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Objectives: This study aimed to analyze the predictive value of umbilical cord
blood Interleukin-6 (UCB IL-6) for the severity-graded BPD and to establish
machine learning (ML) predictive models in a Chinese population based on the
2019 NRN evidence-based guidelines.
Methods: In this retrospective analysis, we included infants born with gestational age
<32 weeks, who underwent UCB IL-6 testing within 24 h of admission to our NICU
between 2020 and 2022. We collected their medical information encompassing the
maternal, perinatal, and early neonatal phases. Furthermore, we classified the grade
of BPD according to the 2019 NRN evidence-based guidelines. The correlation
between UCB IL-6 and the grades of BPD was analyzed. Univariate analysis and
ordinal logistic regression were employed to identify risk factors, followed by the
development of ML predictive models based on XGBoost, CatBoost, LightGBM,
and Random Forest. The AUROC was used to evaluate the diagnostic value of
each model. Besides, we generated feature importance distribution plots based on
SHAP values to emphasize the significance of UCB IL-6 in the models.
Results: The study ultimately enrolled 414 preterm infants, with No BPD group
(n= 309), Grade 1 BPD group (n= 73), and Grade 2–3 BPD group (n= 32). The
levels of UCB IL-6 increased with the grades of BPD. UCB IL-6 demonstrated
clinical significance in predicting various grades of BPD, particularly in
distinguishing Grade 2–3 BPD patients, with an AUROC of 0.815 (95% CI:
0.753–0.877). All four ML models, XGBoost, CatBoost, LightGBM, and Random
Forest, exhibited Micro-average AUROC values of 0.841, 0.870, 0.851, and 0.878,
respectively. Notably, UCB IL-6 consistently appeared as the most prominent
feature across the feature importance distribution plots in all four models.
Conclusion: UCB IL-6 significantly contributes to predicting severity-graded BPD,
especially in grade 2–3 BPD. Through the development of four ML predictive
models, we highlighted UCB IL-6’s importance.
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1. Introduction

Bronchopulmonary dysplasia (BPD) is a chronic respiratory

disorder originating in the neonatal period and is a major

complication among premature infants. BPD results in long-term

pulmonary issues, imposing significant economic burdens on

both society and families (1). With advancements in neonatal

care technology, more premature infants are able to survive,

leading to a gradual increase in the global incidence of BPD (2).

Effective treatment strategies for BPD are currently lacking (3).

The prognosis for newborns with different grades of BPD varies,

with a higher likelihood of mortality and neurological damage

observed in those with more severe BPD (4). Assessing the

severity-graded BPD usually happens late, either by 36 weeks of

postnatal menstrual age (PMA) or upon discharge home. This

isn’t conducive for guiding treatment and devising effective

strategies. Hence, early prediction of BPD grade is vital, making

the exploration of predictive factors for early grading BPD crucial.

Interleukin-6 (IL-6) is a key member of the cytokine family,

participating in cell-to-cell signaling and serving a crucial

regulatory function in the immune system. IL-6 can accelerate

the progression of lung inflammation (5). Bioinformatics analysis

indicates that IL-6 is among the top ten hub genes in BPD, and

both mRNA and protein levels of IL-6 are highly expressed in

the peripheral blood of newborns with BPD (6). Umbilical cord

blood (UCB) is non-invasive for newborns and can be collected

early, making it a compelling choice for disease prediction.

Previous studies have indicated a link between UCB IL-6 and the

occurrence of BPD, suggesting it as a potential biomarker for

predicting BPD (7–9). However, the relationship between UCB

IL-6 and severity grade of BPD has yet to be investigated.

While numerous prediction tools exist for BPD, there is a scarcity

of predictive models specifically addressing the severity grade of BPD

(10). Most models still rely on the 2001 NICHD guidelines for

assessing and grading BPD. Unfortunately, this standard is no

longer applicable, failing to reflect the contemporary neonatal

respiratory care practices such as the widespread use of high-flow

nasal cannula (11). In 2019, a modern, evidence-based definition of

BPD gained widespread recognition. This definition, established by

the Neonatal Research Network (NRN), categorizes the grades of

BPD based on the respiratory support patterns at PMA 36 weeks

(12). When developing predictive models, artificial intelligence (AI)

offers increased flexibility, allowing adaptation to diverse data types

(13). AI models are particularly adept at capturing complex

nonlinear relationships in data, a task that can be challenging for

traditional models. In the realm of AI, machine learning (ML) is a

key subfield that involves the automated identification of methods

and parameters within data to find optimal solutions. Furthermore,

ML models hold the potential to establish objective classification

standards, thus enhancing the reliability and effectiveness of the

models. ML models have emerged as promising predictive tools

widely applied in clinical settings (14).

In this study, our aim is to explore the predictive value of UCB

IL-6 for grading BPD and to establish effective early predictive

models in a Chinese population using ML based on the 2019

NRN standards.
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2. Materials and methods

2.1. Patients

We conducted a retrospective cohort study, approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University,

with the ethics approval number: 2019-KY-95. All participants

provided informed consent from their parents. The study’s inclusion

criteria were as follows: (1) gestational age (GA) at birth of less than

32 weeks, (2) admission to the NICU between January 2020 and

December 2022 with survival until PMA 36 weeks, and (3)

completion of UCB IL-6 testing within 24 h of admission. Exclusion

criteria encompassed (1) significant congenital anomalies or

chromosomal abnormalities, (2) death or discharge against medical

advice before reaching PMA 36 weeks, and (3) incomplete data. The

flow chart is shown in Figure 1.
2.2. Data collection and UCB IL-6
determinations

We retrospectively obtained clinical data from the hospital’s

electronic medical record system, including maternal factors,

delivery characteristics, neonatal factors, respiratory support and

initial laboratory tests. Respiratory support details encompassed

initial modes of continuous positive airway pressure (CPAP), initial

inspiratory oxygen concentration (FiO2), and invasive ventilation.

Initial laboratory tests covered UCB IL-6, N-terminal pro-brain

natriuretic peptide (NT-proBNP), white blood cell count (WBC),

pH value, chloride ion concentration, sodium ion concentration,

and blood glucose levels, all collected within 24 h of admission.

The detection of UCB IL-6 concentration was performed using

a multiplex microsphere flow cytometry assay (BD FACSCantoTM

II flow cytometer manufactured by BD Company, Qingdao,

China). The normal range for UCB IL-6 is 0–5.4 pg/ml.

Pregnancy induced hypertension is defined as systolic blood

pressure of 140 mmHg or higher, diastolic blood pressure of

90 mmHg or higher, or the presence of both after 20 weeks of

gestation (15). Gestational diabetes mellitus (GDM) refers to any

degree of impaired glucose tolerance during pregnancy, regardless

of whether diabetes was present prior to pregnancy (16). Preterm

rupture of membranes (PROM) is defined as the rupture of fetal

membranes before the onset of labor (17). Fetal growth restriction

is defined as an estimated fetal weight or abdominal circumference

below the 10th percentile for GA on ultrasound (18). According

to the Fenton Chart, a birth weight (BW) at or below the 10th

percentile of the average BW for the same GA is classified as

small for gestational age (SGA) (19). All this data was obtained

from the obstetric electronic medical records on the day of birth.

Respiratory distress syndrome (RDS) and intraventricular

hemorrhage (IVH) are defined according to standard criteria

(20, 21). Respiratory failure (RF) was diagnosed based on clinical

features and laboratory results (22). White matter injury (WMI)

diagnosis involved the use of Doppler ultrasound imaging.

Hemodynamically significant patent ductus arteriosus (HsPDA) is

defined as a ductal diameter of 1.5 mm or larger, and the diagnosis
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FIGURE 1

Flow chart.
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is confirmed through echocardiography, which shows abnormal

blood flow from the aorta to the pulmonary artery (23, 24).

Neonatal sepsis (NS) diagnosis includes both culture-based and

culture-independent methods (25). All the aforementioned clinical

complications were collected within 7 days.
2.3. Definition of study outcomes

2.3.1. Primary outcome
In our study, the primary outcome focuses on diagnosing and

grading BPD. According to the 2019 NRN evidence-based guidelines

(12), severity-graded definitions of BPD are based on the mode of

respiratory support at PMA 36 weeks, regardless of prior or current

oxygen therapy: No BPD, no support; Grade 1 BPD, nasal cannula at

flow rates ≤2 L/min; Grade 2 BPD, nasal cannula at flow rates >2 L/

min or noninvasive positive airway pressure; and Grade 3 BPD,

invasive mechanical ventilation. Since there were only two cases of

Grade 3 BPD, we combined them with the Grade 2 BPD cases,

creating a single group referred to as Grade 2–3 BPD.
2.3.2. Secondary outcome
Furthermore, to explore the impact of different grades of BPD on

clinical burden, we conducted supplementary analyses on length of

hospital stay, total cost, and corrected age at discharge. Hospital

length of stay is the entire duration from admission to discharge,

measured in days. The total cost we obtained represents all expenses

documented in the hospital’s records during hospitalization.

Corrected age at discharge was calculated by subtracting the

number of weeks a child was born prematurely to her/his

chronological age at the time of discharge to home (26).
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2.4. Data analysis

For normally distributed numerical variables, we utilized mean

± SD for presentation. Conversely, for numerical variables that did

not follow a normal distribution, we opted the median (P25–P75)

for representation. Additionally, to meet the normal distribution

assumptions, logarithmic transformations were applied to the

values of UCB IL-6 and NT-proBNP using the natural logarithm

(base e). Normally distributed variables were analyzed using

analysis of variance (ANOVA), while non-normally distributed

variables were assessed using the Kruskal-Wallis H test. For

variables with significant P values, further pairwise comparisons

were conducted. Categorical data were expressed as counts (%),

and intergroup comparisons were performed using either the chi-

square test or Fisher’s exact test, as appropriate. Subsequently, the

main objective was to assess the correlation between UCB IL-6

and the severity grades of BPD through logistic regression analysis.

Factors with P values <0.10 were selected for regression

analysis. Univariate and multivariate ordinal logistic regression

analyses were performed. Predictive models were established

using all statistically significant risk factors (P < 0.05) identified

through the multivariate analysis.
2.5. Model development and evaluation

2.5.1. Model development
In the field of ML, ensemble learning algorithms are widely

acknowledged as superior to traditional single-model methods. The

two main branches of ensemble learning are boosting and bagging,

with XGBoost, LightGBM, CatBoost, GBDT, and AdaBoost
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belonging to boosting algorithms, while RandomForest represents the

bagging method. AdaBoost, functioning as a standalone model, is

limited to binary classification and cannot be employed for multi-

class tasks. Notably, XGBoost, LightGBM, and Catboost are all

improved versions of GBDT. Therefore, in this study, we employed

the four most commonly used methods in similar research

endeavors (27–29): XGBoost, LightGBM, Catboost, and RF.

Ten-fold cross-validationwas utilized to train and evaluate our four

models. The datasetwas split into ten uniformpartitions using stratified

sampling, maintaining consistent proportions for each category within

every partition, mirroring the original dataset. Each model underwent

ten rounds of training and evaluation, with nine subsets used for

training and one subset for testing in each iteration. This tenfold

process ensured each subset was used for testing once. The final

evaluation represented the average of these ten assessment rounds,

providing a more stable assessment of model performance by

reducing the impact of random data partitioning. To address the

imbalance in sample sizes among different classes in our dataset, we

applied balanced sampling to maintain consistent training across all

categories. Additionally, we conducted a grid hyperparameter search

to optimize the models’ performance.
2.5.2. Model evaluation
We used Receiver Operating Characteristic (ROC) curves and

Area Under the Curve (AUC) to assess the models’ classification

performance. We not only utilized Macro-average ROC for an

overall evaluation but also employed Micro-average ROC to

mitigate class imbalance, offering a more accurate reflection of

the models’ predictive capabilities. Apart from these metrics, we

also utilized F1 score, precision, recall and accuracy to assess the

models’ performance. Furthermore, we calculated SHAP values

and generated feature importance distribution plots to evaluate

the significance of UCB IL-6 in each model.
2.5.3. Experiment setting
All our experiments were based on Python 3.8, utilizing the

following libraries: scikit-learn 0.24.1, XGBoost, LightGBM,

Catboost, and GridSearch. We set the random seed to 42. The

trained models and inference evaluation codes have been

uploaded to GitHub. You can click the following link to view

them (https://github.com/1183371714/GBD).
TABLE 1 Demographic and clinical burden in different groups.

Variables No BPD (n = 309)
GA, week, median (P25, P75) 30.3 (29.2, 31.2)*,**

BW, kg, mean ± SD 1.38 ± 0.31*,**

Male, n (%) 151 (48.9)**

SGA, n (%) 34 (60.7)*

Length of hospital stay, day, median (P25, P75) 41.0 (32.0, 54.0)*,**

Corrected age at discharge, week, median (P25, P75) 36.2 (35.4, 37.2)*,**

Total cost, thousand yuan, mean ± SD 100.65 ± 42.5*,**

GA, gestational age; BW, birth weight; SGA, small-for-gestational-age; SD, standard d

*P < 0.05, comparison between No BPD and Grade 1.

**P < 0.05, comparison between No BPD and Grade 2–3.

***P < 0.05, comparison between Grade 1 and Grade 2–3.

****Comparison between the groups with significance.
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3. Results

3.1. Demographics and clinical burden

The research ultimately included 414 preterm infants, with

merely two cases falling into the Grade 3 BPD category. All

patients were divided into three groups: the No BPD group (n =

309), the Grade 1 BPD group (n = 73), and the Grade 2–3 BPD

group (n = 32). The demographic characteristics and clinical

burden of the patients are detailed in Table 1. It’s clear that

infants with more severe BPD tend to have a lower GA, and those

in the No BPD group have the highest BW. Additionally, Grade

2–3 BPD infants have a higher proportion of males compared to

the No BPD group. Notably, the analysis of differences in clinical

burdens among the three groups indicates that groups with higher

BPD grades experience heavier clinical burdens.

In the univariate analysis, infants with Grade 2–3 BPD were

less likely to receive antenatal corticosteroid treatment. After

birth, significant differences were observed among the different

groups in Apgar scores and rates of asphyxia. Infants with a

higher grade of BPD exhibited lower Apgar scores and a greater

likelihood of requiring resuscitation for asphyxia. The risk factors

during the antepartum and perinatal periods are listed in Table 2.

Patients with No BPD initially require the lowest FiO2 and are

most likely to receive initial breathing support through CPAP.

Grade 2–3 BPD patients require the highest FiO2 and are most

likely to receive initial support through invasive ventilation.

Compared to the No BPD group, Grade 2–3 BPD patients are more

likely to receive surfactant therapy. Among the three groups, Grade

2–3 BPD patients have the highest levels of initial NT-proBNP and

UCB IL-6, while having the lowest pH values. Children in the No

BPD group have the lowest likelihood of experiencing pulmonary

hemorrhage and HsPDA. The more severe the condition, the higher

the likelihood of RF, pulmonary hypertension, and IVH. The early

postnatal clinical characteristics are presented in Table 3.
3.2. The predictive value of UCB IL-6 levels
for the severity grade of BPD

The comparison of UCB IL-6 levels among different BPD

groups is illustrated in Figure 2. Significant differences (P <
Grade 1 (n = 73) Grade 2–3 (n = 32) P
30.0 (28.6, 30.6)*** 28.5 (27.4, 29.5) <0.001****

1.21 ± 0.26 1.11 ± 0.25 <0.001****

40 (54.8) 24 (75.0) 0.016****

17 (30.4) 5 (8.9) 0.023****

55.0 (45.0, 72.0)*** 85.5 (62.5, 101.0) <0.001****

37.6 (36.5, 38.5)*** 40.2 (38.15, 42.1) <0.001****

146.08 ± 54.60*** 239.60 ± 132.69 <0.001****

eviation; P10, 10th percentile.
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TABLE 2 Antenatal and birth characteristics in the patients among three groups.

Characteristics No BPD (n = 309) Grade 1 (n = 73) Grade 2–3 (n = 32) P
Maternal age, year, mean ± SD 31.27 ± 4.85 32.27 ± 5.47 31.41 ± 4.99 0.299

Multiple pregnancy, n (%) 72 (23.3) 13 (17.8) 9 (28.1) 0.450

Embryo transfer, n (%) 50 (16.2) 16 (21.9) 6 (18.8) 0.497

History of abnormal pregnancy, n (%) 168 (54.4) 39 (53.4) 17 (53.1) 0.983

Antenatal tocolytics, n (%) 156 (50.5) 34 (46.6) 11 (34.4) 0.207

Prenatal steroids, n (%) 166 (53.7)** 32 (43.8) 7 (21.9) 0.002****

Gestational hypertension, n (%) 116 (37.5) 26 (35.6) 14 (43.8) 0.727

GDM, n (%) 73 (23.6) 14 (19.2) 7 (21.9) 0.712

IUGR, n (%) 44 (14.2) 8 (11) 2 (6.3) 0.448

Fetal distress, n (%) 76 (24.6) 17 (23.3) 7 (21.9) 0.940

PROM, n (%) 98 (31.7) 17 (23.3) 9 (28.1) 0.358

Cesarean delivery, n (%) 244 (79) 61 (83.6) 25 (78.1) 0.662

Placental abnormalities, n (%) 75 (24.3) 22 (30.1) 9 (28.1) 0.554

Umbilical cord abnormalities, n (%) 85 (27.5) 25 (34.2) 10 (31.3) 0.499

Meconium-stained amniotic fluid, n (%) 55 (17.8) 10 (13.7) 9 (28.1) 0.206

1-min Apgar score, median (P25–P75) 8.0 (7.0, 9.0)** 8.0 (7.0, 9.0) 7.5 (5.0, 8.0) <0.001****

5-min Apgar score, median (P25–P75) 9.0 (9.0, 10.0)** 9.0 (8.0, 10.0)*** 8.0 (7.0, 9.0) <0.001****

Perinatal asphyxia, n (%) 72 (23.3)** 26 (35.6) 14 (43.8) 0.009****

GDM, gestational diabetes mellitus; IUGR, intrauterine growth restriction; PROM, premature rupture of membranes; SD, standard deviation; P25–P75, percentiles 25–75.

**P < 0.05, comparison between No BPD and Grade 2–3.

***P < 0.05, comparison between Grade 1 and Grade 2–3.

****Comparison between the groups with significance.

TABLE 3 Early postnatal characteristics among three groups.

Variables No BPD (n = 309) Grade 1 (n = 73) Grade 2–3 (n = 32) P

Laboratory test (initial)
LnIL-6, pg/ml, mean ± SD 2.80 ± 1.90*,** 3.30 ± 1.92*** 4.88 ± 1.28 <0.001****

LnNT-proBNP, ng/ml, mean ± SD 8.00 ± 1.14** 8.32 ± 1.12 8.54 ± 1.07 <0.001****

WBC, ×109/L, median (P25–P75) 7.09 (5.38, 9.76) 7.31 (4.74, 9.54) 7.34 (5.49, 11.8) 0.67

PH, mean ± SD 7.27 ± 0.09** 7.26 ± 0.11 7.2 ± 0.10 <0.001****

Glucose, mmol/L, median (P25–P75) 3.4 (2.62, 4.5) 3.7 (2.98, 4.79) 3.83 (2.56, 4.62) 0.275

Cl, mmol/L, median (P25–P75) 106 (104, 108) 106 (103.5, 107.9) 108 (103.6, 110.7) 0.078

Na, mmol/L, mean ± SD 135.30 ± 2.70 135.43 ± 2.93 135.23 ± 3.43 0.927

Complications
RDS, n (%) 298 (96.4) 72 (98.6) 31 (96.9) 0.699

HsPDA, n (%) 27 (8.7)*,** 24 (32.9) 11 (34.4) <0.001****

RF, n (%) 77 (24.9)*,** 33 (45.2) 20 (62.5) <0.001****

Pulmonary hypertension, n (%) 10 (3.2)** 4 (5.5) 4 (12.5) 0.043****

Pulmonary hemorrhage, n (%) 7 (2.3)* 7 (9.6) 3 (9.4) 0.004****

IVH, n (%) 167 (54)*,** 53 (72.6) 25 (78.1) 0.001****

WMI, n (%) 257 (83.8) 67 (91.8) 27 (84.4) 0.178

NS, n (%) 95 (30.7) 31 (42.5) 12 (37.5) 0.134

Respiratory support and treatment
Initial FiO2, %, median (P25–P75) 30 (25, 32)*,** 30 (30, 40) 40 (30, 43) <0.001****

Initial CPAP, n (%) 174 (56.3)*,** 21 (28.8) 5 (15.6) <0.001****

Invasive ventilation, n (%) 44 (14.2)*,** 24 (32.9) 18 (56.3) <0.001****

Caffeine, n (%) 217 (70.2) 59 (80.8) 28 (87.5) 0.031****

Surfactant therapy, n (%) 167 (54)** 50 (68.5) 26 (81.3) <0.001****

LnIL-6, ln interleukin-6; NT-proBNP, N-terminal pro-brain natriuretic peptide; WBC, white blood cell counts; PH, pH value; Cl, chloride concentration; Na, sodium

concentration; RDS, respiratory distress syndrome; HsPDA, hemodynamically significant patent ductus arteriosus; RF, respiratory failure; IVH, intraventricular

hemorrhage; WMI, white matter injury; NS, neonatal sepsis; FiO2, fraction of inspiration O2; CPAP, continuous positive airway pressure; SD, standard deviation; P25–

P75, percentiles 25–75.

*P < 0.05, comparison between No BPD and Grade 1.

**P < 0.05, comparison between No BPD and Grade 2–3.

***P < 0.05, comparison between Grade 1 and Grade 2–3.

****Comparison between the groups with significance.
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FIGURE 2

A violin plot of lnIL-6 levels among different grade groups of BPD; *represents P < 0.05, and ****represents P < 0.0001.
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0.05) were observed between any two groups, with higher UCB

IL-6 levels in the groups with more severe BPD.

UCB IL-6 levels were not effective in distinguishing

between infants with Grade 1 BPD and those with No BPD.

However, as illustrated in Figure 3, in ROC curve a, UCB

IL-6 effectively distinguishes infants with Grade 2–3 BPD

from those with No BPD, with an AUC of 0.815 (95% CI:

0.753–0.877). In ROC curve b, UCB IL-6 demonstrates

predictive potential for distinguishing between less severe

(Grade 0–1) and more severe (Grade 2–3) BPD, supported

by an AUC of 0.800 (95% CI: 0.738–0.862). The optimal

cutoff value for UCB IL-6 in both cases was 47.70 pg/ml.

The sensitivity was 81.3% in both cases, with specificities of

70.2% and 68.3%, respectively. Within the subgroup of BPD

patients, ROC curve c demonstrates UCB IL-6’s predictive

value for higher-grade BPD (Grade 2–3 BPD) with an AUC

of 0.737 (95% CI: 0.642–0.831). The optimal cutoff value

was 76.71 pg/ml, providing a sensitivity of 71.9% and

specificity of 69.9%. In ROC curve d, the ROC curve

demonstrates the predictive ability of UCB IL-6 for BPD

occurrence. The AUC was calculated as 0.644 (95% CI:

0.582–0.706), with an optimal cutoff value of 90.92 pg/ml.

Sensitivity and specificity were 41.9% and 81.2%, respectively.
3.3. Multivariable analysis

The results of the ordinal logistic regression analysis are

presented in Table 4. Patients were categorized based on severity

grade as follows: No BPD as 0, Grade 1 BPD as 1, and Grade

2–3 BPD as 2. According to the logistic regression analysis, UCB

IL-6, NT-proBNP, pH value, Apgar scores at 1 and 5 min,

perinatal asphyxia, initial FiO2, invasive ventilation, surfactant
Frontiers in Pediatrics 06
therapy, HsPDA, RF, and IVH were identified as independent

risk factors for grading BPD.
3.4. Model performance and feature
importance distribution

Twelve clinical factors with significant differences in

multivariate analysis, as well as key factors (gender, GA and

BW), were incorporated into ML models. ROC curves were

derived through ten-fold cross-validation. The Micro-average

AUROC values for the XGBoost, CatBoost, LightGBM, and

Random Forest models were 0.841, 0.870, 0.851, and 0.878,

respectively (Figure 4). Detailed metrics for these four models

can be found in Supplementary Table 1.

Based on SHAP values, Figure 5 illustrates the feature

importance distribution for each model. It is evident that UCB

IL-6 is the most crucial feature across all models.
4. Discussion

We verified the predictive significance of UCB IL-6 for severity-

graded BPD among a Chinese cohort, in accordance with the 2019

NRN guidelines. Based on the results of univariate analysis, UCB IL-

6 levels exhibited an increase in tandem with the grades of BPD. Our

study demonstrated that UCB IL-6 predicts the occurrence of BPD.

Additionally, it predicts the presence of Grades 2–3 BPD when

compared to either No BPD or Grade 1 BPD. What’s more,

ordinal logistic regression analyses indicated that UCB IL-6 is a

predictive factor for grading BPD. UCB IL-6 predicts Grade 2–3

BPD better than Grade 1 BPD, as do the four ML models we

developed. It was observed that the UCB IL-6 factor consistently
frontiersin.org
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FIGURE 3

The predictive value of umbilical cord blood IL-6 levels for the grade of BPD. AUC stands for area under the receiver operating characteristic curve; and
BPD stands for bronchopulmonary dysplasia. ROC curve a: LnIL-6 levels for distinguishes infants with Grade 2–3 BPD from those with No BPD; ROC
curve b: LnIL-6 levels for distinguishing between less severe (Grade 0–1) and more severe (Grade 2–3) BPD; ROC curve c: LnIL-6 levels’ predictive
value for higher-grade BPD (Grade 2–3 BPD) in patients with BPD; ROC curve d: LnIL-6 levels for prediction of BPD occurrence.

TABLE 4 Results of the ordinal logistic regression model for severity-
graded BPD.

Characteristics Crude odds
ratioa 95% CI

Pa

value
Adjusted odds
ratiob 95% CI

Pb

value
IL-6 1.369 (1.208, 1.551) <0.001 1.343 (1.179, 1.530) <0.001

NT-proBNP 1.370 (1.120, 1.675) 0.002 1.251 (1.010, 1.548) 0.040

PH 0.042 (0.004, 0.420) 0.007 0.075 (0.007, 0.807) 0.033

1-min Apgar score 0.794 (0.715, 0.882) <0.001 0.833 (0.745, 0.932) 0.001

5-min Apgar score 0.634 (0.541, 0.745) <0.001 0.689 (0.583, 0.814) <0.001

Perinatal asphyxia 2.052 (1.287, 3.274) 0.003 1.806 (1.102, 2.956) 0.019

FiO2 1.051 (1.033, 1.070) <0.001 1.030 (1.012, 1.050) 0.001

Invasive ventilation 4.306 (2.638, 7.029) <0.001 2.933 (1.694, 5.083) <0.001

Surfactant therapy 2.286 (1.413, 3.699) 0.001 1.756 (1.058, 2.915) 0.029

HsPDA 4.735 (2.762, 8.125) <0.001 4.289 (2.450, 7.508) <0.001

RF 3.180 (2.018, 5.008) <0.001 2.462 (1.523, 3.979) <0.001

IVH 2.467 (1.513, 4.023) <0.001 2.121 (1.273, 3.540) 0.004

IL-6, ln (interleukin-6); NT-proBNP, N-terminal pro-brain natriuretic peptide; PH,

pH value; FiO2, fraction of inspiration O2; HsPDA, hemodynamically significant

patent ductus arteriosus; RF, respiratory failure; IVH, intraventricular hemorrhage;

95% CI, 95% confidence interval.
aCrude odd ratio and P values are of ordinal logistic regression.
bAdjusted odds ratios and P value for gestational age, gender and birth weight.
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ranked as the top feature in the feature importance distribution

charts of the four models.

The 2001 NICHD criteria for BPD are outdated due to

advancements in respiratory support methods. The 2018 NICHD

criteria appear to be somewhat complex. The 2019 NRN guidelines

are easy and effective, and using them to assess the severity-graded

BPD can provide the most accurate predictions regarding infant

outcomes at 18–26 months of corrected age (12). Based on the

2019 NRN standards, it was found that infants classified with a

higher grade BPD have a significantly higher risk of requiring

tracheostomy or facing mortality compared to those with a lower

grade of BPD (30). Early prediction of severity-graded BPD under

the 2019 NRN standards is necessary, as it can predict clinical

burden, guide treatment, and inform follow-up strategies.

Yan et al. (6) found that the higher the grade of BPD, the higher

the concentration of peripheral blood IL-6. Cansu Yılmaz et al. (31)

found that elevated levels of IL-6 in tracheal aspirates of newborns

were associated with the severity grade of BPD. In contrast, our

study focuses on UCB, obtained at an earlier time point, and
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FIGURE 4

The performance of various machine learning models through ten-fold cross-validation. (A–D) Display the ROC curves of the XGBoost, CatBoost,
LightGBM, and RF models. Class 0 represents No BPD; class 1 represents Grade 1 BPD, and class 2 represents Grade 2–3 BPD. RF stands for random
forest, ROC stands for receiver operating characteristic, AUC stands for area under the receiver operating characteristic curve, and BPD stands for
bronchopulmonary dysplasia.
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poses lower invasiveness to the neonates. IL-6 may play a pivotal role

in the pathogenesis of BPD. One possible explanation is that

activation of IL-6 signaling in macrophages by high oxygen

impairs the homeostasis of alveolar type II epithelial cells and

disrupts the formation of elastic fibers, thereby inhibiting lung

growth (32). Additionally, studies suggest that the crosstalk

between inflammation and cell death might be associated with

oxygen-induced lung injury in BPD. Future therapeutic

approaches for BPD should be centered on suppressing the

expression of cytokines (33). Zhang et al. (34) revealed that BPD

might be influenced by the inflammatory response to the gut

microbiota. Further in-depth research and exploration are

necessary to elucidate the specific underlying mechanisms.

Most predictive models traditionally relied on statistical methods.

However, there is a recent surge in utilizing AI techniques to develop

BPD prediction models. For example, a study integrated clinical data

and genomics to construct a ML model for predicting BPD and severe

BPD, achieving an AUC of 0.872 (35). In 2023, Wen He and
Frontiers in Pediatrics 08
colleagues developed multiple ML models for predicting BPD

severity using clinical data, with the highest AUC reaching 0.86

(10). However, it’s important to note that their criteria for

diagnosing and grading BPD were based on the 2001 NICHD

guidelines, which might not fully account for advances in

respiratory support technology today, limiting the practical use of

their models. In contrast, our models adhere to the more up-to-

date 2019 NRN standards, making them more suitable for clinical

application. Furthermore, our models include new predictive factors

—NT-proBNP and UCB IL-6. Notably, UCB IL-6, being non-

invasive, consistently held the top rank in the feature importance

distribution charts within all four models, signaling its significance.

Other than UCB IL-6, we observed that in our four models, the

top five factors in terms of importance also include BW, GA, NT-

proBNP, pH value, and FiO2. Factors that impede alveolar

maturation, such as BW and GA, are considered crucial elements

in the pathology of BPD. Previous studies have demonstrated

that NT-proBNP levels can predict moderate-to-severe BPD or
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FIGURE 5

The feature importance distribution charts of four machine learning models. (A–D) Display the feature importance distribution charts of the XGBoost,
CatBoost, LightGBM, and RF models. IL-6 umbilical cord blood interleukin-6, BW birth weight, GA gestational age, PH pH value, FiO2 fraction of
inspiration O2, RF respiratory failure, HsPDA hemodynamically significant patent ductus arteriosus, IVH intraventricular hemorrhage, PS pulmonary
surfactant.

Gao et al. 10.3389/fped.2023.1301376
mortality (36–38). Given that, in this study, based on the 2019

NRN criteria, NT-proBNP remains a significant risk factor for

grading BPD, further attention should be directed towards

understanding how NT-proBNP influences infant lung

development. According to our study, timely correction of

premature infants’ pH levels and prevention of acidosis are

crucial. Additionally, we noticed high initial FiO2 levels as an

independent risk. One possible reason is that elevated oxygen

triggers reactive oxygen species, harming the lungs (39).

However, our study has limitations. The small number of

patients with Grade 3 BPD in our level III NICU forces us to

combine it with Grade 2 BPD, representing a more severe

condition. Therefore, we are unable to predict the likelihood of

an infant developing grade 3 BPD specifically; instead, we can

only predict whether the newborn is at a more severe level of

BPD. Being retrospective, confounding factors weren’t controlled.

Additionally, our data were collected from a single center,

potentially not representing all patients. Future research requires

a prospective study with a larger sample size, multiple centers,

and external validation to incorporate UCB IL-6 in predicting

preterm infant outcomes.
5. Conclusion

Our research focused on preterm infants with GA less

than 32 weeks. We developed four ML models and found

that UCB IL-6 plays a crucial role in predicting the severity

grade of BPD.
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