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A young child formula
supplemented with a synbiotic
mixture of scGOS/lcFOS and
Bifidobacterium breve M-16V
improves the gut microbiota and
iron status in healthy toddlers
Charmaine Chew1,2, Misa Matsuyama3, Peter S. W. Davies3,
Rebecca J. Hill3, Mark Morrison4, Rocio Martin5,
Francisco M. Codoñer5, Jan Knol2,5 and Guus Roeselers5*
1Danone Research & Innovation, Singapore, Singapore, 2Laboratory of Microbiology, Wageningen
University, Wageningen, Netherlands, 3Faculty of Medicine, Child Health Research Centre, The
University of Queensland, Brisbane, QLD, Australia, 4Faculty of Medicine, Frazer Institute, The University
of Queensland, Brisbane, QLD, Australia, 5Danone Research & Innovation, Utrecht, Netherlands
Early-life gut microbiota development depends on a highly synchronized
microbial colonization process in which diet is a key regulator. Microbiota
transition toward a more adult-like state in toddlerhood goes hand in hand
with the transition from a milk-based diet to a family diet. Microbiota
development during the first year of life has been extensively researched;
however, studies during toddlerhood remain sparse. Young children’s
requirement for micronutrients, such as dietary iron, is higher than adults.
However, their intake is usually sub-optimal based on regular dietary
consumption. The Child Health and Residence Microbes (CHaRM) study,
conducted as an adjunct to the GUMLi (Growing Up Milk “Lite”) trial, was a
double-blind randomized controlled trial to investigate the effects on body
composition of toddler milk compared to unfortified standard cow’s milk in
healthy children between 1 and 2 years of age in Brisbane (Australia). In this
trial, fortified milk with reduced protein content and added synbiotics
[Bifidobacterium breve M-16V, short-chain galactooligosaccharides, and long-
chain fructooligosaccharides (ratio 9:1)] and micronutrients were compared to
standard unfortified cow’s milk. In the present study, the effects of the
intervention on the gut microbiota and its relationship with iron status in
toddlers were investigated in a subset of 29 children (18 in the Active group
and 11 in the Control group) who completed the CHaRM study. The toddler
microbiota consisted mainly of members of the phyla Firmicutes,
Bacteroidota, and Actinobacteriota. The abundance of the B. breve species
was quantified and was found to be lower in the Control group than in the
Active group. Analysis of blood iron markers showed an improved iron status
in the Active group. We observed a positive correlation between
Bifidobacterium abundance and blood iron status. PICRUSt, a predictive
functionality algorithm based on 16S ribosomal gene sequencing, was used to
correlate potential microbial functions with iron status measurements. This
analysis showed that the abundance of predicted genes encoding for
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enterobactin, a class of siderophores specific to Enterobacteriaceae, is inversely
correlated with the relative abundance of members of the genus
Bifidobacterium. These findings suggest that healthy children who consume a
young child formula fortified with synbiotics as part of a healthy diet have
improved iron availability and absorption in the gut and an increased abundance
of Bifidobacterium in their gut microbiome.
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Introduction

As infants grow, many micronutrients are needed for their

development. Macro- and micronutrient deficiencies increase a

young child’s risk of infection and can compromise growth and

health trajectories (1). Iron (Fe) deficiency is considered the most

frequent micronutrient deficiency and has been reported to

predispose children to the aforementioned risks (2–4).

Furthermore, studies have shown that an iron deficiency in

infancy has a long-term impact on mental, motor, and cognitive

functions later in life (5–7). This is especially important as

dietary iron requirements are higher in children during the first

2 years of life and adequate iron status is a prerequisite for

optimal child development, especially in toddlerhood (2).

When consumed according to the appropriate nutritional

guidelines, cow’s milk provides essential micro- and macronutrients

to a toddler’s diet, especially when transitioning from a

predominantly milk-based diet to a family diet. However, cow’s

milk is naturally low in iron and high in calcium, which has an

inhibitory effect on iron bioavailability (8). It has been widely

documented that the consumption of fortified milk by infants and

toddlers results in a better iron status than in children consuming

cow’s milk (9–11). Furthermore, cow’s milk from 1 year of age is

often a significant contributor to the total dietary protein intake.

Rolland-Cachera et al. (12) reported that protein intake above

metabolic requirements is correlated with increased secretion of

growth mediators, insulin, and insulin-like growth factor I, which

could enhance fat deposition and weight gain, along with increased

body fat and risk of obesity in later life (13, 14). Furthermore, it

has been documented that nutrient levels in usual family diets

often do not fully support the micro-/macronutrients required for

a child’s development (15–18). It has previously been demonstrated

that the consumption of suitable amounts of fortified milk as a

supplement to the regular family diet is an effective source of

complementary nutrition (11, 19).

De Filippo et al. (20) demonstrated that dietary fiber and

protein intake variations can profoundly impact the gut

microbiota in children from different countries. The functional

diversity of the microbiota reflects diet and life style. This

illustrated by the observation that children in rural Burkina Faso

have a gut microbiome enriched in taxa known to have the

capacity to break down polysaccharides, in contrast to Italian

children of the same age.

Several studies have highlighted the interaction between

nutrition and microbiota composition in undernutrition
02
conditions. Some bacterial groups, such as Pseudomonadota

(synonym Proteobacteria) or Enterococcaceae spp., have been

associated with diarrhea and an overgrowth of opportunistic

bacteria in malnutrition conditions (21, 22). However, such a

distinctive characteristic is usually less apparent in healthy

cohorts, where microbiota signatures are generally less

conclusive as there are multiple factors such as inter-subject

variability, diet, and genetics (23–27).

Lovell et al. (28) showed that nutrient supplementation of

young child formula (YCF) with synbiotics as part of a complete

diet for 12 months between the ages of 1 and 2 years resulted in

significantly higher Fe, vitamin D, vitamin C, and zinc (Zn)

levels in children compared to unfortified cow’s milk. In

addition, Matsuyama et al. (29) showed that this YCF with

synbiotics facilitated the recruitment and expansion of the

Bifidobacterium spp. among children who consumed this

formula. In this study, we aim to explore the effect of synbiotics

on the composition and functionality of the gut microbiome

through taxonomic classification and predicted microbial

metabolic pathway analyses.
Materials and methods

Subjects and study population

This study used a subset of samples from the Child Health and

Residence Microbes (CHaRM) study (30, 31) conducted in

Brisbane, Australia, selected based on the depth and quality of

available DNA sequencing data. Briefly, the CHaRM study was

conducted as an adjunct to the GUMLi (Growing Up Milk

“Lite”) trial, a multi-center double-blind, randomized control

trial (Brisbane, Australia, and Auckland, New Zealand)

investigating the effect of a fortified young child formula (Active)

compared to unfortified cow’s milk (Control) on various

outcomes in toddlers between the ages of 1 and 2 years (30).

The Active group received fortified milk supplemented with

synbiotics: a formulation with 7.8 × 108 cfu/100 ml of B. breve

M-16V, 1.8 g of short-chain galactooligosaccharides (scGOS), and

0.2 g of long-chain fructooligosaccharides (lcFOS) per 100 ml

(Supplementary Table 1). The participants consumed two

150 mL servings of formula daily. An energy-matched, non-

fortified cow’s milk was used as a Control. In addition, the

Active milk was fortified with 1.3 mg of Fe and 1.2 µg of vitamin

D and vitamin C to increase the bioavailability of non-heme Fe
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(ferrous citrate). Further compositional differences between the

Active and the Control milk are described in the study by Wall

et al. (30) and the corresponding ethical approval can be found

in the study by Matsuyama et al. (29).

Of the 48 children who completed the CHaRM study, a subset

of 29 (18 subjects from the Active group and 11 from the Control

group, details in Supplementary Table 2), for which a minimum of

15,000 high-quality sequencing reads were generated, was included

in the current study.
Blood parameters

Blood samples were collected at baseline and month 12 as

described by Lovell et al. (28). In this study, we aimed to link the

same parameters [serum iron, ferritin, and hemoglobin (Hb)]

with the functional analyses of the gut microbiome.
Fecal DNA isolation and sequencing

All fecal samples were collected and preserved, and gut

microbiota DNA was extracted as described previously (31).

Briefly, a repeated beat-beating and a column (RBB + C)

technique was used based on Yu and Morrison (32) and

modified to suit the automated Maxwell 16MDx system

(Promega, Madison, WI, USA). An aliquot of each fecal sample

was mixed with beads, homogenized with lysis buffer, and

homogenized in a Precellys 24 homogenizer (Bertin Corp,

Rockville, MD, USA). After the protocol was completed, the

supernatant was transferred into Maxwell 16 MDx cartridges

for elution. At this step, a non-template control was used to

check the quality of each batch of buffers (lysis and elution).

DNA samples were normalized to sample concentration before

the creation of 16S rRNA gene amplicon libraries following

Illumina library preparation instructions, using the primers of

Klindworth et al. (33) to amplify the V3-V4 hypervariable

regions of the bacterial 16s rRNA gene region. The libraries

were then sequenced for 300 paired-end cycles using the

Illumina MiSeq platform.
Quantitative polymerase chain reaction

In parallel, we used four targeted quantitative polymerase chain

reaction (q-PCR) assays to detect total bacteria, total

Bifidobacterium, B. breve group, and B. breve M-16V strain.

Briefly, the normalized DNA samples were used for all the

amplified quantitative real-time PCR amplification performed

using an ABI Prism 7900HT (Applied Biosystems, California,

USA) using the TaqMan Universal Master Mix (Applied

Biosystems, Austin, TX, USA). Standards for each target were

generated from their genomic DNA and were amplified with

specific primers, and purified using a MinElute PCR Purification

Kit (Qiagen, Valencia, CA, USA) as per the manufacturer’s

protocol. Final standard concentrations were quantified using a
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NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA). For a

detailed description of the methods, including the oligonucleotide

sequences of the primers and probes used for the q-PCR

analyses, please see Chua et al. (34).

Samples were prepared using a Microlab NIMBUS (Hamilton

Robotics, Reno, Nevada, USA) in a customized setup. The q-PCR

conditions were 1 cycle of 95°C for 20 s, followed by

amplification at 95°C for 1 s, and 62°C for 20s for 40 cycles, and

then 1 cycle of 95°C for 15 s, followed by 60°C for 15 s, and

95°C for 15 s. SDS 2.4 (Applied Biosystems) was used to

visualize and check the abnormality of the curves deviating from

standard amplification. Raw data were then exported into

Microsoft Excel, where the Ct values were transformed to log

copy numbers per gram of feces for the statistical analyses.
16S rRNA gene sequencing analysis

The data analysis performed in this sub-study differs from that

of Matsuyama et al. (29) by using a higher sequence coverage cut-off

and optimized sequence data quality control. Briefly, pre-processing

and filtering of the raw 16S rRNA gene sequence data resulted in an

average of 18,916 high-quality reads per sample, and each

rarefaction analysis showed slopes reaching a plateau, indicating

that a sufficient sequencing depth had been achieved. An

adaptation of the “Quantitative Insights into Microbial Ecology”

(QIIME) v1.9.1 package (35) was used for the processing and

analysis as described in (29). The paired-end reads were

demultiplexed and trimmed (q > 20) before being merged using

QIIME. These were dereplicated and counted using mothur (36)

and reads with a low abundance (less than 2 reads across all

samples) were discarded. Chimeras were removed using

VSEARCH (37), using the RDP gold database (38) as a reference.

Reads that contained PhiX or adapters as defined in Deblur (part

of QIIME2) (39) were eliminated. Taxonomic assignment was

performed using the RDP classifier (40) against the SILVA_138.1

database (41), from which results where the sequences were

aggregated at the genus and phylum level, were further explored.

Reads with eukaryotic assignments and reads with a low relative

abundance of up to 0.0005% across all samples were excluded

from further downstream analysis. Samples were rarefied, and α-

diversity was calculated using the phyloseq (42) and vegan (43)

packages in R software (version 3.5.1) (44).

In addition to the amplicon-based analysis, we used a

metagenome functional content bioinformatics package that

provides potential functional category abundances for a microbial

community from marker genes extracted from full genomes

using 16S operational taxonomic unit (OTU) profiles as

implemented in the PICRUSt software package (45) using the

default parameter. Briefly, the 16S OTUs were normalized by

copy number and mapped onto a phylogenetic tree created from

an ancestral state reconstruction (ASR) reference genome

database with more than 10× coverage. The predicted

metagenome functional abundance counts per sample were then

collapsed into functional categories based on KEGG Gene

Orthology pathways for analyses. We investigated the change in
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predicted functionality abundances using the delta difference in the

counts at baseline and at month 12.
Statistical analysis

PRISM GraphPad 8 (version 8.4.3) was used for all the

statistical analyses. The change from baseline within each

group was analyzed using a non-parametric pair-wise Mann–

Whitney test. The baseline and end-of-intervention parameters

of the groups were compared using a non-parametric

Wilcoxon test. The effect size was calculated using Cohen’s d,

where the mean difference between the two groups was

divided by the pooled standard deviation. The interaction of

the intestinal microbiota composition with the intervention

was visualized spatially using distance matrices in the principal

component analysis (PCA), an unconstrained ordination

method, using CANOCO 5 (2012) software. The Benjamini–

Hochberg procedure (46) was used to reduce the false

discovery rate (FDR) for all comparisons (within each group,

at baseline, and at the end of the intervention) made using the

predicted microbial functionalities.
Results

In this subset study, the participants were evenly divided

by gender and anthropometric measurements, such as weight

and length at baseline, with no significant differences

observed (Supplementary Table 1). At the end of the

intervention, there were significant differences as noted in

previous publications (28–30).
Blood parameters

The same findings in the main GUMLi study were observed in

this subset of samples from the CHaRM study. There was no

statistically significant difference in serum iron at baseline

between the groups (p = 0.111), and significant differences were

detected at the end of the study within the Active group

(p < 0.0008, effect size d = 1.390574) but not within the Control

group (p = 0.898) (Figure 1). Similarly, there was no difference at

baseline between the groups for transferrin, 25(OH)D and

ferritin, (p > 0.05) amongst this subset of samples (data not

shown). We did not observe a significant difference between the

groups in hemoglobin levels at baseline (p = 0.346) or at month

12 (p = 0.580).

The hemoglobin levels were significantly increased from

baseline to month 12 in the Active group (p < 0.0001, effect

size = 1.125876), while it was significant in the Control group for

the same comparison (p = 0.024). The Vitamin D indicator, 25

(OH)D, was significantly reduced from baseline to month 12 in

both the Active (p = 0.003, effect size = 0.826) and the Control

groups (p = 0.001, effect size d = 1.399) although they were still
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within the healthy range according to the Endocrine Society’s

Clinical Practice Guidelines (>50 nmol/L) (47).

At the end of the study, there were significantly higher

transferrin levels in the Active group from baseline to month 12

(p = 0.0029) compared to the Control group from baseline to

month 12 (p = 0.527). In addition, serum ferritin concentration

was significantly lower at month 12 compared to the baseline in

the Control group (p = 0.001). A significant difference was only

observed at month 12 between the Active and Control groups

(p = 0.0002) (Figure 1).
q-PCR

We quantified the total bacteria [copy number in feces (log10/

g)] in the fecal samples and observed an increase that was

significantly different from baseline to month 12 in the Active

group [mean difference 0.84 (log10/g), p = 0.001] and in the

Control group [mean difference 0.30 (log10/g), p = 0.032]. No

significant difference was observed at baseline or at month 12

between the intervention groups. We observed no significant

difference in the total count of Bifidobacterium copy number in

feces (log10/g) at baseline or at month 12 between the Active and

Control groups. There was a significant decrease in the B. breve

group in the Control group from baseline to month 12 [0.79

(log10/g), p = 0.049]. This decrease was not observed in the

Active group. The supplemented probiotic strain, B. breve

M-16V, was only detected in the Active group and we observed a

significant increase [1.66 (log10/g), p≤ 0.001] between baseline

and month 12 (Supplementary Figure 1).
16S rRNA gene profiling and
functionality predictions

The major bacterial phyla present in this subset of samples

were the same as previously reported (29), namely, Firmicutes,

Bacteroidetes, and Actinobacteria, characteristic of healthy human

gut microbiota. Increased α-diversity among this subset of

samples was also demonstrated (Supplementary Figure 2). Here,

we report the most abundant bacteria genera showing significant

differences between baseline and month 12. Bifidobacterium

decreased in the Control group from 20.6% at baseline to 7.9% at

month 12 (p = 0.020). The Escherichia-Shigella group significantly

decreased during the intervention in the Active group (from

4.17% to 0.18%) (p = 0.0017) and the Control group (from 1.8%

to 0.30%) (p = 0.004) (Supplementary Figures 3A,C). For the

other genera investigated, such as Bacteroides, Collinsella, and

Faecalibacterium, no significant differences were observed

(Supplementary Figure 3). Furthermore, the genus Veillonella

showed a significant decrease as observed previously (29), most

noticeably in the Active group.

In Figure 2, the 10 most abundant predicted functionalities

were subjected to PCA. PCA Axis 1 explained 41.13% of the

variation, with the most significant predicted functions pointing

(red arrows) to the right quadrants. However, the majority of the
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FIGURE 1

Blood serum parameters (A) serum iron, (B) serum ferritin, (C) serum transferrin, (D) hemoglobin, and (E) 25(OH)D were measured at baseline and at
the end of the intervention (month 12) in participants in both groups as reported previously by Lovell et al. (28). Serum iron (A) and transferrin (C)
increased in the Active group, while no significant difference was observed in the Control group. A significant decrease in serum ferritin (B) was
observed between baseline and month 12 in the Control group. At month 12, serum ferritin was significantly lower in the Control group than in
the Active group.

Chew et al. 10.3389/fped.2024.1193027
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FIGURE 2

A PCA plot in which each dot represents a microbiota composition sample. Blue and purple indicate the Active group at baseline and month 12, and
red and yellow indicate the Control group at baseline and month 12, respectively. PCA axis 1 shows an explained variance of 41.13% with a strong
correlation with the top 10 predicted microbial functions (using the PICRUSt algorithm, refer to Supplementary Table 3), while the measured
blood parameters are represented by gray clear arrows. ARGDEG-PWY, super-pathway of L-arginine, putrescine, and 4-aminobutanoate
degradation; AST-PWY, L-arginine degradation II (AST pathway); ECASYN-PWY, enterobacterial common antigen biosynthesis; ENTBACSYN-PWY,
enterobactin biosynthesis; GLYCOL-GLYOXDEG-PWY, super-pathway of glycol metabolism and degradation; GLYOXYLATE-BYPASS, glyoxylate
cycle; METHGLYUT-PWY, super-pathway of methylglyoxal degradation; ORNARGDEG-PWY, super-pathway of L-arginine and L-ornithine
degradation; ORNDEG-PWY, super-pathway of ornithine degradation; PWY0-1338, polymyxin resistance; TCA-GLYOX-BYPASS, super-pathway of
glyoxylate bypass and TCA.

Chew et al. 10.3389/fped.2024.1193027
samples, regardless of group or timepoint, congregated and

overlapped in the center of the graph. Functional abundance

predicted by PICRUSt was compared between the intervention

groups at either baseline, month 12 or within each intervention

group from baseline to month 12. No significant differences were

observed at baseline or month 12 after applying multiple

correction (FDR). In the Active (baseline to month 12) and

Control group comparison, several functions remained significant

after FDR correction (refer to Supplementary Table 3). Among

the listed functions, enterobactin biosynthesis was reduced in

both the Active (p = 0.00182) and Control (p = 0.047) groups at

the end of the study.

For participants in the Active group at month 12, we observed

a trend toward the right quadrant of the PCA plot that was in line

with the explained genera and blood parameters (iron, transferrin,

and Hb). This separation explained 25.41% of the observed

variation in the microbiomes during the intervention (in

Supplementary Figure 4). In the Control group, every blood

parameter except hemoglobin trended in the opposite direction,

although the bacteria genera were also shifted toward the

participants at month 12, explaining 46.95% of the variation

observed. In addition, Bifidobacterium pointed in the opposite
Frontiers in Pediatrics 06
direction (toward baseline), while the remaining top 10 genera

pointed toward month 12, indicating a possible normal

microbiota maturation with age. We evaluated the influence of

the intervention on the microbiota over time by using the delta

change in the relative abundance from baseline to month 12.

The PCA analysis of the 10 most abundant bacteria genera

explained 31.29% of the observed variation, as shown in

Figure 3. The figure shows that the clustering in the Active

group was mainly driven by Bifidobacterium and Bacteroides.

The clustering in the Control group was mainly driven by

Prevotella 9 and Sutterella. A combined unconstrained PCA

plot is presented in Figure 4. PCA axis 1 explained 25.59% of

the variation seen in the microbiota, with the baseline samples

clustered in the bottom left quadrant of the plot. The

Escherichia-Shigella group pointed in the opposite direction to

the other influencing genera that clustered at month 12 (for

both Active and Control group samples). On the same plot,

serum ferritin and 250HD pointed toward the left quadrants

(higher levels at baseline) while serum iron, transferrin, and

hemoglobin pointed toward the month 12 samples (increased

levels at the end of the intervention). This is consistent with the

results shown in Figure 1.
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FIGURE 3

In this PCA coordinate plot, the changes in relative abundance from baseline for each sample (month 12 to baseline) were used. From the plot, it can
be observed that Bifidobacterium is one of the most influential factors driving the synbiotics group cluster, while in the Control group, it is Prevotella 9
and Sutterella.

Chew et al. 10.3389/fped.2024.1193027
Discussion

In this study, we further explored the potential effects of a year-

long intervention with YCF supplemented with synbiotics on the

gut microbiota composition and predicted the microbial

functionality in a subset of children who participated in the

CHaRM study (29).

At the end of the intervention, we observed significant differences

in several blood parameters; serum iron, transferrin, and hemoglobin

levels were higher in the Active group at month 12 compared to

baseline. The Control group showed smaller, significant changes for

the same corresponding parameters. Serum iron levels were higher

in the Active group at month 12. This suggests that increased iron

uptake coincided with increased iron carriers (transferrin) in the

blood and ferritin stores were maintained in the body.

Iron is an important micronutrient that plays a role in the

normal development of mental and motor skills in children

(5, 7). In developing countries, the prevalence of iron deficiency

in early life is high. However, two recent iron fortification trials

in infants in developing countries have raised safety concerns: in

Ghana, there was an increased rate of hospitalization possibly

due to diarrhea (48), and in Pakistan, a small but significant

increase was reported in the overall prevalence of diarrhea (49).

At the gut microbiota level, iron supplementation has been

associated with adverse effects such as an increase in opportunistic

pathogenic bacteria and a decrease in beneficial bacterial taxa such

as Bifidobacteriaceae and Lactobacillaceae when supplemented

individually (50–53). Nevertheless, it is still imperative to provide
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adequate iron-rich complementary foods in the diets of infants and

children (54). This supports the rationale for including iron

supplementation in YCF to provide sufficient sources of iron for

young children. Unfortunately, iron absorption from iron-fortified

foods or oral iron supplements is often <20% (55); thus, the

majority of the iron passes unabsorbed into the colon. This can

adversely favor the growth of potential enteropathogens because

iron is a growth-limiting nutrient for the majority of enteric Gram-

negative bacteria (e.g., pathogenic Escherichia coli and Salmonella),

as iron acquisition is essential for virulence and colonization.

Several studies have shown modulation of the colonic microbiota

by pre-, pro-, or synbiotics can mitigate these adverse effects of iron

fortification on the gut microbiome (56, 57). This study confirms

changes in both the taxonomic composition and the relative

abundances of predicted microbial functions over 1 year, indicative

of a developing early-life microbiome. The synbiotic intervention

resulted in the maintenance of B. breve abundances and did not

appear to diminish or stagnate the growth of other bacterial groups.

We observed a decrease in B. breve in the Control group while q-

PCR quantification showed no difference in Bifidobacterium.

However, 16S rRNA sequence data showed a decrease in the total

relative abundance of the genus Bifidobacterium. This discrepancy

between the results for Bifidobacterium generated by q-PCR and

16S rRNA gene analysis may be attributed in part to the different

amplification and normalization biases, as previously reported by

Zemb et al. (58). The presence of the supplemented probiotic strain

(B. breve M-16 V) was only detected in the Active group, as shown

by the q-PCR results. Bifidobacterium is one of the most abundant
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FIGURE 4

An unconstrained PCA plot of all the samples using the predicted functionalities as the supplementary variables. The blood parameters are denoted by
red arrows and the top 10 bacteria genera by blue arrows. The baseline samples from both the Active and Control groups are predominantly in the left
quadrants with Escherichia-Shigella explaining the separation, while the month 12 samples are in the center to right quadrants with blood iron,
transferrin, and hemoglobin, along with other bacteria genera, showing temporal changes across the intervention.
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genera in the gut of breastfed infants and is considered a true

“keystone” taxon with a strong eco-physiological impact on

the microbiota composition. Therefore, the abundance of

Bifidobacterium spp. may serve as a marker of healthy microbiota

development and breastfeeding practices (59).

In this study, we observed no other differences in taxonomic

composition between the Active and Control groups. Previously, infant

formula with B. breve M-16V+ scGOS/lcFOS (9:1) was reported to

result in a lower fecal pH through the production of acetate. B. breve

UCC2003 was reported to secrete iron-binding domains and ferric

uptake regulatory proteins (60). It has been proposed that this is an

adaptive mechanism to secure the iron required for growth and inhibit

potential pathogens that are susceptible to a lower pH (61, 62), and to

promote other beneficial bacteria such as butyrate producers through

cross-feeding in vitro cultures (63, 64). We observed that Escherichia-

Shigella was inversely correlated with butyrate-producing bacteria (e.g.,

members of the Eubacterium groups, and the genera Ruminococcus

and Subdoligranulum) and blood biomarkers (serum iron, transferrin,

and hemoglobin) (see Figure 3).

We are aware that these findings are only reflective of a small cohort

and emphasize caution in the interpretation of the data as the children in

this study were clinically healthy. We hypothesize that the mode of

action by which Bifidobacterium may improve host iron bioavailability
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is by (1) lowering the colonic luminal pH and (2) converting Fe3+ to

Fe2+, due to their ferric-reducing activity. In addition, Bifidobacteria

may prevent opportunistic pathogenic bacteria from utilizing the

scarce amount of iron either by (1) competitive exclusion or by (2)

reducing Fe2+ accessibility for other microorganisms by competitively

binding it to their extracellular membranes (60, 65–67). Several studies

have demonstrated that iron supplementation resulted in a less

detrimental effect on the microbiota when complemented with

prebiotics, probiotics, or synbiotics (56, 57, 68–71).

The 10 most abundant predicted microbial functions included

enterobactin biosynthesis, enterobacterial common antigen

biosynthesis, and polymyxin resistance genes (see Supplementary

Table 3). These pathways are adaptations that allow opportunistic

pathogenic bacteria such as Enterobacteriaceae to grow under

iron-limited conditions but the metabolic cost of carrying the

genes to synthesize microbial iron chelators such as siderophores

is significant. The presence of these functions suggests that iron is

a limitation for potential opportunistic pathogens to thrive. In this

study, healthy children who underwent the year-long intervention

with a synbiotic formula or a cow’s milk control formula showed

a reduction in Escherichia-Shigella and enterobactin biosynthesis

function, which provided insight into gut microbiota maturation

over time. In the Active group, in addition to the microbial
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maturation, improved blood iron status markers were observed. This

appears to support the current hypothesis that microbiome

modulation in combination with iron supplementation can

improve absorption and utilization and reduce the risk of iron

deficiency anemia, as proposed in other studies (72–74).

Toddlerhood is an important phase in life in which adequate

nutrition with micro- and macronutrients is essential for growth and

development. This study has provided us with a working hypothesis

on the effect of synbiotics on toddler gut microbiota composition

and microbial function. In the presence of synbiotics, iron

absorption may be improved through the acidification of the gut. As

the study aimed to compare the effects of synbiotic-supplemented

formula with cow’s milk, which is a common practice, we were

unable to independently differentiate the effects of iron fortification

from the interaction of synbiotics with the microbiota composition.

We propose that this hypothesis should be addressed using existing

publicly available studies and in future clinical trials.
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α-diversity showing (A) Shannon and (B) Simpson indices showing an
increase in diversity over time.

SUPPLEMENTARY FIGURE 3

Relative abundance of several genera was found to have changed by the end
of the intervention.
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SUPPLEMENTARY FIGURE 4

PCA analyses showing the top 10 most abundant genera contributing
to the microbiota of participants in the Active (right) and Control
(left) groups. Bifidobacterium was enforced in the graphs. The
Control group had more opportunistic pathogens associated with
it at the end of the intervention compared to the Active
(synbiotics) group.
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