 small RCTs were

identified: CPAP vs. free flow oxygen, CPAP vs. NIPPV, and CPAP

vs. NHFV (57). A meta-analysis was hence not feasible. The

authors in their descriptive review concluded that CPAP decreased

the duration of tachypnea compared to free flow oxygen [Mean

Difference (MD) (95% CI): −21.10 h (−22.92 to −19.28); 1 RCT,

64 neonates)]. There were no differences for the outcomes of need

for IMV [RR (95% CI): 0.30 (0.01–6.99)] and pneumothorax (none

of the participants developed pneumothorax). NIPPV and CPAP (1

RCT, 40 neonates) were similar in their efficacy for the outcomes

of requirement of IMV [RR (95% CI): 4.00 (0.49–32.72),

pneumothorax [RR (95% CI): 1.00 (0.07–14.90)] and duration of

tachypnea [MD (95% CI): 4.30 h (−19.14 to 27.74)]. The trial

comparing NHFV to CPAP (1 study, 46 participants) reported that

the duration of tachypnea was reduced in the NHFV group [MD

(95% CI): −4.53 h (−5.64 to −3.42)].
Another RCT evaluated the benefit of prophylactic CPAP for

20 minutes in the DR following elective lower segment caesarean

section in late preterm and term neonates. The comparator was

standard care. The authors concluded that prophylactic CPAP

significantly decreased the need for NICU admission (3% vs.

8.8%, p = 0.04) (58).
CPAP for meconium aspiration syndrome
(MAS)

CPAP may be of benefit in neonates with MAS. It possibly

helps in maintaining FRC as alveoli are known to undergo

atelectasis in MAS (59). A multi-centre RCT enrolling 135

neonates compared CPAP to standard care in neonates with

moderate to severe respiratory distress due to MAS (60). The

study reported that CPAP resulted in a decreased risk of IMV

[3% vs. 25%, odds ratio (95% CI): 0.09 (0.02–0.43), p < 0.01].
HHHFNC

HHHFNC works on the principle of providing inhaled gases at a

flow higher than the neonate’s innate inspiratory flow. This aids in

reducing the physiological dead space in the upper airways.

HHHFNC consists of 4 basic components: an air oxygen blender

for titration of the fraction of inspired oxygen (FiO2) (61), a heating

and humidification system which prevents upper airway damage by

cold and dry gases, a high flow gas delivery system which delivers

gases at flow rates of 2–8 litres/minute and a nasal cannula of

varying sizes that occupy less than 50% of the neonates’ nares.

The mechanism of action of HHHFNC is multi-factorial.

Provision of continuous distending pressure which increases the

FRC is one amongst them. It has been reported that distending

pressure generated by HHHFNC might be similar to that
Frontiers in Pediatrics 05
generated by CPAP (62–67). A linear relationship between the

flow rate and the distending pressure generated has been outlined

in multiple studies (62, 66, 68). It has also been reported that a

similar extent of distending pressure could be generated at

relatively lower flow rates in preterm neonates (62, 65). Washout

of upper airway dead space is another proposed mechanism of

action of HHHFNC. Pre-clinical studies have shown that increased

flow rates with HHHFNC result in lower carbon dioxide (CO2)

levels (69, 70). Sivieri et al. in their in-vitro study reported better

CO2 elimination with HHHFNC when compared to CPAP (70).

Preterm neonates have an immature mucocilliary transport system

which predisposes them to airway damage. The delivery of heated

humidified gases not only protect their immature airway, but also

decreases the energy expenditure (71, 72). All these result in

decreased work of breathing (73).
HHHFNC for DR stabilization

One in ten newly born infants requires respiratory assistance at

birth (74). Various academic societies recommend DR CPAP in

preterm neonates with respiratory distress (74, 75). HHHFNC

has also been studied for respiratory stabilization in the DR.

A recently published RCT compared HHHFNC vs. CPAP for

DR stabilization (76). Spontaneously breathing neonates of 28–36

weeks’ GA were enrolled in the study (n = 124). Treatment failure

was defined as the need for intubation or upgradation of support

within the first 72 h. The authors reported that the non-inferiority

of HHHFNC could not be conclusively proven as the 95% CI

crossed both the line of no effect and the non-inferiority

margin of 10%. There was no statistically significant difference

in treatment failure rate in the HHHFNC group (13.1%)

compared to the CPAP group (11.1%) [(Risk Difference (RD)

(95% CI): 2% (−9.9% to 14.07%), p = 0.73)]. There were also no

differences in any of the secondary outcomes of nasal injury, air

leaks, time to treatment failure, duration of respiratory support

and FiO2 requirement. It is to be noted that the study was

underpowered to assess the primary outcome.

Another single-centre retrospective cohort study reported their

experience of using HHHFNC for DR stabilisation over a period of 5

years (77). This study evaluated 292 neonates of less than 32 weeks’

GA. The authors reported that 45% of these neonates required

surfactant therapy. Also, more than three-fourths of these neonates

either stayed on HHHFNC or required a lesser form of respiratory

support. BPD developed in 36% of the survivors. A pilot study by

Reynolds et al. (78) also reported the safe use of HHHFNC for DR

stabilisation and transport in newly born preterm infants of less than

30 weeks’ gestation. Further, 60% of these neonates did not require

any upgradation of respiratory support in the first 72 h of life.
HHHFNC for primary respiratory support

HHHFNC has been compared with CPAP as a primary

respiratory support modality for preterm infants diagnosed with

respiratory distress soon after birth. Several systematic reviews
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have been performed within the last 4 years with varying results

(Table 1) (79–84). Most of these systematic reviews included

preterm neonates of <37 weeks’ GA. Only a limited number of

studies enrolled extremely low gestational age neonates’

(ELGANs) of less than 28 weeks’ GA. The primary outcomes

evaluated in most of these systematic reviews were quite variable.

The Cochrane review reported on the outcomes of risk of

mortality or BPD, mortality, BPD, treatment failure within the

first 72 h and the need for IMV (80). The authors found that the

use of HHHFNC as a primary respiratory support did not result

in any significant difference in most of the outcomes except for a

higher treatment failure rate in the HHHFNC group when

compared to the CPAP group. Also, HHHFNC was associated

with a decreased risk of nasal injury when compared to CPAP

(Table 2). The review also compared the use of HHHFNC vs.

NIPPV for primary respiratory support in preterm neonates. The

authors reported there was no statistically significant difference

between the two groups for the combined outcome of mortality

or BPD, mortality, treatment failure, need for IMV and

occurrence of pneumothorax. A similar finding of reduced risk of

nasal injury in the HHHFNC group was also reported when

compared to NIPPV [RR (95% CI): 0.21(0.09–0.47)].

The systematic review by Luo et al. (79), included an extensive

literature search from Chinese databases. This systematic review

included a total of 27 studies enrolling 3,351 preterm neonates. The

authors reported that HHHFNC use was associated with similar

rates of treatment failure and the need for IMV when compared to

CPAP (Table 2). HHHFNC also resulted in a lower risk of air leak

syndromes, nasal injury, decreased duration of oxygen support and

earlier initiation of enteral feeding. A sensitivity analysis was

performed after the exclusion of studies with a high risk of bias. The

results pertaining to the outcome of decreased duration of oxygen

support and earlier initiation of enteral feeding were contradictory.

Bruet et al. (82), in their systematic review including 10 studies

reported a higher risk of treatment failure with HHHFNC use when

compared to CPAP when used as primary support. However, the

need for IMV was similar. Further, the authors reported a lower risk

of nasal injury with HHHFNC (Table 2). The authors also

performed meta-regressions and did not find any significant effects

of gestational age, birth weight, flow rates used for HHHFNC, or the

type of CPAP devices used on the outcomes.

In conclusion, the use of HHHFNC as primary support in

infants with ≥28 weeks GA may not result in any difference in

the combined outcome of mortality or BPD when compared to

CPAP. However, HHHFNC might be associated with an

increased risk of need for upgradation of respiratory support

within 72 h of initiation. There is no robust evidence for the use

of HHHFNC as primary respiratory support in ELGANs.
HHHFNC for post extubation support

HHHFNC has also been used as a weaning modality after

extubation from IMV and its efficacy has been compared with

other modes of NIV (81, 83–87). The recently published meta-

analysis by Martins et al. (85) (7 studies, 1,044 infants) compared
Frontiers in Pediatrics 06
HHHFNC vs. CPAP. The primary outcomes were extubation

failure rates at 72 h and 7 days. They reported no significant

difference in the primary outcomes. The other outcomes of

mortality, BPD, air leak syndrome, pneumothorax and abdominal

distension were also similar between the groups (Table 3). As

observed in the other systematic reviews on primary respiratory

support, HHHFNC was associated with a decreased risk of nasal

injury. It is to be noted that the studies including both preterm

and term infants were evaluated in this review. An insignificant

difference in extubation failure rate has been reported by Hong

et al. (81) in their meta-analysis as well (10 studies, 1,378

neonates). It was also reported that HHHFNC was associated with

significantly lesser nasal injury. Further, fewer patients developed

pneumothorax in the HHHFNC group when compared to CPAP.

In conclusion, most of the meta-analysis conducted in the last 5

years suggest no difference in extubation failure rates, mortality or

BPD. A decreased risk of nasal injury with HHHFNC as a post-

extubation respiratory support modality when compared to CPAP

has been reported by most of these meta-analyses (Table 3).

Likewise for primary respiratory support, the use of HHHFNC as

a post-extubation modality requires further trials in the sub-group

of ELGANs.
HHHFNC as a weaning mode from other
NIV modalities

There is no consensus on the timing or method of weaning from

various NIV respiratory support modalities (88–90). Various methods

like abrupt stoppage of CPAP, gradual lowering of PEEP, intermediate

stoppage of CPAP for some time followed by re-application, weaning

to HHHFNC, weaning to low flow nasal cannula or head box oxygen

have been tried. But none of the strategies have been conclusively

shown to be better (41). A recent meta-analysis of 15 trials

enrolling 1,547 neonates assessed the various weaning strategies

from NIV in preterm neonates (91). The primary outcomes of this

systematic review were successful weaning at the first attempt and

risk of weaning failure. It was reported that there was no significant

difference in successful weaning at the first attempt when a gradual

decrease of pressure was used in comparison to sudden

discontinuation of CPAP [2 studies, 422 neonates, RR (95% CI):

1.30 (0.93–1.83)]. The postmenstrual age at which successful

weaning was achieved was approximately 3 weeks lesser when

HHHFNC was used for weaning from CPAP compared to sudden

discontinuation of CPAP [MD (95% CI): −2.7 weeks (−3.87 to

−1.52)]. However, there was no significant difference in weaning

failure rate at first attempt between the step-down strategy and the

abrupt stopping of CPAP [4 trials, 327 infants; RR (95% CI): 1.25

(0.79–1.97)]. None of the weaning strategies had any bearing on

the incidence of BPD or length of hospital stay (91).
HHHFNC during endotracheal intubation

Intubation of a hypoxemic neonate is often associated with

adverse life-threatening events. The use of HHHFNC during
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TABLE 3 Summary of recent meta-analyses comparing HHHFNC vs. CPAP as a respiratory support modality in the post-extubation setting.

Author
year

Study
population

(n)

Intervention Outcomes

Extubation
failure at
72 h (RR,
95% CI)

Extubation
failure at
7 days (RR,
95% CI)

BPD (RR,
95% CI)

Mortality
(RR, 95% CI)

Air leak or
Pneumothorax
(RR, 95% CI)

Nasal Injury
(RR, 95% CI)

Martins
et al. 2022
(84)

1,044 neonates
7 studies
All GA included

HHHFNC vs.
CPAP

1.33 (0.67–2.63)b 1.18 (0.73–1.89)b 1.25 (0.59–2.65) 0.83 (0.45–1.53) 0.24 (0.03–2.25)
0.81 (0.23–2.86)

0.21 (0.08–0.52)

Hong et al.
2021 (81)

1,378 neonates
10 studies
<37 w

HHHFNC vs.
CPAP

— 1.23 (1.01–1.50)b 0.87 (0.71–1.07) 0.84 (0.50–1.43) —

0.34 (0.12–0.91)
0.64 (0.52–0.78)

Brito et al.
2021 (83)

1,064 neonates
6 studies
<37 w

HHHFNC vs.
CPAP

— — 1.08 (0.87–1.34)b — —

—

—

Junior et al.
2020 (86)

645 neonates
4 studies
<37 w

HHHFNC vs.
CPAP

9% (−1% to
13%)a,b

— 0.81 (0.57–1.16) — —

0.33 (0.05–2.11)
0.21 (0.13–0.35)

Fleeman
et al. 2019
(84)

1,201 neonates
10 studies
<37 w

HHHFNC vs.
CPAP

1.24 (0.81–1.89)b 0.84 (0.63–1.12)b 0.86 (0.70–1.06) 0.71 (0.31–1.60) 0.29 (0.11–0.76) 0.35 (0.27–0.46)

Wilkinson
et al. 2016
(87)

934 neonates
6 studies
<37 w

HHHFNC vs.
CPAP

1.21 (0.95–1.55) — 0.96 (0.78–1.18)b 0.77 (0.43–1.36)b —

0.35 (0.11–1.06)
0.64 (0.51–0.79)

Data for use of HHHFNC in extremely low gestational age neonates is lacking.
aRisk difference (95% CI).
bPrimary outcomes; RR, risk ratio; CI, confidence interval; GA, gestational age; w, weeks; HHHFNC, Heated humidified high flow nasal cannula; CPAP, nasal continuous

positive airway pressure; BPD, bronchopulmonary dysplasia.
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endotracheal intubation has been compared to standard care (no

nasal high flow or use of supplemental oxygen) in a recently

published RCT (92). With the data derived from 251 intubations in

202 infants, the likelihood of successful intubation on the first

attempt without physiological instability was significantly higher in

the HHHFNC group compared to standard one (50.0% vs. 31.5%,

adjusted RD, 17.6 percentage points; 95% CI, 6.0–29.2) with the

number needed to treat (NNT) being 6 (95% CI, 4–17) (92).
BiPAP

In this form of non-invasive respiratory support, a low and a

high pressure is delivered to the neonatal airway at predefined

rates through a nasal interface. The difference between the two

pressure levels is usually 4 cm of H2O or less. The rate of

delivery of the higher pressure range between 10 and 30 per

minute, and the inspiratory time (Ti) is set between 0.5–1 s (93).

This device needs an added pressure level as well as cycling of

pressures at predefined times. There are specific machines that

deliver BiPAP alone. Some ventilators also have the provision for

BiPAP. Most machines that provide BiPAP can deliver a

maximum positive inspiratory pressure of 15 cm H2O. BiPAP

may provide an added benefit over CPAP by delivering a higher

mean airway pressure. This might translate to better recruitment

of alveoli. However, this is limited by the lack of appropriate

measures for synchronisation with the neonate’s spontaneous

breathing efforts.

Recently, a meta-analysis was performed to compare the

efficacy of BiPAP with CPAP. It was found that there was no

significant difference in the duration of IMV [MD (95% CI): 0.04
Frontiers in Pediatrics 08
days (−0.31 to 0.39)], incidence of BPD [RR (95% CI): 0.98

(0.60–1.59)], extubation failure or death [RR (95% CI): 1.00

(0.81–1.23)], death [RR (95% CI): 0.62 (0.15–2.48)] (94). This

meta-analysis included 4 RCTs which had predominantly

included preterm neonates born between 28 and 34 weeks’ GA.

An RCT comparing BiPAP with CPAP for management of RDS

enrolled 85 very low birth weight (VLBW) neonates. This trial

reported a reduction in treatment failure rates (4.4% vs. 22.5%)

and apnea episodes (13.3% vs. 32.5%) with BiPAP use (95).

Another RCT which enrolled 540 neonates of less than 30

weeks’ GA compared BiPAP vs. CPAP for post-extubation

support. The authors reported similar outcomes for treatment

failure [21% vs. 20%, adjusted odds ratio (95% CI): 1.01 (0.65–

1.56), p = 0.97] (96).
NIPPV

This form of non-invasive ventilation involves delivery of

varying inspiratory and positive end-expiratory pressures (PEEP)

with time cycling at pre-defined rates. The major differences

from BiPAP are that the difference between peak inspiratory

pressure (PIP) and PEEP can be above 4–5 cm of H2O, it utilises

lower inspiratory times, higher respiratory rates, and can be

synchronised or non-synchronised with the neonate’s

spontaneous respiratory effort (97).

NIPPV functions through multiple physiological mechanisms.

It provides PEEP similar to CPAP leading to all the benefits

ascertained to CPAP. In addition, it delivers PIP which is not

provided by CPAP. This results in a higher mean airway pressure

than that achieved with CPAP leading to better recruitment of
frontiersin.org
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alveoli (96). This also helps in better CO2 removal. The two major

forms of NIPPV available are synchronised NIPPV (sNIPPV) and

non-synchronised NIPPV (nsNIPPV). A post-extubation study

among VLBW neonates had demonstrated decreased inspiratory

work of breathing as monitored by esophageal manometry.

Further, an improved tidal volume delivery was demonstrated

with the use of sNIPPV when compared to CPAP (98). This

study also reported improved minute ventilation at lower

respiratory rates with sNIPPV use. NIPPV also improves FRC,

reduces bradycardia and apnea events (99). Head’s paradoxical

reflex is considered to be an important physiological mechanism

in NIPPV (100). This is an increase in inspiratory reflex in

response to inflation of the pharynx by the pressure delivered

during NIPPV (99, 100).

Delivery of non-synchronised breaths is bound to cause

discomfort to neonates. Few studies have shown that improved

ventilation occurs only with the synchronised breaths delivered

during nsNIPPV (98, 99, 101, 102). Four types of triggering

devices are used for achieving synchronisation in NIPPV. These

are the abdominal capsule (Graseby capsule), pressure trigger

device, flow trigger device and NAVA trigger device. The

abdominal capsule detects the spontaneous effort by sensing

abdominal excursion resulting in a delayed response, and hence

causing inappropriate synchronisation (especially in neonates

with tachypnea) (103, 104). Pressure trigger devices cannot be

used for preterm neonates due to their poor inspiratory drive. A

pressure trigger device delivers breath In response to decrease in

pressure that occurs with a patient’s inspiratory effort (101). A

flow trigger is ubiquitous in neonatal ventilators for delivery of

IMV. But the same flow sensor cannot be used for NIPPV as

these circuits have significant leaks at the interface or when the

neonate opens the mouth. A pneumotachograph provides a

solution to this problem. When it is attached to a software it

helps to detect a sudden change in flow with inspiratory effort,

and hence circumvents the gradual continuous change in flow

caused by leaks in the system (105). This device has been shown

to be effective in reducing the need for intubation in neonates

(106, 107). The most recent advancement in the field of NIV has

been NAVA which synchronises delivered breaths to the

electrical signal attained from the neonate’s diaphragm making

the synchronisation close to the ideal (108). This is made

possible by the presence of sensors in a nasogastric tube inserted

specifically for this purpose. These devices have also been shown

to be effective in decreasing the risk of intubation and extubation

failure in preterm neonates with RDS (109).

Interfaces for NIPPV are similar to those used with CPAP

(100). A recently conducted non-inferiority trial reported that

CLNT (RAM cannula, Neotech, Valencia) was comparable to

short binasal prongs for delivering NIPPV in preterm neonates

of 24 to 33 weeks’ GA (110). 166 preterm neonates were

randomized in the study and 14% neonates in CLNT group

required intubation within 72 h as compared to 18% in the short

binasal prongs group [RD (95% CI): −3.6% (−14.8 to 7.6),

within the non-inferiority margin]. The incidence of moderate to

severe nasal injury was lower in the CLNT group (5% vs. 17%, p

= 0.01), but there was no difference in the other outcomes. On
Frontiers in Pediatrics 09
the other hand, another RCT randomized 126 preterm neonates

to receive NIPPV by short binasal prongs and CLNT (RAM

cannula, Neotech, Valencia), and reported a higher need for IMV

(32.8% vs. 9.6%, p = 0.002) and surfactant administration (42.1%

vs. 19.3%, p = 0.07) in the CLNT group (111). A meta-analysis (3

RCTs and 3 observational studies) stated that clinical benefit or

harm could not be ruled out for the outcome of the need for

IMV for CLNT (RAM cannula, Neotech, Valencia) vs. short

binasal prongs or nasal mask [RR (95% CI): 1.37 (0.61–3.04)]

(112). The final verdict on whether one is better than the other

still awaits us as more RCTs are needed to compare the two in

various disease settings.
NIPPV as primary respiratory support for
RDS

A recent NMA comparing different methods of NIV in preterm

neonates for primary respiratory support for RDS assessed 35 studies

enrolling 4,078 preterm neonates with a mean GA of 31 weeks (113).

NIPPV was found to be more likely to prevent treatment failure and

decrease the need for IMV when compared to HHHFNC and CPAP,

and was comparable to BiPAP in its efficacy (Table 4). The combined

outcome of death or BPD was significantly lower with NIPPV use

compared to CPAP. NIPPV was also associated with decreased

incidence of air leaks compared to CPAP and BiPAP. The authors

also reported that sNIPPV, nsNIPPV and BiPAP individually also

decreased the need for IMV [RR (95% CrI): 0.54 (0.32–0.90), 0.61

(0.43–0.83), 0.51 (0.29–0.85)] and treatment failure when compared

to CPAP (113). The authors however did not differentiate between

the various forms of CPAP delivery systems. Further, a subgroup

analysis for ELGANs was not performed.

An earlier Cochrane meta-analysis had reported outcomes

while comparing synchronised, unsynchronised and ventilator-

driven NIPPV with CPAP (114). The review included 10 studies

and 1,885 preterm neonates (Table 4). The results of this meta-

analysis also showed that NIPPV decreased the treatment failure

rates and the need for IMV when compared to CPAP. An

unexpected finding in the meta-analysis was the reduced

treatment failure and IMV rate with nsNIPPV compared to

CPAP, but not with sNIPPV. Other outcomes such as mortality,

BPD and air leaks were similar. Benefit of NIPPV over CPAP for

the subgroup of ELGANs could not be determined by the authors.
NIPPV for post extubation support

Another NMA by Ramaswamy et al. compared various NIV

modalities for post-extubation respiratory support (115). The

NMA included 31 studies enrolling 3,899 neonates. The

authors reported that the primary outcome of requirement for

re-intubation was decreased with the use of nsNIPPV, sNIPPV,

NHFV and variable flow CPAP (VFCPAP) when compared to

constant flow CPAP (CFCPAP) [RR (95% CrI): 0.44 (0.27–

0.67), 0.22 (0.12–0.35), 0.42 (0.18–0.81), 0.73 (0.52–0.99)].

Both sNIPPV and nsNIPPV were better than BiPAP in
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decreasing the risk of the primary outcome. sNIPPV was ranked

as the best intervention as per the surface under the cumulative

ranking (SUCRA) values. The authors also reported that

nsNIPPV decreased re-intubation rates when compared to

VFCPAP and HFNC. sNIPPV also reduced the risk of BPD

and air leak compared to nsNIPPV, VFCPAP and CFCPAP. A

Cochrane meta-analysis (2017) reported a reduction in the

incidence of mortality, respiratory failure and the need for

IMV with the use of NIPPV when compared to CPAP (116)

(Table 5). Both these reviews did not analyse the ELGAN sub-

group separately.
Non-invasive ventilation with neurally
adjusted ventilatory assist (NIV-NAVA)

As described earlier, NAVA is a technique for achieving

synchronisation between the ventilator breaths and neonatal

spontaneous effort by assessing the electrical activity of

diaphragm (EAdi). This helps in overcoming the major

challenges with the synchronisation of NIV in neonates. The

synchronisation is expected to be near ideal as both the

diaphragm and the respiratory support device are acting upon

the same electrical signal reaching the diaphragm (117). NIV-

NAVA has been shown to reduce the PIP requirement and

improve oxygenation in preterm neonates (118, 119). Firestone

et al. reported in their retrospective study that NIV-NAVA

reduces the risk of apnea when compared to CPAP (109).

Another retrospective study reported a reduction in extubation

failure rates with NIV-NAVA when compared to CPAP in

preterm neonates (6.3% vs. 37.5%, p = 0.041) (120). The nasal

interfaces used with NAVA are similar to those used with other

forms of NIV with the addition of a nasogastric tube housing the

electrodes for assessing EAdi.

Commonly used initial settings for NIV-NAVA include an

appropriate level of PEEP, a PIP which is 5–8 cm H2O above the

set PEEP, and a predefined respiratory rate which is set to

provide ventilation to the neonate as a backup for apnea (121).

The most commonly used EAdi trigger level to initiate a breath

is 0.5 microvolt.

Multiple observational studies and RCTs have been conducted

comparing NIV-NAVA with other modes of NIV. A retrospective

review studying ELGANs showed that NIV-NAVA can be safely

used for post-extubation support (74% neonates extubated from

IMV after surfactant administration did not require reintubation)

(122). A Cochrane meta-analysis (2020) compared the efficacy of

NIV-NAVA with other types of non-invasive respiratory support

in neonates (123). Only 2 RCTs (23 neonates, >28 weeks’ GA)

were eligible for inclusion. 1 RCT (16 neonates) reported no

significant difference in treatment failure rate between NIV-

NAVA and NIPPV [RR (95% CI): 0.33 (0.02–7.14)]. NIV-NAVA

was also shown to be associated with significantly increased

respiratory rate [MD (95% CI): 7.22 breaths/minute (0.21–14.22)]

compared to NIPPV. However, the maximum EAdi signal was

similar in both the groups [MD (95% CI): −1.75 microvolt

(−3.75 to 0.26)].
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TABLE 5 Summary of recent meta-analysis comparing NIPPV to other non-invasive ventilation techniques for post extubation support.

Author
year

Study
population

Intervention
(number of
studies)

Outcomes

Mortality
(RR, 95%
CrI/CI)

BPD (RR,
95% CrI/CI)

Respiratory
failure post
extubation
(RR, 95%
CrI/CI)

Need for
mechanical
ventilation
(RR, 95%
CrI/CI)

Air leaks
(RR, 95%
CrI/CI)

Nasal injury
(RR, 95%
CrI/CI)

Ramaswamy
et al. 2020b

(115)

3,899 neonates
31 studies
24 to <37 w

sNIPPV vs. HFNC — 0.72 (0.37–1.21) — 0.24 (0.12–0.41)a 1.57 (0.18–5.81) —

nsNIPPV vs. HFNC — 2.50 (0.85–5.99) — 0.49 (0.27–0.80)a 1.71 (0.19–6.39) 4.96 (0.44–19.62)

sNIPPV vs. CFCPAP — 0.65 (0.38–0.98) — 0.22 (0.12–0.35)a 0.36 (0.07–0.96) —

nsNIPPV vs. CFCPAP — 2.26 (0.79–5.46) — 0.44 (0.27–0.67)a 0.41 (0.06–1.25) 1.48 (0.16–5.41)

sNIPPV vs. VFCPAP — 0.52 (0.25–0.92) — 0.30 (0.16–0.50)a 0.70 (0.13–1.19) —

nsNIPPV vs. VFCPAP — 1.71 (0.69–3.72) — 0.61 (0.36–0.97)a 0.75 (0.15–2.24) 3.94 (0.27–15.67)

sNIPPV vs. BiPAP — 0.56 (0.24–1.03) — 0.32 (0.14–0.64)a 0.33 (0.02–1.29) —

nsNIPPV vs. BiPAP — 1.84 (0.67–4.18) — 0.66 (0.30–1.37)a 0.31 (0.03–1.04) 9.45 (0.31–36.34)

sNIPPV vs. NHFOV — 1.10 (0.37–2.51) — 0.59 (0.21–1.30)a — —

nsNIPPV vs. NHFOV — 3.85 (0.89–11.32) — 1.19 (0.46–2.58)a — —

Lemyre et al.
2017 (116)

1,431 neonates
10 studies
24 to <37 w

NIPPV vs. CPAP (10) 0.68 (0.49–0.99) 0.94 (0.80–1.10) 0.70 (0.60–0.80) 0.76 (0.65–0.88)a 0.48 (0.28–0.82) —

sNIPPV vs. CPAP (5) 0.97 (0.21–4.44) 0.64 (0.44–0.95) 0.25 (0.15–0.41) 0.33 (0.19–0.57)a 0.35 (0.14–0.90) —

nsNIPPV vs. CPAP (4) 0.35 (0.16–0.75) 0.74 (0.47–1.16) 0.65 (0.46–0.93) 0.65 (0.46–0.93)a 1.10 (0.58–2.08) —

—, Comparison not done for this outcome; w, weeks; HHHFNC, Heated humidified high flow nasal cannula; CPAP, nasal continuous positive airway pressure; CFCPAP,

continuous flow nasal continuous positive airway pressure; VFCPAP, variable flow nasal continuous positive airway pressure; NIPPV, non-invasive positive pressure

ventilation; sNIPPV, synchronized non-invasive positive pressure ventilation; nsNIPPV, non-synchronized non-invasive positive pressure ventilation; BPD,

bronchopulmonary dysplasia.
aPrimary outcomes; RR, risk ratio; CI, confidence interval.
bNetwork meta-analysis.
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Nasal high-frequency ventilation
(NHFV)

Incidence of BPD has stayed stable despite rapid advancements

in treatment strategies for preterm neonates such as the use of non-

invasive support, DR CPAP, early selective surfactant with less

invasive surfactant administration technique, avoidance of IMV,

use of volume-targeted ventilation and timely administration of

medications like corticosteroids and caffeine (124, 125). Most

likely cause for this appears to be the increased survival of

ELGANs. Hence, there has been a continual search for other

provisions that could decrease the incidence of BPD. Amongst

the non-invasive respiratory support strategies, NIV-NAVA and

NHFV are the most focused ones as of present. NFHV is

expected to negate the effect of patient-ventilator asynchrony,

and also improve CO2 removal from the lungs (126, 127). There

are 2 main types of NHFV: NHFOV and non-invasive high-

frequency percussive ventilation (NHFPV). The former is the

most researched one in neonatal medicine.

NHFOV encompasses the delivery of constant distending

pressure with pressure amplitude oscillations at a very high rate.

Hence, a higher mean airway pressure can be delivered along

with adequate carbon dioxide elimination with NHFOV (128).

Settings, titration of pressure and amplitude in NHFOV is

similar to that in invasive HFOV (129). The interfaces used are

similar to the ones used with other NIV devices, but with a few

cautionary points. Short binasal prongs and nasal masks are the

most favoured interfaces due to reliable tidal volume generation

and oscillation transmission (130, 131). CLNT is not preferred

for NHFOV as it is shown to increase the work of breathing for

the neonate (132).
Frontiers in Pediatrics 11
Multiple observational studies have reported the benefits of

NHFOV for neonatal respiratory support. It has been reported

that NHFOV use results in decreased treatment failure or need

for re-intubation, reduces apnea episodes and improves

ventilation without any significant adverse effects (133–135). A

recent meta-analysis of 10 RCTs (681 neonates) revealed that

NHFOV use is associated with significantly lower need for

intubation and IMV [Odds Risk (95% CI): 0.29 (0.2–0.4)] when

compared to BiPAP and CPAP (132). Three RCTs included

ELGANs in this meta-analysis. This meta-analysis also reported

that NHFOV is also associated with improved CO2 removal

when compared to BiPAP and CPAP [MD (95% CI): −0.46 mm

Hg (−0.93 to −0.08)]. These results stayed significant even after

adjusting for GA and the use of antenatal corticosteroids (132).
Temperature and humidity during NIV

The upper respiratory passages perform an important function

of heating the ambient air to body temperature and humidifying it

to prevent injury to the lower respiratory tract (136). Most of this

function is performed in the nasal septum and the conchae (136)

which are totally bypassed during IMV by an endotracheal tube.

In NIV, the heating and humidification functioning of the upper

airway is overwhelmed due to the high gas flow rates delivered by

it. This predisposes the neonate to barotrauma, volutrauma and

hypothermia along with an increased risk of mortality in preterm

neonates due to cold and dry respiratory gases (137). Hence,

respiratory gases in IMV need to be warmed up to 37 degrees

Celsius and humidified to attain a relative humidity of 100%

(136). Similar targets are recommended for most NIV respiratory
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modalities as their interface and the gas flow rates bypass the innate

upper respiratory conditioning function system of the neonate (138).

A recent review (23 studies, preterm neonates) revealed that most

NIV setups fail to attain the desired inspiratory gas temperature

and humidity (138). Moreover, many studies have indicated that

the environmental air temperature can have a major effect on the

inspiratory gas temperature. The use of radiant warmer can also

affect respiratory gas conditioning as indicated by studies

comparing the inspiratory gas temperature of neonates nursed in

radiant warmer to those nursed in incubators. A decreased

inspiratory temperature and humidity of the delivered gas in the

radiant warmer group was reported by one study (138).
Pain management in neonates on NIV

NIV can cause significant discomfort and pain for a preterm

neonate. The plausible reasons could be the asynchrony

spontaneously breathing neonates, abutment of the nasal

interface, and nasal injury (139). Persistent pain in the early

neonatal period has been shown to have long-lasting effects,

especially on long-term neurodevelopment (140). The first step

in attaining adequate neonatal comfort on NIV is choosing an

appropriate modality of NIV which is individualized to the

neonate’s need. This includes the usage of more comfortable

devices like HHHFNC compared to CPAP, or interfaces such as

CLNT or nasal mask to prevent nasal injury. Also, appropriate

synchronization using sNIPPV, NIV-NAVA or NHFV may also

decrease the discomfort. Evidence of the efficacy and safety of

these modalities have been discussed earlier. A systematic review

assessed 45 studies and reported that nasal injury can be reduced

through the use of barrier dressings in neonates on NIV [RD

(95% CI): −0.12 (−0.20 to −0.04)], and by preferring HHHFNC

or nasal mask over short binasal prongs (139). This should be

accompanied by timely identification of stress, discomfort or

pain in the neonate by the routine use of clinical pain scores.

Neonates with ongoing NIV should be treated with non-

pharmacological means when the first signs of pain appear (141).

This could be followed by the use of analgesic medications if

needed. Routine use of analgesia for neonates on NIV is an

evolving and controversial subject as the evidence for the same is

insufficient. The EUROPAIN cohort study reported that 18% of

neonates on IMV and 9% neonates on NIV received analgesia or

sedative medications (142). Paracetamol (11%) was the most

commonly used medication followed by opioids (6%). Only 45%

of the neonates on NIV had pain assessments documented.

Dexmedetomidine use in neonates is currently on the rise (143)

and preliminary reports suggest that it is safe and efficacious for

neonates (144). Overall, there is a gap in the literature on the use

of analgesia or sedation in neonates on NIV.
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Conclusions

A holistic approach is needed in the care of preterm neonates

to improve their short- and long-term outcomes. NIV is one of the

most important components of preterm respiratory care. For most

indications, sNIPPV seems to be the most efficacious, and

HHHFNC being associated with the least likelihood of nasal

injury. Adequately powered RCTs are required to evaluate newer

modalities of NIV such as NIV-NAVA and NHFV. Though

multiple systematic reviews and meta-analyses have indicated

the superiority of one NIV modality over the other in neonates,

there is no single NIV modality that universally suits all. Hence,

the choice of NIV for a neonate should be individualized based

on its efficacy, the disease pathology, resource settings,

clinician’s familiarity and parental values. Finally, further robust

adequately powered trials are needed to compare these

modalities in the most vulnerable sub-group of preterm

neonates, the ELGAN population.
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