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Predicting preterm birth using
auto-ML frameworks: a large
observational study using
electronic inpatient discharge data
Deming Kong1†, Ye Tao1†, Haiyan Xiao1†, Huini Xiong1†,
Weizhong Wei1* and Miao Cai2*
1Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, Hubei, China, 2Department of Epidemiology,
School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
Background: To develop and compare different AutoML frameworks and
machine learning models to predict premature birth.
Methods: The study used a large electronic medical record database to
include 715,962 participants who had the principal diagnosis code of
childbirth. Three Automatic Machine Learning (AutoML) were used to
construct machine learning models including tree-based models, ensembled
models, and deep neural networks on the training sample (N = 536,971). The
area under the curve (AUC) and training times were used to assess the
performance of the prediction models, and feature importance was
computed via permutation-shuffling.
Results: The H2O AutoML framework had the highest median AUC of 0.846,
followed by AutoGluon (median AUC: 0.840) and Auto-sklearn (median AUC:
0.820), and the median training time was the lowest for H2O AutoML
(0.14 min), followed by AutoGluon (0.16 min) and Auto-sklearn (4.33 min).
Among different types of machine learning models, the Gradient Boosting
Machines (GBM) or Extreme Gradient Boosting (XGBoost), stacked ensemble,
and random forrest models had better predictive performance, with median
AUC scores being 0.846, 0.846, and 0.842, respectively. Important features
related to preterm birth included premature rupture of membrane (PROM),
incompetent cervix, occupation, and preeclampsia.
Conclusions: Our study highlights the potential of machine learning models in
predicting the risk of preterm birth using readily available electronic medical
record data, which have significant implications for improving prenatal care
and outcomes.
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Abbreviations

AUC, area under the curve; AutoML, automatic machine learning; GBM, gradient boosting machines; GPU,
graphics processing unit; ICD-10, international classification of diseases, tenth revision; LDA, linear
discriminant analysis; NRCMS, new rural cooperative medical scheme; PROM, premature rupture of
membrane; SD, standard deviation; UEBMI, the urban employee basic medical insurance; URBMI, the
urban resident basic medical insurance; XGBoost, extreme gradient boosting.
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Introduction

Preterm birth, defined as delivery before 37 weeks of gestation, is

a major public health challenge that affects around 15 million babies

worldwide each year (1). It is a leading cause of neonatal mortality

and morbidity, as well as long-term health problems such as

neurodevelopmental disabilities and chronic diseases (2). The

causes of preterm birth are multifactorial and complex, and

include maternal factors such as infections, stress, and chronic

diseases, as well as fetal and environmental factors (3). Despite

efforts to reduce the incidence of preterm birth, the rate has not

significantly decreased in recent years. This highlights the need for

a better understanding of the underlying mechanisms and risk

factors, as well as improved prevention and management strategies.

Health service and outcome research utilizing administrative

medical databases is becoming increasingly popular and gaining

more attention (4–9). Administrative data are routinely gathered

from various healthcare institutions such as hospitals, clinics, and

pharmacies. These data are extensive and provide comprehensive

service utilization information, which has led to a surge in

researchers using them for cost-effectiveness analysis, risk

adjustment, and mortality and health outcome prediction. Prior

research primarily uses traditional statistical models such as

generalized linear models to construction prediction models, which

fails to capture the nonlinear and complex relationships between

potential risk factors and the outcome, and this bottleneck in

model predictive performance may overshadow potentially

important risk factors or bias the importance of each factor.

With the recent advancements in artificial intelligence and the

associated applications in the medical field, machine learning

models are closer to generate innovative solutions for healthcare

than ever. For example, a study utilizing electronic medical

records from Vanderbilt Hospital in the United States,

highlighted the substantial advantages of machine learning in

improving healthcare throughout the prenatal period via its

superior performance in accuracy, classification, and portability

(10). Additionally, a recently published review comprehensively

examined the role of artificial intelligent as a promising tool for

clinicians facing daily obstetric challenges (11). The review

highlighted the potential of advanced machine learning

algorithms to analyze vast amounts of medical data, aiding in the

identification of new risk factors associated with premature birth.

However, in real world practice, there is limited research on

constructing powerful machine learning models for

administrative medical data to predict premature birth.

Several challenges, including feature engineering,

hyperparameter tuning, model specification, and model

evaluation, hinder the hands-on applications of accurate machine

learning models in the medical research. Automatic machine

learning (AutoML) aims to address these challenges and generate

machine learning products by automating algorithm selection,

hyperparameter tuning, model evaluation, and others (12). In

this study, we utilized three open-source AutoML frameworks

(AutoGluon, Auto-sklearn, and H2O) to predict preterm birth

based on data from 715,962 women who were hospitalized for

childbirth in China.
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Related work

The existing research primarily focuses on using machine

learning models for preterm birth prediction has significantly

advanced our understanding in this field. Machine learning is a

subdivision of artificial intelligence, possesses the capability to

forecast patient clinical outcomes by extracting valuable features or

predictor variables from data, and has been increasingly used in

the prediction of preterm birth (13). For several decades, many

researchers have used popular machine learning algorithms,

including Support Vector Machine, K-Nearest Neighbors, and

Convolutional Neural Networks. For instance, a study employed

ordinary logistic regression, random forest, and KNN to identify

risk factors for preterm birth in the USA. The study highlighted

that a history of prior stillbirth, hypertension, and diabetes

mellitus were significant risk factors for preterm birth (14).

A major limitation of these machine learning applications in

preterm birth prediction is that they only smaller datasets (15) and

this is partially from a lack of machine learning applications on

electronic health records, which encompass millions of medical

records, diagnoses, prescriptions, along with high-dimensional

medical images (16). This study analyzes a large-scale electronic

medical record database with 715,962 participants, which

maximizes the statistical power to identify the risk factors

associated with preterm birth in more depth, providing a scientific

basis for evidence-based decision-making and guidelines.

Another notable limitation in earlier studies is the lack of

applications on the vast repository of high-dimensional medical

data available within electronic medical records. The current

research acknowledges the untapped potential of these datasets and

actively harnesses their breadth and depth to enhance the predictive

modeling of preterm birth, enabling machine learning practitioners

to derive meaningful insights and develop precise guidelines.

A common trend in previous studies involves heavy reliance on

expert input for feature engineering, hyperparameter tuning, and

model specification. This reliance can introduce subjectivity and

make it challenging to reproduce superior performance. In

contrast, the present study adopts a more automated approach.

By leveraging three open-source AutoML frameworks—

AutoGluon, Auto-sklearn, and H2O AutoML—the research

automates critical steps such as algorithm selection,

hyperparameter tuning, and model evaluation (17). The

automation implemented in our study improves the

reproducibility and scalability of the predictive models by

boosting efficiency and reducing the reliance on extensive expert-

defined phenotyping and ad-hoc feature engineering.
Methods

Data sources

This study used an administrative inpatient discharge dataset

collected by the Health Commission of Shanxi Province, China

from January 1, 2014 to December 31, 2017 (4–9). This database
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routinely collects data on individual’s demographic information

(age, sex, and ethnicity), socioeconomic status (marital status and

occupation), disease severity, one main diagnosis code and up to

10 secondary diagnosis codes based on International

Classification of Diseases, Tenth Revision (ICD-10). All female

individuals with the main ICD-10 diagnosis code for pregnancy

and childbirth (starting with “O”) were included in the study

(18), yielding a final analytic sample of 715,962 participants. All

individual and hospital identifiers, such as individual name, ID

card number, and insurance card number, were excluded before

the study team had access to the data. Observations with any

missing data on the predictors were excluded from the study.
Outcomes

Preterm birth was defined as a binary variable, with the value of

one assigned to preterm birth that occurred before 37 weeks of

gestation (identified by ICD-10 code O60.1) was coded as one,

while the value of zero assigned to all other births (19).
Predicting variables

We selected a few predicting variables (features) based on

preexisting studies and data availability (20–23). Age was

computed as the difference between the date of hospitalization

and the date of birth. We coded ethnicity as Han Chinese and

non-Han Chinese (minorities), and biological sex as male or

female. Socioeconomic status was assessed through two multi-

category variables: marital status (married, unmarried, widowed,

divorced, and other) and occupation (public sector, private

sector, agriculture, unemployed, and other) (24). Admission

status was classified as normal, emergent, or dangerous, while

admission source was categorized as inpatient admission,

emergency department transfer, outpatient department transfer,

or transfer from other medical facilities. Payment method

included the New Rural Cooperative Medical Scheme (NRCMS),

the Urban Employee Basic Medical Insurance (UEBMI), the

Urban Resident Basic Medical Insurance (URBMI), self-payment,

or others. We also identified a set of clinical risk factors for

preterm birth, including gestational diabetes, premature rupture

of membranes, preeclampsia, incompetent cervix, and nuchal

cord. The ICD-10 clinical diagnosis codes for these risk factors

are listed in Supplementary Table S1.
Automl frameworks

AutoML can automate the process of algorithm optimization,

hyperparameter tuning, model iteration, and model evaluation,

and reduce the difficulty and time-consuming bottlenecks of

machine learning models. We considered several popular

AutoML frameworks for supervised machine learning. Auto-

WEKA ceased development in March 2022. Auto-kera and Auto-

PyTorch primarily focus on image pattern recognition and lack
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sufficient support for tabular classification data and its model

evaluation metrics. Therefore, we did not use these three tools

and this study chose three popular AutoML frameworks

(AutoGluon, Auto-sklearn, and H2O AutoML).

Autogluon
A robust and accurate AutoML framework for structural data

sets (25). We used AutoGluon-Tabular for binary classification

for structural tabular dataset. It supports Graphics Processing

Unit (GPU) training for most of its models including lightGBM,

CatBoost, XGBoost, MXNet and FastAI Neural Networks

(26–28). AutoGluon framework for tabular data, also known as

AutoGluon-Tabular, is designed to train highly accurate machine

learning models via ensembling multiple models and stacking

these models in multiple layers (25). Therefore, the models

implemented in AutoGluon are not generic models such as

generalized linear models. The philosophy of AutoGluon is to

train a curated list of most powerful models within a reasonable

amount of time, so only around 10 complex ensembling models

are implemented. Less performant generic models such as

generalized linear models are not fitted in AutoGluon and can be

implemented in other autoML frameworks. Instead of focusing

on combined algorithm selection and hyperparameter

optimization (CASH) problem, AutoGluon replies more on

advanced data processing, deep learning, and multi-layer stack

ensembling to maximize prediction performance (25).

Auto-sklearn
Auto-sklearn is an AutoML tool using meta-learning (29). The

aim of meta-learning is to search for a better start for

hyperparameter tuning using efficient and parameterized

Bayesian optimization method, so that the initial start-off values

are better than random. It is based on an existing Python

machine learning package scikit-learn and does not support GPU

acceleration in the current version. This framework so far

supports 15 classifiers, 14 methods for feature preprocessing, and

4 data preprocessing methods, resulting in a total of over 100

hyperparameter combinations.

H2O AutoML
H2O AutoML is an open-source, highly scalable, fully

automated, and distributed supervised learning algorithm set

based on Java (30). The H2O AutoML tools includes hundreds

of efficient supervised machine learning algorithms such as

generalized linear models (GLMs), XGBoost, GBM (Gradient

Boosting Machine), random forest, GBMs, and deep neural nets.

It does not support GPU acceleration except for XGBoost

models. The H2O AutoML also introduces a convenient tool of

leaderboard to allow users to compare the predictive

performance, including k-fold cross-validation, across models

fitted by H2O AutoML framework.

Table 1 presents the number of machine learning models by

model type and automatic machine learning frameworks. In this

study, we only select the best 10 models (based on model

evaluation metrics) for each model type to reduce the imbalance

number of models per framework. Auto-sklearn fits the largest
frontiersin.org
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TABLE 1 The number of machine learning models by model type and
automatic machine learning frameworks.

Auto-
sklearn

AutoGluon H2O
AutoML

Mean Total

Deep learning 10 2 10 7.33 22

GBM/XGBoost 10 3 10 7.67 23

KNN 10 2 0 4.00 12

LDA 10 0 0 3.33 10

Naive bayes 10 0 0 3.33 10

Random
forest/trees

10 4 2 5.33 16

Stacked
ensemble

0 1 10 3.67 11

GLM 0 0 1 0.33 1

Mean 7.5 1.5 4.1

Total 60 12 33 105

GBM, gradient boosting machines; GLM, generalized linear models; KNN,

K-nearest neighbors; LDA, linear discriminant analysis.
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number of models (N = 60) among the three frameworks, followed

by H2O AutoML (N = 33) and AutoGluon (N = 12).
Model evaluation metrics

To compare the model performance across different AutoML

tools using a unified metric, we chose area under curve (AUC)

for receiver operating characteristic curves as the model

evaluation metric. The ROC curve depicts the relationship

between the true positive and false positive rates while selecting

cut-off values for predicting binary outcomes such as preterm

birth (31). AUC, also known as the concordance statistic or c-

statistics, is a measure of goodness of fit for binary classification

models. It ranges between 0.5 and 1, where larger values indicate

better prediction performance.

Model interpretability was evaluated as feature importance

computed via permutation-shuffling (32). The feature importance

scores measure the decrease in the predictive performance of a

trained model when the values of a feature are randomly shuffled

across rows. The features with high importance scores have the

most significant contribution to prediction accuracy. These

feature importance scores aid in interpreting the model’s overall

prediction performance by identifying the prioritized features it

relies on for predictions.
Computing environment and model setup

The original data (N = 715,962) were split into a training set

(N = 536,971) and a test set (N = 178,991) based on the 75/25

criteria. We did not set up a validation data set as the

hyperparameters were tuned using 10-fold cross validation on

the training set. All the training, testing, and model evaluation

were performed in a high-performance computing environment

(96 threads and 512 GB RAM), with Python 3.9 installed on

Linux CentOS 7.8 and one NVIDIA Tesla T4 enabled for GPU

computing (CUDA version 11.7). The training was performed
Frontiers in Pediatrics 04
with a time limit of 24 h. The versions of the AutoML tools were

AutoGluon (v0.7.0), Auto-sklearn (v0.15.0), and H2O AutoML

(v3.40.0.2). The data and associated Python code to replicate the

results can be found in Supplementary Materials.
Results

Descriptive statistics

Table 2 presents the descriptive features of patients, including

their demographics, covariates, and health characteristics. In

total, 715,962 participants were included in the study, with an

average [standard deviation, (SD)] age of 28.4 (5.0) years. The

overwhelming majority (99.9%) of the participants were of Han

Chinese ethnicity. Of the total participants, 45,763 (6.39%) had a

preterm birth, and they tended to be younger and have a higher

prevalence of gestational diabetes, premature rupture of

membranes, preeclampsia, and incompetent cervix.
Predictive performance of machine learning
models

To assess the predictive performance of machine learning

models used in this study, we employed AUC as the evaluation

metric. Results are presented in Figure 1 and Table 3, showing

the AUC statistics for different models and AutoML frameworks.

Our analyses revealed that GBM/XGBoost, Stacked Ensemble and

random forrest/trees models performed better, with median AUC

scores of 0.846, 0.846 and 0.842, respectively. Conversely, KNN,

Naive Bayes, and LDA models achieved lower AUC scores with

medians of 0.725, 0.791 and 0.818 respectively, which are even

lower than a traditional logistic regression (AUC = 0.823). H2O

AutoML had the best median predictive ability among the three

frameworks, achieving a median AUC of 0.846, followed by

AutoGluon (AUC = 0.840) and H2O AutoML (AUC = 0.820). It

is notable that the maximum AUCs of the three H2O modeling

frameworks were identical (AUC = 0.847).
Training time

Figure 2 and Table 4 shows that H2O AutoML had the lowest

median training time (0.14 min) among the evaluated AutoML

frameworks, followed by AutoGluon AutoML (median training

time: 0.16 min) and Auto-sklearn (median training time:

4.33 min). Regarding machine learning models, GLM had the

fastest training times, taking less time than Stacked Ensemble,

Deep Learning, Naive Bayes, LDA, GBM/XGBoost, Random

Forest/Trees and KNN.

Overall, when it comes to selecting an AutoML framework or

machine learning model, the training time is an important factor

to consider. The choice of framework or model should be based

on the specific requirements of the task at hand, including the

available computational resources and the desired level of accuracy.
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TABLE 2 Overall participant characteristics and by preterm birth.

Variables Overall Preterm birth

No Yes p-value

N = 715,962 N = 670,199 (93.61%) N = 45,763 (6.39%)
Age, mean (SD) 28.43 (5) 28.46 (5.01) 28.04 (4.83) <0.001

Ethnicity, N (%) 0.362

Han 714,935 (99.86) 669,230 (99.86) 45,705 (99.87)

Non-han 1,027 (0.14) 969 (0.14) 58 (0.13)

Occupation <0.001

Public sector 75,647 (10.57) 69,281 (10.34) 6,366 (13.91)

Private sector 80,452 (11.24) 78,045 (11.65) 2,407 (5.26)

Agriculture 253,496 (35.41) 236,779 (35.33) 16,717 (36.53)

Unemployed 110,158 (15.39) 105,865 (15.80) 4,293 (9.38)

Other 196,209 (27.41) 180,229 (26.89) 15,980 (34.92)

Marital status, N (%)

Married 675,328 (94.32) 631,716 (94.26) 43,612 (95.30) <0.001

Unmarried 24,373 (3.40) 22,481 (3.35) 1,892 (4.13)

Widowed 3,598 (0.50) 3,512 (0.52) 86 (0.19)

Divorced 891 (0.12) 868 (0.13) 23 (0.05)

Other 11,772 (1.64) 11,622 (1.73) 150 (0.33)

Payment method, N (%) <0.001

URBMI 51,228 (7.16) 49,314 (7.36) 1,914 (4.18)

UEBMI 104,193 (14.55) 100,690 (15.02) 3,503 (7.65)

NRCMS 304,449 (42.52) 293,644 (43.81) 10,805 (23.61)

Self-payment 187,422 (26.18) 183,303 (27.35) 4,119 (9.00)

Other 68,670 (9.59) 43,248 (6.45) 25,422 (55.55)

Admission status, N (%) <0.001

Normal 662,469 (92.53) 619,720 (92.47) 42,749 (93.41)

Emergent 42,912 (5.99) 39,953 (5.96) 2,959 (6.47)

Dangerous 10,581 (1.48) 10,526 (1.57) 55 (0.12)

Admission source, N (%) <0.001

Emergency department transfer 10,581 (1.48) 10,526 (1.57) 55 (0.12)

Inpatient admission 12,640 (1.77) 12,533 (1.87) 107 (0.23)

Transfer from other medical facilities 649,829 (90.76) 607,187 (90.60) 42,642 (93.18)

Outpatient department transfer 42,912 (5.99) 39,953 (5.96) 2,959 (6.47)

Gestational diabetes, N (%) <0.001

No 710,780 (99.28) 666,244 (99.41) 44,536 (97.32)

Yes 4,522 (0.63) 3,395 (0.59) 1,127 (2.68)

Premature rupture of membranes, N (%) <0.001

No 698,611 (97.58) 657,599 (98.12) 41,012 (89.62)

Yes 17,351 (2.42) 12,600 (1.88) 4,751 (10.38)

Preeclampsia, N (%) <0.001

No 713,405 (99.64) 668,791 (99.79) 44,614 (97.49)

Yes 2,557 (0.36) 1,408 (0.21) 1,149 (2.51)

Nuchal cord, N (%) <0.001

No 710,498 (99.24) 666,177 (99.40) 44,321 (96.85)

Yes 5,464 (0.76) 4,022 (0.60) 1,442 (3.15)

Incompetent cervix, N (%) <0.001

No 704,349 (98.38) 662,156 (98.80) 42,193 (92.20)

Yes 11,613 (1.62) 8,043 (1.20) 3,570 (7.80)

SD, standard deviation; NRCMS, the new rural cooperative medical scheme; UEBMI, the urban employee basic medical insurance; URBMI, the urban resident basic

medical insurance.
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Variable importance

Figure 3 illustrates the important features for predicting preterm

birth identified by AutoGluon frameworks. We utilized permutation

feature importance to prioritize the variables by their importance in
Frontiers in Pediatrics 05
the FastAl Neural Net model. The top five variables were payment

methods, premature rupture of membrane (PROM), incompetent

cervix, occupation, and preeclampsia. These variables had a more

substantial influence on the model’s accuracy compared to the

other variables in the dataset.
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FIGURE 1

Area under the curve (AUC) for different AutoML frameworks and machine learning models. (A) Raincloud plot of the area under the curve (AUC) for
three AutoML frameworks (Auto-sklearn, AutoGluon, and H2O AutoML). Each raincloud plot panel consists of three components: a jittered dot plot on
the left side, a boxplot in the middle, and a cloud plot of the distribution of AUCs on the right side. (B) Boxplots of AUCs by machine learning models.
GBM: Gradient Boosting Machines; GLM: Generalized Linear Models; KNN: K-Nearest Neighbors; LDA: Linear Discriminant Analysis.

Kong et al. 10.3389/fped.2024.1330420
Discussion

Preterm birth is the primary cause of neonatal death and

disability, and early prediction of preterm birth has great

potential to improve the survival rate of preterm infants (33). In

this study, electronic medical record data from the hospital

discharge database were selected to construct machine learning

model to predict preterm birth. We found that payment

methods, PROM, incompetent cervix, occupation, and

preeclampsia were strongly associated with preterm birth patients.

AutoML has increasingly gain popularity since it substantially

reduces the difficulty of building a machine learning pipeline via

complex, iterative, and time-consuming technical details

including hyperparameter tuning, algorithm selection, or model

evaluation. All these processes are automated within a few lines

of code, so it saves the effort and time of an expensive machine
Frontiers in Pediatrics 06
learning engineer. Our findings revealed that H2O AutoML,

surpassing AutoGluon and Auto-sklearn, achieved reasonably

well predictive performance within a short amount of time

(median train time per model was 0.1 min for over half a million

rows and 12 features).

This study confirmed that PROM and incompetent cervix are

significant risk factors for preterm birth, consistent with previous

research (22, 34). Several mechanisms may explain these

associations. Intrauterine infection or inflammation is believed to

be a major contributing factor to preterm birth PROM,

subsequent preterm birth (35). The cervix is normally closed

during pregnancy, but in cases of incompetent cervix, the cervix

may dilate too early, triggering contractions and labor, which

may lead to preterm birth (36).

The findings in our study show that payment method is

associated with increased risk of preterm birth. The association
frontiersin.org
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TABLE 3 Summary statistics for area under the curve (AUC) for different autoML frameworks and machine learning models.

No. of models Mean SD Percentile

Min 25th Median 75th Max
Overall 105 0.814 0.062 0.508 0.809 0.841 0.846 0.847

A baseline logistic regression 1 0.823 – 0.823 0.823 0.823 0.823 0.823

By AutoML framework
Auto-sklearn 60 0.804 0.053 0.59 0.784 0.82 0.842 0.847

AutoGluon 12 0.786 0.13 0.508 0.834 0.84 0.847 0.847

H2O AutoML 33 0.842 0.008 0.806 0.841 0.846 0.846 0.847

By machine learning models
Deep Learning 22 0.825 0.033 0.724 0.825 0.84 0.841 0.847

GBM/XGBoost 23 0.847 0.001 0.846 0.846 0.846 0.847 0.847

KNN 12 0.684 0.101 0.508 0.634 0.725 0.754 0.791

LDA 10 0.818 0.009 0.805 0.814 0.818 0.823 0.835

Naive Bayes 10 0.794 0.014 0.772 0.784 0.791 0.806 0.814

Random forest/trees 16 0.838 0.009 0.806 0.834 0.842 0.842 0.844

Stacked ensemble 11 0.846 0 0.845 0.846 0.846 0.847 0.847

GLM 1 0.823 – 0.823 0.823 0.823 0.823 0.823

GBM, gradient boosting machines; GLM, generalized linear models; KNN, K-nearest neighbors; LD, linear discriminant analysis.

FIGURE 2

Training time inminutes for different AutoML frameworks andmachine learningmodels. (A) Raincloud plot of training time inminutes (training set sample size
N=536,971) for three AutoML frameworks (Auto-sklearn, AutoGluon, and H2O AutoML). Each raincloud plot panel consists of three components: a jittered
dot plot on the left side, a boxplot in the middle, and a cloud plot of the distribution of AUCs on the right side. (B) Boxplots of training time in minutes by
machine learningmodels. GBM:Gradient BoostingMachines; GLM:Generalized LinearModels; KNN: K-Nearest Neighbors; LDA: Linear Discriminant Analysis.

Kong et al. 10.3389/fped.2024.1330420

Frontiers in Pediatrics 07 frontiersin.org

https://doi.org/10.3389/fped.2024.1330420
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 4 Summary statistics for training time in minutes for different autoML frameworks and machine learning models (training set sample
size N = 536,971).

No. of models Mean SD Percentile

Min 25th Median 75th Max
Overall 105 4.25 5.93 0.01 0.48 1.8 4.55 29.6

By AutoML framework
Auto-sklearn 60 6.81 6.59 1.15 2.02 4.33 10.96 29.6

AutoGluon 12 0.98 1.34 0.01 0.14 0.16 2.23 3.28

H2O AutoML 33 0.48 0.66 0.03 0.06 0.14 0.72 3.14

By machine learning models
Deep Learning 22 1.96 1.45 0.47 0.75 1.36 3.13 4.6

GBM/XGBoost 23 4.56 6.17 0.04 0.11 2.23 6.19 21.54

KNN 12 11.49 10.08 0.01 3.31 11.68 16 29.6

LDA 10 3.44 3.23 1.2 1.27 1.91 4.08 10.83

Naive Bayes 10 2.47 2.25 1.15 1.3 1.49 2.14 8.28

Random Forest/Trees 16 5.31 5.61 0.03 0.16 4.58 7.22 17.37

Stacked Ensemble 11 0.75 1.06 0.06 0.06 0.08 1.35 3.14

GLM 1 0.03 - 0.03 0.03 0.03 0.03 0.25

GBM, gradient boosting machines; GLM, generalized linear models; KNN, K-nearest neighbors; LDA, linear discriminant analysis.

FIGURE 3

Overall feature importance (95% confidence intervals) plots for predicting preterm birth via permutation-shuffling in AutoGluon. PROM: premature
rupture of membranes.
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between payment method and preterm birth is a complex issue.

Research has revealed that socioeconomic status can be a

contributing factor to preterm birth, with women who lack

insurance or have public insurance being more susceptible to
Frontiers in Pediatrics 08
preterm birth compared to those with private insurance (37).

One possible explanation for this correlation is that women with

lower incomes may encounter more obstacles in accessing

healthcare services, including prenatal care, which can elevate the
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risk of preterm birth. Additionally, women with public insurance

may have limited choices in healthcare providers and receive less

comprehensive care. However, it is important to note that the

relationship between payment method and preterm birth is not

entirely straightforward, and other factors, such as age, race/

ethnicity, and marital status, may also play a role. More research

is needed to comprehensively understand the complex factors.

We also observed the association between occupation and the

risk of preterm birth. Specifically, public sectors are more

susceptible to preterm birth than other occupations in China.

One possible reason for this is that the job of a public sector is

demanding and requires them to be constantly engaged in

decision-making, multitasking, and dealing with high levels of

stress. This pressure can take a toll on their mental health,

leading to anxiety, depression, and other mental health issues,

which can lead to preterm birth.
Strengths and limitations

The main strength of this study is the large sample size of over

700,000 women in Shanxi province of China, which enhances the

reliability and statistical power of the models conducted in this

study. Additionally, we evaluate three metrics including the

predictive performance, training times, and feature importance,

which could give medical practitioners and machine learning

engineers a more practical guidelines on choosing the most

appropriate tool to work with. Third, we compared the results of

different AutoML frameworks and machine learning models in

this study, allowing us to precisely identify risk factors for

preterm birth.

Several limitations should be noted. First, our study is an

observational study that depends on secondary data, it is subject

to potential information bias and residual confounding caused by

inaccurate coding, hospital characteristics or unobserved patient.

Second, a predominate proportion of the study participants were

Han Chinese, thus the results cannot be generalized to

populations with different ancestries. Third, since the three

autoML frameworks were independently developed by different

teams with different optimizing philosophies, the type and

number of models implemented in each framework are not

directly comparable.
Conclusion

We employed several popular AutoML frameworks and

machine learning to analyze a large Chinese electronic medical

record database, assessing the risk factors associated with the risk

of preterm birth. Our findings have the potential to screen high-

risk populations for preterm birth in China, which can help

doctors tailor treatments for pregnant women with different risks

of preterm birth.
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