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Introduction: In the field of pediatric trauma computer-aided detection (CADe)
and computer-aided diagnosis (CADx) systems have emerged offering a
promising avenue for improved patient care. Especially children with wrist
fractures may benefit from machine learning (ML) solutions, since some of
these lesions may be overlooked on conventional X-ray due to minimal
compression without dislocation or mistaken for cartilaginous growth plates.
In this article, we describe the development and optimization of AI algorithms
for wrist fracture detection in children.
Methods: A team of IT-specialists, pediatric radiologists and pediatric surgeons
used the freely available GRAZPEDWRI-DX dataset containing annotated
pediatric trauma wrist radiographs of 6,091 patients, a total number of 10,643
studies (20,327 images). First, a basic object detection model, a You Only
Look Once object detector of the seventh generation (YOLOv7) was trained
and tested on these data. Then, team decisions were taken to adjust data
preparation, image sizes used for training and testing, and configuration of the
detection model. Furthermore, we investigated each of these models using
an Explainable Artificial Intelligence (XAI) method called Gradient Class
Activation Mapping (Grad-CAM). This method visualizes where a model directs
its attention to before classifying and regressing a certain class through
saliency maps.
Results: Mean average precision (mAP) improved when applying optimizations
pre-processing the dataset images (maximum increases of +25.51% mAP@0.5
and +39.78% mAP@[0.5:0.95]), as well as the object detection model itself
(maximum increases of +13.36% mAP@0.5 and +27.01% mAP@[0.5:0.95]).
Generally, when analyzing the resulting models using XAI methods, higher
scoring model variations in terms of mAP paid more attention to broader
regions of the image, prioritizing detection accuracy over precision compared
to the less accurate models.
Discussion: This paper supports the implementation of ML solutions for
pediatric trauma care. Optimization of a large X-ray dataset and the YOLOv7
model improve the model’s ability to detect objects and provide valid
diagnostic support to health care specialists. Such optimization protocols must
be understood and advocated, before comparing ML performances against
health care specialists.
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1. Introduction

In pediatric medicine, artificial intelligence (AI) has found

valuable applications to support healthcare professionals in tasks

such as automating processes, retrieving information and

providing decision support (1, 2). AI-based solutions may be

extremely helpful, when a radiological question occurs frequently,

so that considerably big data sets are available, but specific

challenges still remain and require long-term experience (3). This

constellation certainly applies to pediatric wrist fractures, since

some of these lesions may be overlooked on conventional X-ray

due to minimal compression without dislocation or mistaken for

cartilaginous growth plates (4).

The plethora of terms used within the field of AI still causes

difficulties or even confusion. Basically, the broad umbrella term

is artificial intelligence (AI). Machine learning (ML) is one area

of AI. Deep Learning (DL) is part of ML and makes use of

artificial neural networks (ANN). A neural network is an AI

variant that teaches computers to process data in a way that was

originally inspired by the human brain and uses interconnected

nodes or neurons, usually in a layered structure. Image

classification regularly relies on convolutional neural networks

(CNN), a special type of ANN (5). The main idea of CNNs,

described well e.g. in Ch. 14 of Murphy (6), is to learn small

filters, which (similar to those used in image processing)

recognize certain features like horizontal or vertical edges. These

features are combined, using higher-order filters on higher

hierarchy levels (i.e. in later layers of the network), to identify

first basic geometric structures (like rectangles, arcs and circles)

and later on objects composed of these basic objects.

This holds true also for the “You Only Look Once” (YOLO)

object detectors, first published in 2015/16, which has received

several upgrades to newer versions (7, 8).

Regarding automated pediatric wrist fracture detection,

computer-aided detection (CADe) and computer-aided diagnosis

(CADx) systems based on big data sets contribute to the

detection of rarities within the pool of available data (9).

However, ensuring complete explainability and trustworthiness

behind AI models remains a challenging endeavor as long as

specific IT knowledge remains limited in healthcare professionals,

both in general but also regarding the presented fracture

detection problem.

Neural networks, especially deep neural networks, often

operate in ways that are intricate and difficult for humans to

comprehend (10). Consequently, Explainable Artificial

Intelligence methods are employed to present machine learning

outcomes in an understandable manner. These outcomes can

take the form of visualizations, textual explanations, or examples

(11, 12). A noteworthy method is Gradient-weighted class

activation mapping (Grad-CAM), which adapts traditional Class

Activation Mapping (CAM) in a model-agnostic manner,

allowing for more than global average pooling. Additionally,

Guided Grad-CAM acts as a hybrid technique, combining Grad-

CAM and guided backpropagation through element-wise

multiplication. This approach yields higher-resolution

visualizations that are class-specific and discriminatory (11, 13).
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The superordinate goal of this article, which extends and

deepens the analysis presented in Till et al. (14), is to describe

the development and optimization of AI algorithms for wrist

fracture detection in children using a freely available dataset. It

highlights the steps that lead to improved performance and the

role that each of the medical and technical players must play to

achieve this.
2. Materials and methods

This study assessed the influence of several variations and

settings of the seventh generation YOLO (8) model (YOLOv7), a

state-of-the-art object detector.
2.1. Dataset

The experiments were based on the openly available pediatric

wrist trauma dataset “GRAZPEDWRI-DX” (15), published by the

Division of Pediatric Radiology, Department of Radiology,

Medical University of Graz in 2022. This dataset contains

annotated pediatric trauma wrist radiographs of 6,091 patients,

and a total number of 10,643 studies (20,327 images). All of the

provided studies were included.
2.2. Model training

During training, the model learns by repeatedly making

predictions, measuring the error between the prediction and the

expected result, and adjusting internal parameters accordingly.

Usually, some version of gradient descent is used for this, i.e. the

process can be illustrated as “moving downhill” on an abstract

landscape generated by the prediction error. The learning rate

governs how fast this “movement” is, and often also some

version of momentum is incorporated (16).

Care has to be taken not to overfit the model, i.e. not to have

the model learn irrelevant details of the training data and losing

its ability to generalize (17). This is usually achieved by

performing a train-test-split, i.e. training the model only on some

portion of the data, called the training set, and evaluating the

prediction error also on the rest, called the test set or validation

set. The ideal ratio of these splits vary depending on the data,

with 80% typically being used for larger datasets (18). When the

error decreases on the training set, but systematically increases

on the validation set, this is a strong indication for the onset of

overfitting (17).

When aiming for better model performance, this can be

achieved, on the one hand, by enhancing the quality or amount

of data fed into the network during training. In this study, we

have varied image sizes and preprocessing procedures (19). On

the other hand, directly altering the object detection model, like

using different architectures (8) or adjusting hyperparameters

during training (20), influence detection mean average precision

as well. In this study, we agreed upon that the initial learning
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rate and momentum play a crucial role for optimizing clinical

decision-making in pediatric wrist trauma care, which made

them part of the analysis during experiments.

Models were trained on a Virtual Machine with 15GB RAM,

100GB hard drive storage, 4 CPU cores as well as a dedicated

NVIDIA GPU. Training was performed using the code published

with the original YOLOv7 paper (8) executing the scripts in the

Command Line. Model training duration ranged from 12 to 24 h

for all variations. However, it was agreed upon that differences in

training time will not be taken into consideration for the

upcoming analysis.
2.2.1. Hyperparameters
In machine learning, hyperparameters (like learning rate,

influence of momentum or batch size) are different to standard

model parameters, as they stay constant throughout the training

process and are not contained in the final model. They greatly

influence the speed of the training process and determine how

the model is adjusted when new information becomes available.

Thus, hyperparameter search often constitutes a major challenge

in designing machine learning models. We decided to test 3

alternative learning rates and momentum settings in this

manuscript (Figure 1).
2.3. Explainable artificial intelligence

In many disciplines, including healthcare, but also for example

finance, it is not sufficient for an AI model to just have a good
FIGURE 1

Flowchart depicting the variations of different YOLOv7 models, input sizes,
marked by an asterisk.
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predictive performance. For such models, it is also regarded as

vitally important to be able to explain for which reasons a

prediction has been made. Because of this, weaker, but

transparent models (like linear scores or decision trees) are often

preferred to more powerful but largely opaque models like

neural networks.

For example, CNNs have achieved remarkable performance on

many image classification tasks, but to explain why the network has

come to a decision is no trivial task.

However, sacrificing predictive power in favor of transparency

is considered as highly problematic as well, and considerable effort

has been invested to even make complex models more transparent.

The resulting field of Explainable Artificial Intelligence (XAI)

encompasses both model-agnostic approaches, which can be used

with any ML model, and approaches that are only applicable to

specific ML methods.

In this article, we investigated our models using a XAI

method called Gradient Class Activation Mapping (Grad-

CAM) (13), ass exemplarily demonstrated in Figure 2, which

is specifically designed for the analysis of image recognition

processes. Through saliency maps, this method visualizes

where a model directs its attention to in the process of

predicting a certain class.
2.4. Model performance and metrics

It is crucial to analyse the performance of an AI model using

adequate metrics and to provide the results in a comprehensible
pre-processing and hyperparameters assessed. The reference values are
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FIGURE 2

(A) Grad-CAM saliency maps for image 1430_0611557520_01_WRI-R1_M008.png. (B) Model predictions for image 1779_0477729910_01_WRI-
R1_M004.png by means of a bounding box.
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way. A number of different methods are available to accomplish

these tasks. These have evolved over time and, depending on the

application area, are now relatively standardised.

With regard to the recognition of objects, the most commonly

used metrics are

• IoU (Intersection over Union). An IoU of 1 means a perfect

match of the AI prediction and the ground truth. An IoU of 0

corresponds to no overlap of the labels.

• Precision: Number of true positives (TP) over sum of true

positives (TP) and false positives (FP).

• Recall: Number of true positives (TP) over sum of true positives

(TP) and false negatives (FN).

• Average precision (AP) is the area under a precision-recall curve

for an object of interest.

• Mean average precision (mAP) is the AP over all tested classes.

Typically, the mAP is calculated for an IoU threshold of 0.5

(50% ¼ mAP@[0.5]) and averaged between 0.5 and 0.95 with

5% steps (mAP@[0.5:0.95]) (21).
FIGURE 3

P-Curve, R-Curve and PR-Curve for the reference model and settings.
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3. Results

In comparison to the reference performance depicted in Figure 3,

performance metrics benefited from employing more complex

YOLOv7 architectures, which introduce more layers, parameters and

gradients into the neural network. The increases in performance are

displayed Table 1. However, training larger models did not

automatically produce more precise or accurate models. mAP

increases reached a maximum of þ13.16% mAP@0.5 and þ24.09%

mAP@[0.5:0.95], respectively for the YOLOv7-X configuration,

which is the 4th largest YOLOv7 variation analysed.

Moreover, similar results could be achieved by decreasing the

learning rate to 0.001 (þ12.15 mAP@0.5, þ27.01 mAP@[0.5:0.95]),

or increasing momentum to 0.99 (þ6.88 mAP@0.5, þ17.15 mAP@

[0.5:0.95]) for a model of equal size. mAP was improved when

omitting image preprocessing procedures (þ17.65% mAP@0.5,

þ18.10% mAP@[0.5:0.95]) and increasing image sizes during

training (þ25.51% mAP@0.5, þ39.78% mAP@[0.5:0.95])

(compare Figure 4).
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TABLE 1 List of the best performing settings in every group of methods.

Method Var Precision Recall mAP@0.5 mAP@[0.5:0.95] Inference time (ms)
Baseline Default 0.67 0.497 0.494 0.274 12.5

Architecture YOLOv7-Tiny 0.774 0.536 0.544 0.326 11

Configuration YOLOv7-X 0.778 0.549 0.559 0.34 13

Image sizes 800� 640 0.551 0.783 0.62 0.383 12.4

Preprocessing No Edit 0.737 0.623 0.64 0.385 11.6

Learning rate 0.001 0.691 0.609 0.554 0.348 12.4

Momentum 0.99 0.636 0.555 0.528 0.321 12.6

FIGURE 4

Results of the different variations of different YOLOv7 models, input sizes, pre-processing and hyperparameters assessed. LR, learning rate; Mom,
momentum. (A) No configuration, (B) configuration, (C) image size and (D) hyperparameters.
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Generally, when analysing the resulting models using XAI

methods, higher scoring models in terms of mAP paid more

attention to broader regions of the image, prioritizing detection

accuracy over precision compared to the less accurate models.

The results inTable 1 indicate that themost important parameters

are the avoidance of pre-processing procedures and a high image size

(Figure 5). These two parameters more important than choosing

different YOLOv7 architectures.
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4. Discussion

Wrist fractures are the most common fractures diagnosed in

children and adolescents (22). While some fractures of the distal

forearm do not even require conventional X-ray to confirm the

diagnosis because of an obvious clinical malalignment, minor

fractures in young children may easily be overlooked, because they

cause only minimal radiological signs of bony compressions.
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FIGURE 5

P-Curve, R-Curve and PR-Curve for the model trained with an increased image size of 800� 640 pixel.
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Furthermore, cartilaginous growth zones may mimic or deceive actual

fractures (23). Thus, specific medical training as a pediatric radiologist

or pediatric surgeon is required to be familiar with age-specific details

of the growing skeleton. Nevertheless, all forms of pediatric wrist

fractures require adequate diagnosis and therapy to minimise

potential subsequent growth disturbances (24). Paediatric trauma

radiographs are often interpreted by emergency physicians and adult

radiologists, sometimes without specialization in pediatric X-rays or

back-up by experienced pediatric radiologists. Even in developed

countries, shortages of radiologists were reported, posing a risk to

pediatric patient care. In some parts of the world, access to pediatric

radiologists is considerably restricted, if not unavailable (25).

Thus, particularly in the field of pediatric radiology, computer-

aided detection (CADe) and computer-aided diagnosis (CADx)

systems could contribute to the interpretation of patient data and

scans (9). The roots of CAD systems trace back to the late 1950s
FIGURE 6

Grad-CAM for models performing worse than the baseline in terms of mea
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when biomedical researchers first explored the potential of expert

systems in medicine. These early endeavors involved computer

programs that took patient data as input and generated diagnostic

outputs. As technology progressed, these initial approaches evolved

and were refined, incorporating AI and specialized algorithms to

enhance predictive capabilities (26). In medical imaging there are

several approaches to help physicians making a correct diagnosis. In

addition to simple classification, i.e. predicting, whether a feature is

present or not in the respective image, methods for localizing

pathologies have also proven successful. A common approach

involves identifying and delineating objects through bounding boxes

(boxes around a predicted object), or image segmentation (masks or

polygonal shapes around a predicted object) (27).

Medicine, and especially imaging are in the midst of a

transformation towards AI, and AI algorithms are playing an

increasingly important role in diagnostics (28). Some solutions are
n average precision.
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visible to the user in terms of computer assistance or interaction,

while others work in the background to make radiological

examinations even better (29). The clinical relevance of the

available AI solutions is growing steadily. In a few years’ time, the

use of optimised assistance solutions - such as the one presented in

this manuscript - could become indispensable. It is not unlikely

that CAD systems for recognising fractures or pathologies might

also be available as open source solutions, community projects or

educational resources in the future (30), alongside commercial

products. Language models and generative AI have recently shown

us this possibility (31). Seamless integration of useful AI tools will

play a decisive role in their acceptance.

Given the complexity of the challenges in this domain, deep

learning algorithms have risen to prominence, surpassing traditional

neural networks in various aspects (32). In some cases, deep

learning algorithms demonstrate comparable or even superior

performance to human medical professionals (33). However, the

increasing complexity of these models, the reliance on high-quality

data, and concerns related to explainability and ethics have posed

hurdles to their full-scale practical implementation. Any technology

in the medical field must embody simplicity, safety, and

trustworthiness to be of true benefit to healthcare practitioners (10).

In this study, we delved into the examination of a YOLOv7 object

detector with a focus on detecting pediatric wrist fractures. The

dataset and baseline parameters used here closely followed a study

by Nagy et al. (15), ensuring a realistic scope and resource context.

Accordingly, this paper undertook an ablation study, established a

baselinemodel, and subsequently presents the researchfindings (10).

Overall, using configuration files improved model performance,

except for YOLOv7-Tiny. Different architectures scaled similarly to
FIGURE 7

Grad-CAM for models performing better than the baseline in terms of mea
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or above YOLOv7 performed similarly well. Yet, configuration

adjustments did not consistently enhance all models. Further

investigation is needed to understand their relationship.

Adjusting learning rate and momentum had significant impacts

on performance. Lower learning rates led to better precision,

compensating for imbalanced classes. An initial learning rate

of 0.001 worked best. A momentum of 0.99 yielded optimal

results overall.

Experimenting with image sizes during testing and training

resulted in more variable outcomes. Training on larger images and

testing on smaller ones yielded better results for all classes. Testing

on larger images reduced performance, similar to omitting

configurations. Unedited data improved average precision and

reduced inference time, especially for fractures. Adjusting image

size for training to 800� 800 produced the best results overall,

benefiting average precision. Smaller image sizes helped object

detection in general, but were less effective for fractures.

When analysed with Grad-CAM, models that outperformed

the reference model in terms of mean average precision tended

to generate noisier saliency maps, directing attention to the

predicted object areas. Worse models produced more focused

maps around actual fractures (compare Figure 6). Higher scoring

models performed better due to their ability to minimize the

amount of false negatives during detection, rather than

maximizing IoU scores during regression, thus valuing detection

accuracy over detection precision (Figure 7).

Some limitations of the manuscript need to be mentioned: We

analysed the seventh iteration of the YOLO algorithm for object

detection, while, in the meantime, a newer version has been

released. It has to be understood that there might be small
n average precision.
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improvements in detection performance. Moreover, we did not

compare the model results with medical experts. The reason is

that we wanted to highlight the various technical possibilities to

improve fracture detection performance during model

development. We did not include statistical analyses in this

manuscript, primarily because a comparison of model

performances on image or bounding box levels with a test set of

n ¼ 1,000 always result in p values below 0.05, even in minor

group differences. On the other hand, a statistical comparison of

the mAP values are not possible, because of the single metric

value for each group. Thus, the presented differences between the

individual architectures and settings need to be judged for their

clinical and technical relevance. We were not able to test higher

image sizes above 800� 800 pixels due to computational

restraints. The results showed a dependency of image size with

model performance, and higher image sizes might lead to further

improvements in model performances.
5. Conclusions

Adjusting the dataset and image size had the most

significant impact on average precision during testing.

Sharpening and contrast enhancement hindered feature

learning, and larger image sizes improved results despite

testing on smaller images. Larger architectures did not always

guarantee better performance. Hyperparameter adjustments

also influenced results, with customized hyperparameters

improving average precision by up to 27.01%. Grad-CAM

analysis highlighted model strengths and weaknesses. This

study contributes to understanding machine learning’s

potential in pediatric healthcare, emphasizing the importance

of data and configuration considerations. Such optimization

protocols must be understood and advocated, before

comparing ML performances against health care specialists.
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