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Biliary atresia (BA) is a severe and progressive biliary obstructive disease in infants
that requires early diagnosis and new therapeutic targets. This study employed
bioinformatics methods to identify diagnostic biomarkers and potential
therapeutic targets for BA. Our analysis of mRNA expression from Gene
Expression Omnibus datasets revealed 3,273 differentially expressed genes
between patients with BA and those without BA (nBA). Weighted gene
coexpression network analysis determined that the turquoise gene coexpression
module, consisting of 298 genes, is predominantly associated with BA. The
machine learning method then filtered out the top 2 important genes, CXCL8
and TMSB10, from the turquoise module. The area under receiver operating
characteristic curves for TMSB10 and CXCL8 were 0.961 and 0.927 in the
training group and 0.819 and 0.791 in the testing group, which indicated a high
diagnostic value. Besides, combining TMSB10 and CXCL8, a nomogram with
better diagnostic performance was built for clinical translation. Several studies
have highlighted the potential of CXCL8 as a therapeutic target for BA, while
TMSB10 has been shown to regulate cell polarity, which was related to BA
progression. Our analysis with qRT PCR and immunohistochemistry also
confirmed the upregulation of TMSB10 at mRNA and protein levels in BA liver
samples. These findings highlight the sensitivity of CXCL8 and TMSB10 as
diagnostic biomarkers and their potential as therapeutic targets for BA.
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Introduction

Biliary atresia (BA) is a severe infantile biliary obstructive disease characterized by

progressive inflammation and fibrosis, with a global annual incidence of 1 in 8,000–

18,000 newborns (1, 2). Without surgery, BA can rapidly progress to end-stage liver

cirrhosis within two years, making it the leading cause of pediatric liver transplants (3).
Abbreviations

AUC, area under the curve; BA, biliary atresia; DEGs, differentially expressed genes; GEO, gene expression
omnibus; GLM, generalized linear models; GO, gene ontology; KEGG, kyoto encyclopedia of genes and
genomes; PPI, protein-protein interaction; qRT-PCR, quantitative real-time PCR; RF, random forest;
RNA-seq, RNA sequencing; ROC, receiver operating characteristic; SVM, support vector machine; TOM,
topological overlap matrix; WGCNA, weighted gene coexpression network analysis; XGB, eXtreme
gradient boosting.
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Kasai portoenterostomy, a surgical procedure that restores bile flow

within 30 days of life, could slow disease progression and prevent the

need for liver transplants (4, 5). However, BA is typically diagnosed

at an average age of 40–50 days, making it challenging to confirm it

in its early stages (6, 7).

The gold standard for diagnosing BA is intraoperative

cholangiography, an invasive, time-consuming, and costly

procedure associated with radiation damage. No clinical, laboratory,

or imaging feature currently allows for the reliable diagnosis of BA

before operation. Among traditional diagnostic methods, liver

biopsy is the most reliable method of pre-laparotomy diagnosis,

with reported diagnostic accuracy ranging from 88.2% to 96.9%

(8, 9). Nevertheless, some histopathological characteristics of biliary

atresia may considerably overlap with those of nonobstructive

etiologies of infantile cholestasis. Improving diagnostic accuracy

would avoid unnecessary diagnostic procedures for a definitive

and early diagnosis. Additionally, despite successful Kasai

portoenterostomy, over 75% of patients with BA eventually require

liver transplantation due to their growing hepatic impairment.

Identifying new therapeutic targets may delay progressive hepatic

dysfunction and decrease the incidence of liver transplantation.

RNA sequencing (RNA-seq) technology has made substantial

advancements over the past several years and has emerged as a

crucial technique for discovering new diagnostic biomarkers and

therapeutic targets (10). Profiling the RNA expression patterns of

BA samples can yield valuable insights into novel biomarkers

that can improve diagnostic accuracy and therapeutic strategies.

We employed Gene Expression Omnibus (GEO) datasets to

obtain mRNA expression profiles of BA liver biopsy samples and

identify the hub gene related to BA. First, we identified

differentially expressed genes (DEGs) between patients of BA and

nBA. Second, the DEGs were then used to determine the gene

coexpression module mostly associated with BA using weighted

gene coexpression network analysis (WGCNA) which is a

powerful bioinformatics method for analyzing gene association

patterns and connecting clinical traits to gene coexpression

modules (11–13). Third, we identified CXCL8 and TMSB10 as the

most crucial genes for BA from the gene coexpression module

through machine learning techniques. Finally, we further validated

the diagnostic potential of TMSB10 and CXCL8. To facilitate

clinical translation, we developed a nomogram that integrates

TMSB10 and CXCL8 to enhance the accuracy of BA diagnosis.
Materials and methods

Dataset collection

The mRNA expression profiles of the training group

(GSE46995) were acquired from the GEO database and then

were normalized and standardized to ensure sample

comparability. The training group included 64 patients with BA

and 21 nBA (normal and intrahepatic Cholestasis). Datasets

GSE122340 (171 BA and 7 normal), GSE221346 (8 BA and 10

intrahepatic cholestasis) and GSE206364 (9 normal and 10

intrahepatic cholestasis) were downloaded from the GEO
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database and then merged into one group, which was further

defined as the testing group (179 BA and 36 nBA).
Differential expression gene analysis

DEGs between patients of BA and nBA were identified from

the mRNA expression profiles of the training group using the

“limma” R package (version 3.52.1). Wilcoxon rank-sum test

was used to verify the mRNA expression difference of each

gene between the BA and the nBA group, and the P < 0.05 and

| Log (fold change) | >0 were chosen as the threshold for

defining DEGs.
Gene coexpression module construction

Gene coexpression modules were constructed with DEGs

using the “WGCNA” R package (version: 1.70-3). The key

steps for creating coexpression gene modules using the

WGCNA were as follows: Firstly, an adjacency matrix,

representing the correlation coefficient matrix between genes,

was established. Secondly, a gene topological overlap matrix

(TOM) was generated based on the adjacency matrix. Thirdly,

the hierarchical clustering tree was produced using hierarchical

clustering for TOM-based dissimilarity (dissTOM), and the

dynamic tree cut method was used to identify the gene

coexpression modules from this tree. Finally, the relationship

between gene coexpression modules and clinical characteristics

was ascertained through Pearson’s correlation analysis,

selecting the most strongly correlated coexpressed gene module

for further investigation.
Identification of hub gene via
machine learning

The DEGs from the key gene modules were employed as

explanatory factors, while the diagnosis of BA or not was the

response variable. The four machine learning algorithms,

support vector machine (SVM) (11), eXtreme Gradient

Boosting (XGB) (12), generalized linear models (GLM) (13),

and random forest (RF) (14, 15) were constructed using

the“xgboost” (version 1.7.5.1), “kernlab” (version 0.9-31), and

“randomForest” (version 4.7-1.1) R packages. To ensure result

comparability, all models were built using default parameters.

Subsequently, the “DALEX” (version 2.4.2) R package was used

to evaluate the machine learning models and determine the

residual distribution of each model. The model with the lowest

residual distribution was selected as the most appropriate. Finally,

the feature importance of the genes for the most appropriate

model was assessed via the permutation importance, and the top

important genes with the highest root mean square error have the

greatest impact on clinical features and were selected as the hub

genes for further study.
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TABLE 1 The primers for target genes.

Gene Forward primer Reverse primer
TMSB10 GAAATCGCCAGCTTCGATAAGG TCAATGGTCTCTTTGGTCGGC

B-ACTIN CAGATGTGGATCAGCAAGCAGGAG AAGCCATGCCAATGAGACTGAGAAG

TABLE 2 The antibody information of the target gene.

Gene Primary antibody Secondary antibody
TMSB10 YT6361 (ImmunoWay), 1/

200 dilution
HRP Goat anti-rabbit IgG H&L
(abs20002), 1/500 dilution

Xu et al. 10.3389/fped.2024.1339925
Nomogram construction and validation

Using “rms” (version: 6.3-0) R packages, our study developed a

nomogram based on gene biomarkers to predict BA via the logistic

regression model. The diagnostic performance of the nomogram

was estimated using the ROC curve and C-index. Additionally,

calibration curves were employed to assess the accuracy between

the observed and predicted rates. The utility of the nomogram

for decision-making was evaluated through decision curve

analysis (DCA) using the “rdma” (version: 1.6) R packages.
Investigation of immune characteristics
related to BA

Based on gene expression profiles, CIBERSORT (16), a flexible

computational algorithm, was used for quantifying the proportions

of 22 types of immunocyte subclusters for each patient with BA

and nBA.
Quantitative real-time PCR

Quantitative real-time PCR (qRT‒PCR) were performed to

detect mRNA expression of TMSB10. Total RNA were separated

by TRIzol reagent (Life Technologies,CA) and was then

convertted into complementary DNA (cDNA) via a reverse

transcriptase kit (Takara Bio Inc., Dalian, China) according to

the manufacturer’s instructions. cDNA was used to perform

qRT-PCR via the SYBR Premix EX Taq kit (Takara Bio Inc.,

Dalian, China) according to the standard protocol. The

primer listed in Table 1 were obtained from PrimerBank

(pga.mgh.harvard.edu/primerbank).
Immunohistochemical staining

Immunohistochemical (IHC) staining were performed to

detect protein expression of TMSB10 using the standard

streptavidin–biotin peroxidase complex (SABC) method. In short,

liver specimens were fixed in 10% neutral formalin, embedded in

paraffin blocks and sliced into 4 um sections. The sections were

dewaxed and rehydrated in graded ethanol concentrations. After

being washed in distilled water, the sections were boiled in

sodium citated buffer for epitope retrieval, treated with 3%

hydrogen peroxide to inhibit endogenous peroxidase and

inclubated with 10% normal serum to block nonsepecific

antibody binding. Next, the sections were successively incubated

with primary antibody overnight at 4°C and secondary antibody
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for 30 min at room temperature. Finally, after been

counterstaineed with 3,3N-Diaminobenzidine Tertrahydrochloride

and hematoxylin, the sections were dehydrated, coverslipped, and

observed with microscope. Base on imageJ software and “IHC

Toolbox” plug-in, the staining intensity were evaluated via avarege

optical density (AOD). The primary and secondary antibodies are

listed in Table 2. Clinical information on patients for RT-PCR and

immunohistochemistry were listed in Supplementary Table S1.
Results

Identification of DEGs between BA and nBA

The analysis flowchart is shown in Figure 1. We analyzed the

mRNA expression profiles of 64 BA and 21 nBA samples,

identifying 3,273 DEGs between them. Among them, 216 genes

were downregulated in BA, while 3,057 were upregulated

(Figure 2A; Supplementary Table S2). The 3,273 DEGs

underwent enrichment analysis to explore the biological

processes involved. GO enrichment analyses revealed that the top

three biological processes were ameboidal-type cell migration,

wound healing, and cell-substrate adhesion. The top three

cellular components included cell-substrate junction, focal

adhesion, and cell leading edge, while the top three molecular

functions were GTPase regulator activity, nucleoside-

triphosphatase regulator activity, and protein serine/threonine/

tyrosine kinase activity (Figure 2B; Supplementary Table S3).

KEGG pathway analysis also highlighted the top five pathways:

Human papillomavirus infection, PI3K-Akt signaling pathway,

Salmonella infection, Focal adhesion, and Endocytosis

(Figure 2C; Supplementary Table S4).
WGCNA identified key gene coexpression
modules related to Ba

Based on the WGCNA method, we used the 3,273 DEGs to

construct gene coexpression modules. The selection of an

optimal soft thresholding power of 9 ensured that the gene

coexpression network was scale-free (Figure 3A). As a result,

four gene coexpression modules emerged: the grey module

(64 genes), brown module (171 genes), blue module (289

genes), and turquoise module (298 genes) (Figure 3B).
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FIGURE 1

Analysis flowchart of our study.

FIGURE 2

The differentially expressed genes (DEGs) between BA and nBA. (A) The heatmap shows the training group’s DEGs between BA and nBA. (B) GO
enrichment analysis for DEGs. (C) KEGG enrichment analysis for DEGs.
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DissTOM was employed to visualize the correlations between

the DEGs (Figure 3C).

We calculated the correlations between BA and these four

modules and demonstrated that the turquoise module (R = 0.7,

P = 5e−14) exhibited the strongest association with BA
Frontiers in Pediatrics 04
(Figure 3D). Besides, the 298 genes in the turquoise module had

a highly positive correlation with BA (R = 0.77, P = 1.6e−59)
(Figure 3E). A protein-protein interactions (PPI) network,

constructed through the STRING database, visualized

interactions among these 298 genes (Figure 3F). The biological
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FIGURE 3

Identification of key gene coexpression modules related to BA using WGCNA. (A) Soft thresholding power (β) was determined as 9 for WAGCA when
the correlation coefficient was set to 0.8. (B) Clustering dendrograms determined four gene coexpression modules using the DEGs. (C) The network
heatmap plot shows the correlation between genes in four modules; darker red indicates a weaker correlation, and light red indicates a greater
significant correlation. (D) The heatmap displays the correlation between the coexpression modules and BA and demonstrates that the turquoise
module (R = 0.7, P= 5e−14) best matched BA. (E) The scatter plot shows the correlation between module membership and gene significance in
the turquoise module. (F) The PPI network visualized interaction among genes in the turquoise module. (G) GO enrichment analysis for genes in
the turquoise module. (H) KEGG enrichment analysis for genes in the turquoise module.
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processes of the genes in the turquoise module were further

investigated via enrichment analyses. The GO enrichment

analyses indicated that the top three biological processes were the

extracellular matrix (ECM) organization, ECM organization, and
Frontiers in Pediatrics 05
external encapsulating structure. The top three cellular

components included collagen-containing ECM, endoplasmic

reticulum lumen, and apical part of the cell. The top three

molecular functions were ECM structural constituent, growth
frontiersin.org

https://doi.org/10.3389/fped.2024.1339925
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 4

Identification of hub genes related to BA using machine learning. (A) Boxplots show that the RF algorithm had less sample residual than XGB, SVM, and
RF. (B) Reverse cumulative distribution of sample residual indicated RF algorithm least residual. (C) Barplot highlights CXCL8 and TMSB10 in the RF
algorithm as the most important genes for BA. (D) The chromosomal locations of CXCL8 and TMSB10. (E) The Drug-Gene Interaction Database
filtered out the potential drugs targeting TMSB10 and CXCL8. (F) qRT-PCR confirmed that TMSB10 mRNA was expressed at high levels in BA liver
samples. (G) Immunohistochemistry demonstrates the high expression of TMSB10 protein in BA liver samples.

Xu et al. 10.3389/fped.2024.1339925
factor binding, and glycosaminoglycan binding (Figure 3G). The

top five enriched KEGG pathways included the Focal adhesion,

PI3K-Akt signaling pathway, human papillomavirus infection,

ECM-receptor interaction, and amoebiasis. (Figure 3H).
Identification of hub genes related to BA via
machine learning

Based on the 298 genes in the turquoise module, we applied

four machine-learning algorithms (XGB, SVM, RF, and GLM) to

establish models and evaluate their performance. The RF model

with the least sample residual was selected (Figures 4A,B).

Subsequently, the RF model identified CXCL8 and TMSB10 as

the top important genes related to BA (Figure 4C). The

chromosomal locations of CXCL8 and TMSB10 are shown in

Figure 4D. We further screened potential drugs targeting

TMSB10 and CXCL8 using the Drug-Gene Interaction database
Frontiers in Pediatrics 06
(DGIdb) (Figure 4E) (17). Previous studies have shown that

CXCL8 is upregulated in the liver of patients with BA and could

serve as a sensitive diagnostic and prognostic biomarker (18, 19).

Our qRT-PCR and IHC experiments also indicated that the liver

of patients with BA expressed higher TMSB10 than patients with

nBA at both mRNA and protein levels (Figures 4F,G).
Validation of diagnostic values of the
hub genes

The ROC curve analysis revealed that TMSB10 (AUC = 0.961,

95%CI: 0.921–1.000) and CXCL8 (AUC = 0.927, 95%CI: 0.848–

1.000) had at least similar diagnostic efficacy than clinical

diagnostic biomarker MMP7 (AUC = 0.919, 95%CI: 0.857–0.981)

(Figure 5A). This diagnostic performance was similarly

confirmed in the testing group, where TMSB10 and CXCL8 were

found to be comparable to or better than MMP7 (Figure 5B).
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FIGURE 5

The diagnostic values of the hub genes. (A) The AUC of the ROC curve for hub genes TMSB10 and CXCL8 in the training group (GSE46995). (B) The
AUC of the ROC curve for hub genes TMSB10 and CXCL8 in the testing group. (C) The nomogram combining hub genes TMSB10 and CXCL8 was built
for better BA clinical diagnosis. (D) The AUC of the ROC for the nomogram in the training group. (E) The calibration curve for the nomogram exhibits
consistency between the predicted and observed probabilities in the training groups. (F) The DCA curve shows the benefits acquired from the
nomogram. (G) The AUC of the ROC for the nomogram in the testing group.
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We constructed a nomogram based on biomarkers genes CXCL8

and TMSB10 in the training group for better BA clinical diagnosis

(Figure 5C). The ROC curve of the nomogram displayed an AUC

of 0.987 in the training group (Figure 5D), indicating its strong

ability to distinguish patients with BA from nBA. Calibration

curves demonstrated outstanding consistency between the

predicted and observed probabilities (Figure 5E). The C-index was

0.987. DCA indicated that patients with BA could benefit from the

nomogram model (Figure 5F). Notably, the AUC of the ROC

curve reached 0.837 in the testing group, indicating that it could

reliably diagnose BA in various populations (Figure 5G).
Investigation of immunological
characteristics related to Ba

CIBERSORT analysis was performed to investigate the

proportions of 22 immunocyte subtypes for each patient with BA
Frontiers in Pediatrics 07
in the training group (Supplementary Figure S1A). Our findings

revealed that patients with BA had significantly higher

proportions of eosinophils and resting memory CD4 T cells but

significantly lower proportions of Treg, CD8T, follicular helper T,

and plasma cells than those with nBA (Supplementary Figure S1B).
Discussion

Biliary atresia (BA) is a progressive fibroinflammatory biliary

obstructive disease and is the predominant reason for pediatric

liver transplants (1). Timely Kasai portoenterostomy could

rapidly restore bile flow, slow the rapid disease course and

prevent the need for liver transplants (20). However, the clinical

features of BA often overlap with other infantile cholestasis

diseases, making it challenging to make a definitive and early

diagnosis (21). The discovery of new biomarkers is essential for

achieving accurate diagnosis and improving patient outcomes.
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In recent decades, RNA-seq technology has become an

indispensable tool for understanding the structure and function

of the genome, identifying genetic networks underpinning

cellular, physiological, biochemical, and biological systems, and

developing molecular biomarkers for disease detection (22, 23).

RNA-seq may provide clues to identify new biomarkers for BA.

Thus, based on the mRNA expression data from BA and nBA

liver biopsy samples from the GEO database, we identified 3,273

DEGs. It was then crucial to filter out several valuable diagnostic

biomarkers from the thousands of DEGs.

Our study used WGCNA to further identify the gene modules

closely related to BA. WGCNA is a regulatory network algorithm

that constructs gene co-expression modules based on scale-free

topology (24, 25). Besides, it could locate co-expression modules

related to clinical features and identify potential disease

biomarkers (26). It has proven to be a robust tool for analyzing

gene expression data and works better than other weighted or

unweighted networks for building gene network structures

(26, 27). In our study, WGNCA categorized the DEGs into four

gene coexpression modules and confirmed that the turquoise

module exhibited the closest association with BA. Furthermore,

enrichment analysis confirmed that genes in the turquoise

module were primarily associated with ECM. Meanwhile, an

imbalance in ECM deposition and breakdown has been

implicated in the pathogenesis and progression of BA (28). Thus,

WGNCA effectively identified the key gene module related to BA.

Machine learning methods offer a powerful means of processing

complex and large genomic datasets, which are challenges for

traditional statistical algorithms (29, 30). These methods have been

widely used to identify novel biomarkers for detecting disease and

predicting treatment response and disease outcome (30). For

instance, based on transcriptomic data, Fortino V et al. identified

potential biomarkers to distinguish allergic and irritant contact

dermatitis (31). Our study also used machine learning algorithms

to isolate diagnostic biomarkers from the gene module related to

BA, identifying two key genes, CXCL8 and TMSB10. External and

internal validations were performed to verify the diagnostic value

and confirmed that CXCL8 and TMSB10 could accurately

diagnose BA. Besides, we developed a nomogram that integrated

CXCL8 and TMSB10, which exhibited higher diagnostic

performance than a single gene and exhibited potential for clinical

translation. Liver biopsy is the indispensable procedure for

acquiring the expression of CXCL8 and TMSB10.

TMSB10 is a small G-actin-binding protein that promotes

depolymerization of intracellular F-actin networks (32, 33).

Amarachintha SP et al. reported that normal and diseased

cholangiocyte-like organoids with normal cell polarity had an

apical expression for F-actin, while depolarized BA cholangiocyte-

like organoids expressed F-actin apically and basolaterally (34),

indicating that TMSB10 may regulate BA cell polarity via F-actin.

Studies have shown that normal cell polarity is essential for proper

bile duct development and function, while the disordered apical-

basal polarity seen in BA contributes to the disease (35, 36). This

suggests the potential of TMSB10 as a therapeutic target for BA.

Previous studies have investigated the relationship between

CXCL8 and BA. Bessho K et al. reported that CXCL8 in the liver
Frontiers in Pediatrics 08
serves as a sensitive diagnostic biomarker, and perturbing the

CXCL8-CXCR2 signature in the murine model could reduce the

course of cholestasis and the risk of biliary obstruction, thereby

increasing the overall survival (37). Leung DH et al. reported that

serum CXCL8 significantly correlates with liver stiffness in BA

and can predict poor clinical outcomes (38). Thus, CXCL8 may be

a diagnostic and prognostic biomarker and therapeutic target for BA.

Our study validated that CXCL8 and TMSB10 can be high-

value hepatic diagnostic biomarkers for BA using bioinformatics

methods. Previous studies have confirmed the diagnostic value of

CXCL8 in serum. Further research is needed to confirm whether

TMSB10 can be a serum diagnostic biomarker. Besides, both

CXCL8 and TMSB10 are potential therapeutic targets, with

CXCL8’s therapeutic potential already supported by prior

research. TMSB10 represents a novel avenue for investigation,

and further experiments will be crucial in unraveling its role in BA.
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group using the CIBERSORT algorithm. (B) The mean relative proportions of
22 immunocyte subtypes between patients with BA and nBA.
References
1. Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E, et al. Biliary
atresia: clinical and research challenges for the twenty-first century. Hepatology.
(2018) 68(3):1163–73. doi: 10.1002/hep.29905

2. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. (2009) 374
(9702):1704–13. doi: 10.1016/S0140-6736(09)60946-6

3. Sundaram SS, Mack CL, Feldman AG, Sokol RJ. Biliary atresia: indications and
timing of liver transplantation and optimization of pretransplant care. Liver
Transpl. (2017) 23(1):96–109. doi: 10.1002/lt.24640

4. Schreiber RA, Barker CC, Roberts EA, Martin SR, Alvarez F, Smith L, et al.
Canadian pediatric hepatology research G. biliary atresia: the Canadian experience.
J Pediatr. (2007) 151(6):659–65. 665.e1. doi: 10.1016/j.jpeds.2007.05.051

5. Fanna M, Masson G, Capito C, Girard M, Guerin F, Hermeziu B, et al.
Management of biliary atresia in France 1986 to 2015: long-term results. J Pediatr
Gastroenterol Nutr. (2019) 69(4):416–24. doi: 10.1097/MPG.0000000000002446

6. Wadhwani SI, Turmelle YP, Nagy R, Lowell J, Dillon P, Shepherd RW. Prolonged
neonatal jaundice and the diagnosis of biliary atresia: a single-center analysis of trends
in age at diagnosis and outcomes. Pediatrics. (2008) 121(5):e1438–40. doi: 10.1542/
peds.2007-2709

7. Hollon J, Eide M, Gorman G. Early diagnosis of extrahepatic biliary atresia in an
open-access medical system. PLoS One. (2012) 7(11):e49643. doi: 10.1371/journal.
pone.0049643

8. Govindarajan KK. Biliary atresia: where do we stand now? World J Hepatol.
(2016) 8(36):1593–601. doi: 10.4254/wjh.v8.i36.1593

9. Lai MW. Challenges in the diagnosis of biliary atresia in cholestatic neonates.
Pediatr Neonatol. (2023) 64(1):3–4. doi: 10.1016/j.pedneo.2022.12.002

10. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic:
promises and challenges. Cancer Lett. (2013) 340(2):284–95. doi: 10.1016/j.canlet.
2012.11.025

11. Steinwart I, Christmann A. Support Vector Machines. New York, NY: Springer
(2008). XVI. p. 603. doi: 10.1007/978-0-387-77242-4

12. Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. Extreme gradient boosting
as a method for quantitative structure-activity relationships. J Chem Inf Model. (2016)
56(12):2353–60. doi: 10.1021/acs.jcim.6b00591

13. Ziegel ER. Generalized linear models. Technometrics. (2002) 44:287–8. doi: 10.
1198/004017002320256422

14. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 10.1023/
A:1010933404324

15. Biau G. Analysis of a random forests model. J Mach Learn Res. (2010)
13:1063–95.

16. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

17. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al.
Integration of the drug-gene interaction database (DGIdb 4.0) with open
crowdsource efforts. Nucleic Acids Res. (2021) 49(D1):D1144–51. doi: 10.1093/nar/
gkaa1084

18. Godbole N, Nyholm I, Hukkinen M, Davidson JR, Tyraskis A, Eloranta K, et al.
Prognostic and pathophysiologic significance of IL-8 (CXCL8) in biliary atresia. J Clin
Med. (2021) 10(12):2705. doi: 10.3390/jcm10122705

19. Dong R, Zheng S. Interleukin-8: a critical chemokine in biliary atresia.
J Gastroenterol Hepatol. (2015) 30(6):970–6. doi: 10.1111/jgh.12900

20. Serinet MO, Wildhaber BE, Broue P, Lachaux A, Sarles J, Jacquemin E, et al.
Impact of age at Kasai operation on its results in late childhood and adolescence: a
rational basis for biliary atresia screening. Pediatrics. (2009) 123(5):1280–6. doi: 10.
1542/peds.2008-1949

21. Brahee DD, Lampl BS. Neonatal diagnosis of biliary atresia: a practical review
and update. Pediatr Radiol. (2022) 52(4):685–92. doi: 10.1007/s00247-021-05148-y

22. Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, et al. Whole
transcriptome analysis with sequencing: methods, challenges and potential
solutions. Cell Mol Life Sci. (2015) 72(18):3425–39. doi: 10.1007/s00018-015-1934-y

23. Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, et al. RNA sequencing:
new technologies and applications in cancer research. J Hematol Oncol. (2020) 13
(1):166. doi: 10.1186/s13045-020-01005-x

24. Chen J, Wang X, Hu B, He Y, Qian X, Wang W. Candidate genes in gastric
cancer identified by constructing a weighted gene co-expression network. PeerJ.
(2018) 6:e4692. doi: 10.7717/peerj.4692

25. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinformatics. (2008) 9:559. doi: 10.1186/1471-2105-9-559

26. Horvath S. Weighted Network Analysis: Applications in Genomics and Systems
Biology. New York, NY: Springer Science & Business Media (2011) XXIII. p. 421.
doi: 10.1007/978-1-4419-8819-5

27. Allen JD, Xie Y, Chen M, Girard L, Xiao G. Comparing statistical methods for
constructing large scale gene networks. PLoS One. (2012) 7(1):e29348. doi: 10.1371/
journal.pone.0029348

28. Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology
to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. (2015) 12
(6):342–52. doi: 10.1038/nrgastro.2015.74

29. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for
biologists. Nat Rev Mol Cell Biol. (2022) 23(1):40–55. doi: 10.1038/s41580-021-00407-0

30. MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome.
(2021) 64(4):416–25. doi: 10.1139/gen-2020-0131

31. Fortino V, Wisgrill L, Werner P, Suomela S, Linder N, Jalonen E, et al. Machine-
learning-driven biomarker discovery for the discrimination between allergic and
irritant contact dermatitis. Proc Natl Acad Sci U S A. (2020) 117(52):33474–85.
doi: 10.1073/pnas.2009192117

32. Yu FX, Lin SC, Morrison-Bogorad M, Atkinson MA, Yin HL. Thymosin beta 10
and thymosin beta 4 are both actin monomer sequestering proteins. J Biol Chem.
(1993) 268(1):502–9. doi: 10.1016/S0021-9258(18)54179-X
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fped.2024.1339925/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fped.2024.1339925/full#supplementary-material
https://doi.org/10.1002/hep.29905
https://doi.org/10.1016/S0140-6736(09)60946-6
https://doi.org/10.1002/lt.24640
https://doi.org/10.1016/j.jpeds.2007.05.051
https://doi.org/10.1097/MPG.0000000000002446
https://doi.org/10.1542/peds.2007-2709
https://doi.org/10.1542/peds.2007-2709
https://doi.org/10.1371/journal.pone.0049643
https://doi.org/10.1371/journal.pone.0049643
https://doi.org/10.4254/wjh.v8.i36.1593
https://doi.org/10.1016/j.pedneo.2022.12.002
https://doi.org/10.1016/j.canlet.2012.11.025
https://doi.org/10.1016/j.canlet.2012.11.025
https://doi.org/10.1007/978-0-387-77242-4
https://doi.org/10.1021/acs.jcim.6b00591
https://doi.org/10.1198/004017002320256422
https://doi.org/10.1198/004017002320256422
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.3390/jcm10122705
https://doi.org/10.1111/jgh.12900
https://doi.org/10.1542/peds.2008-1949
https://doi.org/10.1542/peds.2008-1949
https://doi.org/10.1007/s00247-021-05148-y
https://doi.org/10.1007/s00018-015-1934-y
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.7717/peerj.4692
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1007/978-1-4419-8819-5
https://doi.org/10.1371/journal.pone.0029348
https://doi.org/10.1371/journal.pone.0029348
https://doi.org/10.1038/nrgastro.2015.74
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1139/gen-2020-0131
https://doi.org/10.1073/pnas.2009192117
https://doi.org/10.1016/S0021-9258(18)54179-X
https://doi.org/10.3389/fped.2024.1339925
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Xu et al. 10.3389/fped.2024.1339925
33. Rho SB, Chun T, Lee SH, Park K, Lee JH. The interaction between E-
tropomodulin and thymosin beta-10 rescues tumor cells from thymosin beta-10
mediated apoptosis by restoring actin architecture. FEBS Lett. (2004) 557(1-
3):57–63. doi: 10.1016/s0014-5793(03)01438-8

34. Amarachintha SP, Mourya R, Ayabe H, Yang L, Luo Z, Li X, et al.
Biliary organoids uncover delayed epithelial development and barrier
function in biliary atresia. Hepatology. (2022) 75(1):89–103. doi: 10.1002/hep.
32107

35. Lendahl U, Lui VCH, Chung PHY, Tam PKH. Biliary atresia—emerging
diagnostic and therapy opportunities. EBioMedicine. (2021) 74:103689. doi: 10.1016/
j.ebiom.2021.103689
Frontiers in Pediatrics 10
36. Lemaigre FP. Development of the intrahepatic and extrahepatic biliary tract: a
framework for understanding congenital diseases. Annu Rev Pathol. (2020) 15:1–22.
doi: 10.1146/annurev-pathmechdis-012418-013013

37. Bessho K, Mourya R, Shivakumar P, Walters S, Magee JC, Rao M, et al.
Gene expression signature for biliary atresia and a role for interleukin-8 in
pathogenesis of experimental disease. Hepatology. (2014) 60(1):211–23. doi: 10.
1002/hep.27045

38. Leung DH, Devaraj S, Goodrich NP, Chen X, Rajapakshe D, Ye W,
et al. Childhood liver disease research N. serum biomarkers correlated
with liver stiffness assessed in a multicenter study of pediatric
cholestatic liver disease. Hepatology. (2023) 77(2):530–45. doi: 10.1002/hep.32777
frontiersin.org

https://doi.org/10.1016/s0014-5793(03)01438-8
https://doi.org/10.1002/hep.32107
https://doi.org/10.1002/hep.32107
https://doi.org/10.1016/j.ebiom.2021.103689
https://doi.org/10.1016/j.ebiom.2021.103689
https://doi.org/10.1146/annurev-pathmechdis-012418-013013
https://doi.org/10.1002/hep.27045
https://doi.org/10.1002/hep.27045
https://doi.org/10.1002/hep.32777
https://doi.org/10.3389/fped.2024.1339925
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	Identification of diagnostic biomarkers and potential therapeutic targets for biliary atresia via WGCNA and machine learning methods
	Introduction
	Materials and methods
	Dataset collection
	Differential expression gene analysis
	Gene coexpression module construction
	Identification of hub gene via machine learning
	Nomogram construction and validation
	Investigation of immune characteristics related to BA
	Quantitative real-time PCR
	Immunohistochemical staining

	Results
	Identification of DEGs between BA and nBA
	WGCNA identified key gene coexpression modules related to Ba
	Identification of hub genes related to BA via machine learning
	Validation of diagnostic values of the hub genes
	Investigation of immunological characteristics related to Ba

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


