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Propranolol: a new
pharmacologic approach to
counter retinopathy of
prematurity progression
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Despite the evident progress in neonatalmedicine, retinopathyof prematurity (ROP)
remains a serious threat to the vision of premature infants, due to a still partial
understanding of the mechanisms underlying the development of this disease
and the lack of drugs capable of arresting its progression. Although ROP is a
multifactorial disease, retinal vascularization is strictly dependent on oxygen
concentration. The exposition of the retina of a preterm newborn, still
incompletely vascularized, to an atmosphere relatively hyperoxic, as the
extrauterine environment, induces the downregulation of proangiogenic factors
and therefore the interruption of vascularization (first ischemic phase of ROP).
However, over the following weeks, the growing metabolic requirement of this
ischemic retina produces a progressive hypoxia that specularly promotes the
surge of proangiogenic factors, finally leading to proliferative retinopathy (second
proliferative phase of ROP). The demonstration that the noradrenergic system is
actively involved in the coupling between hypoxia and the induction of
vasculogenesis paved the way for a pharmacologic intervention aimed at
counteracting the interaction of noradrenaline with specific receptors and
consequently the progression of ROP. A similar trend has been observed in
infantile hemangiomas, the most common vascular lesion of childhood induced
by pre-existing hypoxia, which shares similar characteristics with ROP. The fact
that propranolol, an unselective antagonist of β1/2 adrenoceptors, counteracts
the growth of infantile hemangiomas, suggested the idea of testing the efficacy
of propranolol in infants with ROP. From preclinical studies, ongoing clinical trials
demonstrated that topical administration of propranolol likely represents the
optimal approach to reconcile its efficacy and maximum safety. Given the strict
relationship between vessels and neurons, recovering retinal vascularization with
propranolol may add further efficacy to prevent retinal dysfunction. In conclusion,
the strategy of contrasting precociously the progression of the disease appears to
be more advantageous than the current wait-and-see therapeutic approach,
which instead is mainly focused on avoiding retinal detachment.
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1 Introduction

Premature infants often face serious health problems, especially

when they are born very early. These problems often vary. But the

earlier a baby is born, the higher the risk of health challenges.

Retinopathy of prematurity (ROP) is a vasoproliferative disorder

related to preterm birth and represents one of the complications

with the most dramatic outcomes. ROP and infantile

hemangiomas (IH) are frequently associated (1, 2) and share

many features in common, the main one being the common

induction of hypoxia-induced neovascularization (3).

Infantile hemangiomas are typical lesions of infancy, developing

between the 2nd and the 4th week of life, affecting 5%–10% of all

infants. They are benign proliferative lesions made of a

disorganized vascular network, whose main cellular elements are

represented by hemangioma stem cells (HemSCs) giving the origin

to hemangioma perivascular cells and hemangioma endothelial

cells (3). The natural history of these lesions consists of three

phases: a proliferative one, lasting till the 5th month, an early

involuting phase characterized by a slowing down in the tumor

growth, lasting till the end of the 1st year of life, then an eventual

late involuting phase characterized by lesion regression (4, 5).

These lesions are more common in females (3:1) and premature

infants. Other risk factors associated with IH are low birth weight,

multiple gestation, advanced maternal age, pre-eclampsia, and

other placental abnormalities (6, 7). It’s easy to notice that many

of these are associated with ROP as well and the two pathologies

often co-occur (2) (especially with advanced stages of ROP) (8),

hence we can postulate they may have a common underlying

pathogenesis. Indeed, they are both vasoproliferative lesions driven

by hypoxia and many findings support this statement.

The higher incidence of IHs in newborns with low birth weight

due to placental insufficiency and their strong correlation with

placental anomalies responsible of disturbances for the utero-

placental circulation (9) suggest that these lesions are intrinsically

hypoxic and that IHs may represent an attempt to

revascularization of relatively hypoxic tissue areas (10).

Histological analysis showed that both endothelia of IHs and

retinal neovasculature in ROP share the expression of GLUT1

(11), a factor significantly up-regulated in hypoxic tissues and

stimulated by hypoxia-inducible factor 1 (HIF-1α) (12). ROP

angiogenesis is driven by high levels of proangiogenic factors

such as Vascular Endothelial Growth Factor (VEGF) (13) or

matrix metalloproteinases (MMPs) (enzymes that proteolytically

degrade the extracellular matrix and promote angiogenesis) (14),

and children with proliferative IHs show serum VEGF

concentrations and urine levels of MMP-9 significantly higher

than patients with involuting hemangiomas (15, 16). The area of

pallor and discoloration seen in the skin area preceding

hemangioma formation suggests local hypoxia (10). Furthermore,

the aforementioned risk factors are likely to induce hypoxia.

Premature birth alters the physiological balance between oxygen

tension and vasculogenesis, leading to abnormal vascular

development with females more sensitive to hypoxia because of

their levels of estrogens that have a boosting action on hypoxia-

induced proliferation of Endothelial Progenitor Cells (EPCs) (17).
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In premature infants, ROP occurs when blood vessels swell and

grow too much in the light-sensing tissue at the back of the eye,

called the retina. Sometimes these overgrown vessels slowly scar

the retina and pull it out of place. When the retina is pulled

away from the back of the eye, it’s called retinal detachment.

Without treatment, this can harm vision and cause blindness.

Both IH and ROP are multifactorial diseases whose

pathogenesis can be represented by an epidemiological triad

model (18). The triad shows the interaction between a

susceptible host (premature infant with very low birth weight)

and the agent (oxygen), both acting in a non-favorable

environment (hospital services with poor neonatal care, no

screening program, and lack of awareness in parents and health

providers, no adequate treatment) (19).

With premature birth, indeed, the newborn is subjected to an

important change in environmental exposure before he is

physiologically ready. During intrauterine life, the embryo and

fetus develop in a low-oxygen environment, although oxygen

levels vary across gestation (20). This physiological hypoxia is

extremely important to maintain activated HIF-1α and its

downstream factors, above all VEGF, essential for the

development of a physiological vascularization. Furthermore, the

placenta is an important source of cytokines and growth factors,

such as insulin-like growth factor (IGF-1), which plays an

important role in maintaining endothelial cell survival and

promoting VEGF-induced vascularization (21, 22). Premature

birth causes on one hand precocious exposure to an elevated

oxygen tension. This induces increased hydroxylation and

degradation of HIF-1α, hence a sudden reduction in VEGF

production. On the other hand, loss of the placenta causes a

severe reduction of serum levels of IGF-1. These events, taken

together, alter normal retinal vascular development inducing

vascular regression. Furthermore, other factors may play a role in

the development of the disease, by inducing inflammation and

metabolic stress, thus interfering with physiological

vasoproliferation. These factors are represented by intrauterine

inflammation (like chorioamnionitis), additional perinatal

comorbidities including bacterial and fungal infections leading to

sepsis (23), and necrotizing enterocolitis (24), especially recurrent

in premature newborns.
2 ROP pathogenesis

In the human retina, vasculogenesis begins at around the 14th–

15th week of gestation, when spindle-shaped endothelial precursor

cells start migrating from the optic disk toward the ora serrata; this

process is made possible by a tight interaction and cooperation

between astrocytes and EPCs (25, 26). The formers precede the

front of vascularization and, in response to hypoxia, activate

HIF-1α and then produce VEGF thus stimulating the

recruitment and the proliferation of EPCs (26); subsequently,

early networks of capillaries start forming (25). However, while

EPC recruitment and expansion need very low levels of oxygen,

the differentiation of EPCs into endothelial cells is strictly

dependent on an increase in oxygen levels (27). Therefore, only
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the EPCs closest to the pre-existing vessels, i.e., exposed to higher

oxygen levels, can differentiate, and this process ensures a

centrifugal progression of the newly formed capillary network

reaching the retinal periphery nasally at 36 weeks of gestation

and temporally at around 40 weeks of gestation (28, 29).

Furthermore, the slight but progressive increase in oxygen

partial pressure starting from around the 33–34th week of

gestation may additionally accelerate retinal vascularization (20,

30), which is completed at around 38–40th week of gestation (31).

Premature birth causes a blockade of this physiological process.

Exposure to atmospheric oxygen levels and loss of placenta before

the retinal vascular network has fully developed induce

interruption of EPC recruitment and sudden differentiation of

recruited precursor cells in terminal differentiated cells. The

result is a vascular network that would not work properly, with

stunted and obliterated vessels (26), unable to provide enough

oxygen to the surrounding structures, especially in the peripheric

area, leading to ischemia (ischemic phase of ROP).

The role of oxygen in this phase is highlighted by several

clinical trials demonstrating that liberal use of oxygen in preterm

newborns increases the risk of ROP, while limiting oxygen

exposure significantly decreases the risk of developing ROP,

although reducing their survival rate (32). Therefore, preterm

newborns seem to have a paradoxical relationship with oxygen,

which on the one hand guarantees and improves their survival,

but on the other hand represents the signal that interrupts the

vasculogenic processes and therefore lays the foundations for the

development of ROP.

Hyperoxia-induced blockade of retinal vascularization

determines a progressive imbalance between the metabolic

demand of the developing neural retina and the insufficient

supply coming from the poorly developed capillary network thus

producing an increasing retinal hypoxia. This leads to the re-

activation of HIF-1α and its downstream growth factors such as

IGF-1 and VEGF involved in the angiogenic process.

Consequently, an abrupt and tumultuous neoangiogenesis

develops (proliferative phase of ROP) and it usually takes place

between the 32nd and 34th week of postmenstrual age (33). New

vessels, intended to connect the avascular peripheric retina with

the central zone, are, however, cluttered and disorganized, with

many leaking points, altered tight junctions, and blood-retinal

barrier (BRB) breakdown (34, 35). This causes protein leakage,

edema, and inflammation. As a result, in the advanced stages of

the disease, this process can lead to the formation of fibrotic

tissue and invasion of the vitreous and lens, thus exposing the

retina to a high risk of detachment (26). The evolution towards

this stage depends on the degree of ischemia leading to hypoxia,

so, in a situation of milder ischemia, there could be an evolution

toward normal vascularization (36).

Therefore, while physiologically fluctuating hypoxia represents

the necessary condition for harmonious retinal vascular

development during intrauterine life, abrupt changes in oxygen

levels secondary to premature birth can be responsible for

deviation from the physiological processes.

Although ROP has been classically described as a

vasoproliferative disorder, several findings suggest that it should
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be considered rather as a neurovascular disease (37). Visual

impairments or even visual loss observed in preterm infants with

previous ROP have been generally attributed to macular injury

and other ocular complications (such as retinal detachment, and

glaucoma) resulting from fibrovascular changes. Further studies

show an association between ROP and poor neurodevelopmental

outcomes as well, especially when considering the most severe

form (38). A study performed in North Korea (39) showed a

significant association between severe ROP and a higher

incidence of neurodevelopmental disorders both in the first year

of life and after 10 years, and this association was stronger when

compared to mild ROP, although poor neurodevelopmental

outcomes may be, per se, a complication of preterm birth (40,

41). On the other hand, several follow-up studies show the

association between ROP and reduced visual acuity (intended as

the capacity of our brain to differentiate contrast variation) (42,

43) even when vascular alterations have regressed, and objective

retinal injuries are absent.

Unquestionably, the retina is a neurovascular structure: the

vascular plexuses are in close contact with neural ganglion cells

(44), which start in the retinal neural layers entering then, via

the optic nerve, the brain, that’s why we may refer to the retina

as a “window” to the brain (45). Since ROP is a disorder of the

developing retina, it’s quite reasonable to state that it affects the

neural retina as well: the vascular and the neural retina are

exposed to the same growth factors, proliferating and

differentiating in close contact with each other and influencing

themselves. Indeed, associations between severe ROP and altered

functioning of rods and cones, as well as degeneration of retinal

ganglion cells, bipolar and amacrine cells, and decrement of their

density have been reported in several studies (37). Furthermore,

since some of the growth factors involved in the development of

the retina such as VEGF and IGF-1 act as well on the developing

brain, their dysregulation seen in ROP may affect the

development of some cerebral regions, determining injury to

both the visual axis and other cerebral areas involving motor and

cognitive skills. Supporting this hypothesis, a study showed an

association between treatment with bevacizumab (an anti-VEGF

agent used for the treatment of advanced stage of ROP) and

neurodevelopmental delay in those infants (46), because of VEGF

levels reduction in the retina and the brain as well. Moreover, in

literature there are many studies showing an association between

ROP and smaller cerebellum, brainstem, and greater

unmyelinated white matter volume; another prospective study

applying Magnetic Resonance Imaging of cerebral white matter

(47) found an association between severe ROP and lower

fractional anisotropy (meaning reduced white matter integrity) in

the posterior white matter, decreased maturation of the optic

radiation and the posterior limbs of the internal and external

capsule. We can argue that these regions may be peculiarly

vulnerable and then susceptible to the same biochemical changes

happening in the retina.

But, besides these aspects, it is worth considering that visual

impairment, whatever its origin is, is strictly connected to a

certain grade of neurodevelopmental impairment, because of a

limitation in acquiring cognitive, behavioral, and neurological
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abilities. Reduced visual acuity originating from ROP may result in

pluridisabilities due to difficulties in creating brain connections

deriving from a great integration of all sensorial information. So,

it remains unidentified whether neurodevelopmental disabilities

associated with ROP are secondary to dysregulation of the

angiogenic pathway in other areas of the brain or to visual

impairment caused by ROP; further studies are needed to clarify

these aspects.

Nevertheless, considering this new perspective on the disease, it

becomes more and more compelling to find instruments for

prevention and treatment before it gets to the advanced stages.
3 ROP incidence

ROP represents a leading cause of childhood blindness

worldwide (48), especially in developing countries such as India,

China, Eastern Europe, and Latin America (49, 50). It is still a

big challenge trying to obtain epidemiological indicators of ROP

from hospital or population-based studies because of substantial

variability in screening criteria and study designs (19).

Historically, ROP and ROP-induced blindness have gone through

three epidemics. The first one occurred in the decade between

1940 and 1950, because of unmonitored oxygen supplementation

to premature newborns and it involved babies weighing around

1,350–1,370 g. It later subsided thanks to a more balanced use of

oxygen in neonatal intensive care (51–53). The second one began

in the late 60s and early 70s when the advancements in neonatal

care increased the survival rate of very low birth weight and

extremely premature infants (54–56). Since the early 90s (57),

then, we’ve been going through a third epidemic phase of ROP

involving middle- and low-income countries (MIC and LIC). The

reason for this 3rd epidemic lies in the increasing survival rate of

preterm newborns in MIC and LIC because of a great

improvement in supportive and therapeutic services, albeit with

suboptimal care, thus exposing more mature infants at risk.

Indeed, these centers lack high-quality ROP care—i.e., relevant

ROP screening guidelines or policies resulting in the use of

unmonitored oxygen, adequate screening programs for early

detection of ROP, etc.—facilitating thereby the widespread

occurrence of ROP across the developing world (50, 54, 58–60).

The incidence of ROP is variable but is around 60% in the very

low birth weight (VLBW) infants. The Early Treatment for

Retinopathy of Prematurity (ET-ROP) study conducted in the US

showed an incidence of 68% among infants weighing <1,251 g of

any stage of ROP (49, 61, 62). On the other hand, in MIC and

LIC (such as India, Eastern Europe, and Latin America) high

incidence of severe ROP has been reported in newborns weighing

more than 1,500 g and gestational age greater than 34 weeks

(49, 53). Indeed, in a publication from India, 45% of preterm

infants weighing more than 1,250 g developed severe retinopathy (63).

In a global estimation in 2010, 184,700 babies of 14.9 million

preterm babies developed any stage of ROP, 20,000 of whom

became blind (visual acuity <20/400) or severely visually

impaired (visual acuity from <20/200 to ≥20/400) from ROP,

and of whom 12,300 others developed mild-moderate visual
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impairment (visual acuity from <20/40 to ≥20/200) (59). The

level of visual impairment due to ROP is also different between

high- and low-income countries: in Asia ROP is the first cause of

childhood avoidable blindness and the rates of visual loss from

ROP are twice as high per million of newborns diagnosed with

ROP as what estimated in high-income countries (60). This is

the obvious consequence of what was stated before. Indeed,

whereas in the West there has been a risk factor transition from

first to second epidemic (i.e., from preterm to extreme preterm

or very low birth weight), the third epidemic occurring in LIC

and MIC is coming from mixed risk factors (19, 64).

Therefore, it becomes more and more evident the need for new

treatment strategies which should be easily available and safe to

administer, in order to counteract the wide spreading of the

disease, its progression, and its long-term consequences.
4 Preventive or therapeutic strategies

Prevention of ROP can be developed on three levels:

• Primary prevention (prevention of ROP developing): this acts

on ROP-associated risk factors. It is about reducing preterm

birth (so prevention of teenage and advanced age pregnancies,

avoidance of smoking, substance/alcohol abuse), reducing

supplemental oxygen administration during intensive care

recovery (even if the ideal range of oxygen saturation target

remains controversial), advancement in neonatal care,

prevention and precocious treatment of neonatal comorbidities

(19, 65).

• Secondary prevention (prevention of ROP-related outcomes):

this includes early screening and detection of ROP followed

by treatment. This implies having a well-defined screening

program, with international guidelines and trained

ophthalmologists.

• Tertiary prevention (prevention of further complications of the

disease): this includes all the interventions meant to restore the

vision and treat the complications (19).

All current treatment strategies may be considered as strategies of

tertiary prevention. These strategies, indeed, are aimed at

minimizing the effects of disease progression in the advanced

stages. They include cryotherapy, then replaced by the more

effective and less painful laser photocoagulation, and therapy

with anti-VEGF drugs. These therapies are mainly used for the

treatment of threshold retinopathy (66–68), showing an efficacy

of approximately 90% in avoiding disease progression. As

described in the ETROP study, laser treatment has shown great

efficacy in the treatment of type 1 ROP (which is the type of

ROP with significant changes and thus requiring treatment) (69),

although disappointing results are seen in the treatment of

Aggressive Posterior-ROP and zone 1 ROP. Despite being a

successful first-line treatment for several years, its use is not free

from adverse effects and complications. Above all, it requires

anesthesia and advanced ophthalmologist skills, and, depending

on these ones, around 10% of cases treated with laser

photocoagulation require a second intervention (70). In addition,
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laser treatment is associated with several visual complications:

vitreous hemorrhage, hyphema, cataract, increase or decrease in

intraocular pressure, increase in refractive errors but, above all,

limited field of vision because of disruption of the peripheral

avascular retina (57, 36, 71). Further progression in ROP

treatment has been made with anti-VEGF use, in order to reduce

or avoid complications and sequelae related to the use of laser

therapy. Anti-VEGF drugs work to restore the physiological

levels of VEGF (which is pathologically increased instead). This

way they can prevent further progression of the disease and

induce regression of new vessels, showing an acceptable safety

profile at 24 weeks after the beginning of treatment (33). The

most commonly anti-VEGF agent used in preterm infants is

bevacizumab and it has great evidence of successful outcomes for

the treatment of threshold ROP either as a single treatment or as

an adjuvant to standard laser therapy (66, 67, 72). Indeed, they

showed similar effectiveness of laser photocoagulation but with a

significantly lower percentage of later refractive alterations (73,

74). On the other hand, the use of anti-VEGF agents is related to

several limitations as well. First, they have to be administered by

intravitreal injection, hence they require antibiotic prophylaxis

and the presence of a trained ophthalmologist. In addition, they

can present, even if to a lesser extent, some of the complications

seen for laser photocoagulation and a certain incidence of

needing retreatment (75). However, the most important potential

complication is the transient reduction of serum VEGF level

(whose degree varies depending on the anti-VEGF agent used),

and this may alter the physiological development of organs such

as the brain, lungs, heart, and kidneys. Indeed, there are some

studies describing neurodevelopmental outcomes in infants

treated with bevacizumab and the results are contrasting. A

retrospective study from the Canadian Neonatal network showed

more severe neurodevelopmental disabilities in children treated

with bevacizumab than in those treated with laser

photocoagulation, with the limitation that the study was not

randomized, so the more severe outcome could be related either

to the more severe form of ROP (76). On the other hand, some

studies are showing no significant association (77). Then, more

data are needed to study the long-term effects of anti-VEGF

agents and many questions about the use of anti-VEGF drugs

remain unanswered; moreover, they’re still a strategy that cannot

prevent vessel neoformation and can only be used for the

treatment of threshold disease.
5 Propranolol in infants

Over the last decade, the similarities between IH and ROP have

become progressively more evident. For both, hypoxia has been

demonstrated to be the main promoting trigger that activates the

β-adrenergic system. The release of catecholamines and their

interaction with β-adrenoceptors (β-ARs) induce the activation of

pro-angiogenic and pro-inflammatory factors which determine

pathological vascularity. Therefore, the idea of using propranolol

for ROP treatment came from the successful use of this drug in

inducing regression of IHs. A lot of similarities have been found
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between these two diseases, and these could help figure out the

molecular pathways involved in the pathogenetic processes. In

recent years, great advantages are coming from ROP treatment

with propranolol. Indeed, it is the first drug that can be used for

the treatment of prethreshold disease, thereby preventing vessel

tufts neoformation and slowing down the natural history of the

disease, reducing the need for a more invasive therapeutic

approach. Beyond these aspects, it’s worth remembering that it’s

easily available and, given its historical use in the cardiovascular

field, its safety profile has been well studied, even if its kinetic

and its effects in the newborn may be somehow different and its

mechanism of action in the vasoproliferative lesions has yet to be

completely understood.
6 Propranolol in the treatment of
infantile hemangiomas: its exploitation
to the OIR model

The use of propranolol for the treatment of infantile

hemangioma became by serendipity. In 2008 Léauté-Labrèze et al.

first reported hemangioma regression in eleven children receiving

oral propranolol to manage the cardiovascular complications

coming from the use of corticosteroids previously used to treat the

hemangioma (78). Since this time, subsequent studies have shown

the efficacy and safety of propranolol at 1–3 mg/kg per day in the

treatment of infantile hemangiomas (79, 80). The well-documented

efficacy of propranolol in inducing IH regression aroused the idea

of a relevant involvement of the β-adrenergic system in the

angiogenetic process. Indeed, angiogenesis is led by hypoxia, and

tissue hypoxia is related to an increased norepinephrine release

(81), hence hypoxic lesions as IH and ROP are associated with a

catecholaminergic overstimulation which is likely to induce a β-AR

mediated increase in VEGF expression (82). Indeed, there is a wide

expression of β-ARs both in IH cells and in retinal cells. In IH, β1-

and β2-ARs are expressed in both hemangioma endothelial cells

and stem cells. In the retina, β2-ARs are localized into several

retinal cells, including Muller cells (83), while β1-ARs are mainly

localized in the inner capillary network, on the surface of

endothelial cells (84). Catecholamines are synthesized by

sympathetic neurons, and released at the sympathetic terminals,

but it is known that under normoxia endothelial cells can

synthesize noradrenaline as well (85), implementing its synthesis

and release in response to hypoxia. High levels of enzymes

involved in catecholamine synthesis are documented in endothelial

cells (85) and more specifically in hemangioma endothelial cells

(86); in addition, the expression of these enzymes was reduced

after treatment with propranolol in IH (86).
7 Propranolol in mice with oxygen
induced retinopathy

The most widely used model for studying human

vasoproliferative retinopathy, such as ROP, and their

antiangiogenic treatment is the mouse model of Oxygen-Induced
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Retinopathy (OIR). This model replicates the pathogenic events

leading to the disease. First of all, the rodent retina represents a

great model for premature newborn retina, since when rodents

are born, their retina is avascular. Its vascularization starts at

postnatal day 4, becoming complete during the first week of

postnatal life (87) or some days later (88), depending on the

strain of mice evaluated. Interestingly, this process is associated

with exposure to the higher oxygen level of the extrauterine

environment, and reduction of HIF-1 and VEGF levels (89).

Furthermore, the developmental stage of the retinal vascular

network of mice during extrauterine life development is quite

similar to what happens in the retina of human preterm

neonates. Those aspects make the mouse a recommendable

model for reproducing ROP.

Since ROP derives from premature exposure of the human

retina to high levels of oxygen, a typical OIR model is produced

by exposing mice pups for 5 days [between postnatal day 7

(PD7) and PD12] to high oxygen concentrations (75% +/− 2%)

(90). This experimental procedure induces an initial response of

vessel vasoconstriction and vascular regression in the central

zone of the retina, while the peripheric retina is quite spared.

Vessel loss in the central retina causes ischemia and hypoxia

which, once the mouse is back to room air at PD13 (which is

now a “relative hypoxia”), induces expression of proangiogenic

factors and new vessel formation, reproducing, then, the

proliferative phase of ROP. During the proliferative phase, in the

OIR retina, HIF-1α levels are significantly increased together

with all its downstream effectors, such as VEGF, VEGFR1,

VEGFR2, IGF-1, and IGF-1R messenger (91). Secondary to these

molecular changes, a marked vascularization can be seen at the

border between the central avascular and the peripheral

vascularized retina, and with the formation of engorged

vessel tufts expanding into the vitreous, likely to cause retinal

hemorrhages (83); retinal neovascularization is maximal at PD17 (92).

In the studies performed by Ristori et al. propranolol was

administered to OIR mice subcutaneously three times a day from

PD12 to PD16 (83), during the proliferative phase. Systemic

administration of propranolol was associated with a reduction of

retinal levels of VEGF and IGF-1, thus decreasing retinal

neovascularization and vascular leakage by restoring the levels of

the tight junction protein occludin and decreasing the

extravascular leaking of albumin (83). Interestingly, propranolol

did not modify VEGF concentrations in the brain, lungs, or

heart, confirming that propranolol downregulated only the levels

of VEGF and IGF-1 stimulated by hypoxia. A following study by

Dal Monte et al. showed that in the OIR retina, norepinephrine

levels increased during the proliferative phase by approximately

90% suggesting that increased levels of noradrenaline may, in

turn, overstimulate β-ARs and potentially activate signaling

pathways by acting as a proangiogenic switch (83). Among the β-

ARs, the finding that the selective antagonism of β2-AR was able

to counteract the pathological vascularization, suggested a key

role of the axis norepinephrine/ β2-AR for the development of

the hypoxia-induce neovascularization (93).

To minimize the side effects of systemic exposure to

propranolol, in OIR mice eye drops at 2% concentration resulted
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in a retinal concentration of the drug similar to what was found

after 20 mg/kg/day systemic administration of the drug, with a

similar antiangiogenic effect (94). The high lipophilicity of

propranolol, together with the presence of hyaluronic acid in the

eye drops favored the drug diffusion across the physiological

barriers. A following preclinical study conducted on healthy

rabbits using propranolol eye drops 0.1% showed an increased

retina/plasma ratio of propranolol concentrations compared to

1 mg/kg/day oral administration, suggesting that topical

administration is feasible and convenient (95). However, the

benefits of propranolol treatment are not limited to its

antiangiogenic effects. The study by Martini et al. (93) showed

that the selective antagonism of β2-ARs in OIR mice not only

reduced the tumultuous vascularization but also improved retinal

function, as demonstrated by electroretinography. A similar effect

was described some years later by Cammalleri et al.

administering propranolol to OIR mice (96). More recently,

Qadri et al., demonstrated that propranolol prevented retinal

astrocyte degeneration evoking an indirect neuroprotective effect

if one considers the relevant role played by astrocytes in

retinal function (97).

These intriguing results on the OIR model paved the way to test

the safety and the efficacy of propranolol in human preterm

newborns with ROP, with the hypothesis that propranolol, a well-

tolerated, non-selective β-blocker, would be able to reduce disease

progression when administered in a precocious phase of the disease.
8 Propranolol in humans with
retinopathy of prematurity

Based on these promising preclinical results, a series of clinical

trials have been carried out testing oral propranolol in very low

birth weight extremely premature newborns with ROP.

Propranolol was administered, at newborns at stage 2 ROP, at

doses up to 2 mg/Kg/day, the dose used for infantile hemangioma

(98–106). As demonstrated in four recent meta-analyses, treatment

with oral propranolol minimizes the progression of the disease

reducing the need for anti-VEGF administration and laser (107–

110). VEGF plasma levels remained unchanged in patients treated

with propranolol (98) confirming what was seen in the OIR mice

model, i.e., that propranolol antagonizes selectively the VEGF

produced in the hypoxic retina without modifying VEGF

produced in other normoxic districts. This is a great advantage

when compared to anti-VEGF drugs, whose main concern was

indeed related to its possible systemic effect.

The main concerns about this treatment, however, refer to its

safety because the systemic intake of an unselective β-blocker has

potential risks. Stable newborns definitely well tolerated treatment

with propranolol (stability of biochemical, hemodynamic, and

respiratory parameters), but serious side effects were seen in

patients with unstable clinical conditions who showed

cardiorespiratory complications such as bradycardia, bradi/apnea,

and hypotension, which required treatment interruption.

Given the safety concerns arising by the systemic

administration, topical administration through eye micro-drops
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was explored in the retina of preterm newborns. Two clinical trials

were carried out by Filippi et al. with propranolol 0.1% eye micro-

drops showing a safety profile but without efficacy on ROP

progression (111) and with propranolol 0.2% eye micro-drops

that maintained the safety profile but displayed a positive effect

in arresting ROP progression (112). While in the study with

propranolol 0.1% the administration of eye micro-drops was

begun in neonates with ROP stage 2, in the study with

propranolol 0.2% the treatment was planned at ROP stage 1,

following the idea that a more precocious treatment could be

more effective. During this second study, the observation that

newborns treated (for cardiac indications) with propranolol

before ROP development showed a ROP more aggressive,

suggested that propranolol was effective not as a primary

preventive treatment but only if administered during the

proliferative phase (112).

A more recent study confirmed the efficacy of propranolol eye

drops at a concentration of 0.2% without significant adverse effects

(113). To reduce the percentage of the drug absorbed through the

conjunctival and nasal vessels and to increase the safety profile of

the study, the infants received micro-drops administered using a

variable volume pipette (Figure 1). However, the main limitation

of this approach is the lack of a randomized controlled trial

confirming its efficacy. Therefore, the topical strategy is yet a

promising approach but not yet the treatment of choice.

Studies about long-term outcomes deriving from the use of

propranolol are not available. A single study conducted by Filippi

et al. (114) investigated the refractive errors of newborns with

ROP treated with propranolol. Propranolol does not seem to

directly affect the refractive errors; however, considering that the

refractive outcome worsens as ROP stages advance, we can

postulate that treatment with propranolol might indirectly improve

the refractive outcome by reducing the progression of ROP.
9 Propranolol: mechanism of action

The way propranolol interferes with the molecular pathways

involved in IH and ROP is not well understood, but many
FIGURE 1

Variable volume pipette connected to a venous cannula used to
administer propranolol eye micro-drops.
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hypotheses are on the way. Propranolol is an unselective β-

blocker, although previous studies have shown a preferential

action on β2-ARs (79, 115, 116). The blockage of β-AR likely

leads to inactivating effects both on canonical and non-canonical

pathways downstream β2-AR.

In the canonical pathway, the β2-AR couples dually to Gs and

Gi proteins both converging on adenylate cyclase (AC). In the Gs

pathway, increases in AC activity result in the elevation of

intracellular cyclic AMP content and subsequently activation of

protein kinase A (PKA). The majority of the downstream events

stimulated by β2-AR agonists are therefore a consequence of the

activation of PKA. PKA is composed of a regulatory subunit

dimer, which is bound to a catalytic subunit. The regulatory

subunits bind cAMP, an event that releases the catalytic subunits.

The catalytic subunits, once released from the regulatory

subunits, catalyze the transfer of ATP terminal phosphates to

serine or threonine residues in target proteins. Phosphorylation

of intracellular target proteins promotes the activity of

transcription factors including HIF-1α. The final HIF-1α-

associated player, VEGF, activates its receptor VEGFR2 to then

reverberate on the PKA pathway ultimately leading to HIF-1α

accumulation (Figure 2).

In the presence of sympathetic overstimulation, the β2-AR

switches its coupling from Gs to Gi thus reversing the Gs-

mediated generation of cAMP. Reduced PKA activity after β2-AR

coupling to Gi blunts β1-AR signaling. Cross-talk between β1-

and β2-AR is relevant to providing a negative feed-forward

mechanism to sharpen the transient response of β1-AR in heart

failure where Gi activation reduces the contractile response to

β1-AR activation by norepinephrine upon sympathetic

overactivation. At the vascular level, Gi activation switches from

cAMP–PKA to mitogen-activated protein kinase (MAPK)/ERK

pathways leading to endothelial nitric oxide synthase (eNOS)

uncoupling and increased nitrosylation of eNOS that participate

in endothelial dysfunction (116). Overall, propranolol exhibits an

antiangiogenetic effect by inhibiting HIF-1α -induced VEGF

expression, which is instead promoted by catecholaminergic

overstimulation (117).

In the non-canonical pathway, activated β2-AR undergoes

phosphorylation by several kinases of which G protein-coupled

receptor kinase GRK2 is the prototype GRK for β2-AR

desensitization. Following its phosphorylation, β2-AR becomes

able to interact with members of the arrestin family, in particular

with β-arrestin 2, thus triggering internalization and

desensitization (Figure 2). In this respect, African American

infants have a lower incidence of threshold ROP (61) and it has

been speculated that this could be in part the consequence of a

polymorphism of G protein-coupled receptor kinase mostly

found in this ethnic group (118): this variant facilitates β-AR

phosphorylation and thus desensitization, making then this

population “genetically β-blocked” (119).

Interestingly, propranolol seems to exhibit its antiangiogenetic

action irrespectively on β-AR blockade. Propranolol is a racemic

mixture of R(+) and S(–) enantiomers and the R(+) enantiomer

is completely devoid of β-blocker activity. In the case of IH,

Overman et al. (120) demonstrated that propranolol inhibits
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FIGURE 2

Schematic representation of the canonical (left) and non-canonical (right) β2-adrenergic receptor (β2-AR) signaling pathway. The mechanisms are
described in the text. NE, norepinephrine; GTP, guanosine triphosphate; AC, adenylate cyclase; PKA, protein kinase A; GRK2, G protein-coupled
receptor kinase 2; β-Arr, β-arrestin.
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HemSCs differentiation into hemangioma cells by disrupting the

dimerization of SOX18, which is a transcriptional factor involved

in endothelial cell differentiation and tumor-angiogenesis.

Subsequently, Seebauer et al. (121) demonstrated that (R)+

enantiomers display this activity on HemSCs in vivo possibly

interfering with SOX18 binding to chromatin. Moreover,

propranolol inhibits the proliferation of both hemangioma

endothelial and HemSCs, increasing the expression of

adipogenesis-associated genes in stem cells (122). This data is

confirmed by Li et al. (123), who demonstrated an increased

transdifferentiation of HemSCs into adipocytes after treatment

with propranolol, maybe acting on the PI3K pathway. How

propranolol exerts all these effects has yet to be better clarified.
10 Conclusion

The unexpected demonstration that propranolol counteracts

hypoxia-induced vascularization in IHs and ROP demonstrates

that, in different anatomical regions, hypoxia promotes

vascularization through the interaction between catecholamines

and β-ARs. The use of propranolol therefore allows for

decoupling the effects of hypoxia on the modulation of

vascularization (36).

These observations open the way to a simple, non-invasive,

economical treatment for ROP which aims to slow down the

evolution of the disease without waiting for progression to the

threshold of retinal detachment. The prospect of administering
Frontiers in Pediatrics 08
propranolol through ocular micro-drops makes this treatment

particularly safe and presents it as the therapeutic opportunity of

first choice.
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