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Early-life experiences play a crucial role in the development of the fronto-limbic
regions, influencing both macro- and microstructural changes in the brain.
These alterations profoundly impact cognitive, social-emotional functions.
Recently, early limbic structural alterations have been associated with
numerous neurological and psychiatric morbidities. Although identifying
normative developmental trajectories is essential for determining brain
alterations, only a few studies have focused on examining the normative
trajectories in the fronto-limbic regions during preschool-aged children. The
aim of this study was to investigate the structural-developmental trajectory of
the fronto-limbic regions using the cortical thickness, volume, and subcortical
volume in 57 healthy and typical preschool-aged children between 1 and
5 years and examined the early lateralization patterns during the development
of the fronto-limbic regions. Regarding brain lateralization, remarkable
asymmetry was detected in the volume of thalamus and the cortical regions
excluding the lateral orbitofrontal cortex in the fronto-limbic regions. This
study of preschool-aged children may fill the knowledge gaps regarding the
developmental patterns and hemispheric asymmetries of the fronto-limbic
regions between newborns and adolescents.
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1 Introduction

Brain development is a complex process that includesmicro- andmacrostructural changes

(1, 2), accompanied by regional structural brain changes. Structural cortical development

begins in the fetal and changes significantly throughout life, overlapping nonlinear

trajectories (3, 4). Cortex maturation involves its integration into the higher-order brain

areas such as the frontal cortices following the development of lower-order somatosensory

and visual cortices. This leads to an intricate and asynchronous developmental pattern, with
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the sequence influenced by phylogenetic factors and anatomical

location (5). These brain morphological and microstructural changes

can be indirectly quantified through MRI (6–8).

Cortical volume generally follows a logarithmic growth pattern

in most regions over the preschool-aged range, reflecting the

maturation and organization of neural connections and

structures that underpin cognitive development (9). However,

frontal and cingulate brain regions followed a quadratic

trajectory with peak volume values obtained around 5–6 years

of age (10). The phenomenon of cortical thinning is closely tied

to the concept of neural connections such as synaptic pruning

and intracortical myelination (2, 11). The development

trajectories of cortical thickness differ across the brain in their

functions and locations. The pattern of cortical thickness

development in chronological development shows the largest

peak at 1–2 years of age (12), followed by a logarithmic

decreasing pattern in most regions until 6 years of age (13).

However, that of several regions in the frontal and posterior

regions exhibited increasing pattern, following a quadratic

trajectory during childhood (10, 14).

The age of 1–5 years is considered a critical period for the

emergence and development of various cognitive functions, with

dynamic brain structural changes (15). The fronto-limbic regions

were established and evolved into a crucial neural network as a

critical process in early neurodevelopment (16). The period from 1

to 5 years old holds significance as it coincides with the emergence

and initial refinement of the fronto-limbic circuit (17, 18).

Moreover, it is the time when numerous developmental, behavioral,

and intellectual disorders are thought to initially manifest (19, 20).

Social cognitive functions are shaped by the neural network

structure of the fronto-limbic regions, which is organized through

complex interconnections between the frontal and subcortical

regions (21). Although cognitive development is better understood

through systemic changes in functional connectivity among various

core regions (22), it is important to note that the fronto-limbic

regions significantly contribute to diverse cognitive processes such

as executive functions, decision-making, attention, and emotional

regulation. Of note, many of the socio-emotional disorders are

believed to arise during early neurodevelopment (19, 23) and are

likely to be associated with or caused by abnormal cortical

development of the fronto-limbic regions (24).

The early development of brain lateralization exhibits a

multivariate nature, influenced by various exogenous factors, and

raises questions regarding the generalizability of early brain

lateralization patterns (25–27). The lateralization of the fronto-

limbic regions appears to be organized for specialization in

processing social information and emotional functioning in both

children (28) and adults (29). Our previous study demonstrated the

altered asymmetry of neonatal brain in the fronto-limbic regions

connection is associated with social–emotional scores at 18 months

of age, using diffusion tensor imaging tractography and structural

network analysis. Alterations in lateralization within the frontal

cortex, specifically related to reduced asymmetry in cortical

thickness, could play a significant role in the early onset of autism

spectrum disorder (ASD) in childhood (30). Greater asymmetry of

the anterior cingulate correlated with a higher score inattention
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subscale of Barratt Impulsiveness Scale in adult patients with

personality disorder than healthy controls (23). Recent studies show

that an abnormal asymmetry in cortical thickness and volume may

be linked to various neuropsychiatric conditions, such as attention

deficit hyperactivity disorder (11, 31), schizophrenia (32, 33), and

autism spectrum disorder (11). Understanding the developmental

trajectory of cortical asymmetry and its regional variations may

contribute to identifying deviations that may be associated with

neurodevelopmental disorders or cognitive impairments.

Although brain lateralization of cortical volume (19, 34) and

thickness (35, 36) has been extensively studied over the past few

years, the intricate patterns of lateralization in children across the

fronto-limbic regions remain a complex issue that has not been

fully elucidated. The direction and magnitude of lateralization in

the fronto-limbic regions during critical stages of childhood, as an

evolutionary adaptation, remain unclear. Furthermore, owing to the

challenges associated with acquiring and processing infant brain

MRI data, our understanding of the evolving patterns of cortical

volume and thickness and the age-related change in hemispheric

lateralization is currently limited.

We investigated the structural-developmental trajectory and early

lateralization patterns of the fronto-limbic regions by measuring the

cortical thickness, volume, and subcortical volume in typically

developing preschool-aged children aged between 1 and 5 years.
2 Materials and methods

2.1 Clinical characteristics

Eighty healthy and typically developing children aged 1–5 years

were recruited from Hanyang University Hospital in Seoul, Korea

(Supplementary Figure S1). Children who underwent a detailed

neurological examination and developmental assessment

conducted by a pediatrician at the Hanyang Inclusive Clinic for

Developmental Disorders were recruited for this study between

2018 and 2021. The Institutional Review Board of Hanyang

University Hospital approved the protocol and scanning

procedures of this study, and informed consent was obtained

from the parents of all children participating in the study.

Developmental screening was performed during a routine health

checkup using the Korean-Developmental Screening Test

(K-DST) for children at the Hanyang University Medical Center

Pediatrics Department. Children with developmental scores

within 2 standard deviations of the mean on all subscales of the

K-DST were included. We excluded 3 preschool-aged children

with signs of developmental delay and known risk factors for

abnormal development, such as complications during pregnancy,

a family history of psychiatric or neurological disorders,

pervasive developmental disorders, congenital malformations,

chromosomal anomalies, and neurological events or disorders

(e.g., head trauma or epilepsy). Also, 20 children were excluded

from image quality check analysis due to motion artifacts and

poor image quality. Finally, we used data from 57 children aged

14–71 months (Table 1).
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TABLE 1 Participant demographic information.

Age 1
(n= 7)

Age 2
(n= 15)

Age 3
(n = 14)

Age 4
(n = 11)

Age 5
(n= 10)

p-value LSD

Mean scan age, months 18.00 ± 3.16 30.53 ± 3.91 40.64 ± 3.73 54.09 ± 2.98 64.80 ± 2.86 <0.001 1 < 2 < 3 < 4 < 5

Male (%) 4 (57.1) 11 (73.3) 12 (85.7) 6 (54.6) 8 (80.0) 0.398

Birth weight (g) 3,387.14 ± 670.52 2,864.00 ± 690.55 2,754.29 ± 767.41 3,137.27 ± 253.70 3,197.00 ± 412.37 0.130

Maternal age 30.29 ± 4.35 34.73 ± 3.03 34.36 ± 5.00 33.64 ± 3.85 32.00 ± 5.01 0.151

Data are represented as the mean ± standard deviation, and significant group differences (p < 0.05) are highlighted in bold.

LSD, least significant difference.
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2.2 MRI acquisitions

Individuals underwent a 3 T MRI scan (Philips, Achieva,

16-channel phase-array head coil, Best, Netherlands) without

sedation. On T1-weighted images, the single-shot three-

dimensional echo-planar images were acquired using the following

parameters: slice thickness = 1 mm, voxel sizes = 0.9mm2, field of

view = 224 mm2, repetition time = 8.3 ms, echo time = 4.6 ms,

inverse time = 1 ms, and flip angle = 8°. The slice orientation was

axially parallel to the anterior-posterior commissure line.
2.3 Image preprocessing

Automated reconstruction and segmentation of T1-weighted

images were conducted using FreeSurfer version 7.2.0. This

pipeline enables motion correction, automated Talairach

transformation, non-brain tissue removal, signal intensity

normalization, automated topological defect correction,

subcortical segmentation, and cortical parcellation. To reduce the

influence of low-frequency signal intensity nonuniformity when

generating the original surface, bias field estimation was

performed on the T1-weighted images using the N4 bias field

correction of Advanced Normalization Tools (37). The cerebral

cortex was parcellated into 68 anatomical regions (34 bilateral

regions) according to the Desikan-Killiany Atlas.
2.4 Image quality check

Due to the challenges associated with cortical surface parcellation

in the developing brain, two independent researchers conducted

automatic and manual quality assessments in five steps on all

reconstructed imaging data (Supplementary Figure S2). The initial

visual inspection categorized motion artifacts, ghosting, and ringing

in the raw imaging data into three ratings: good, moderate, and bad

(38–40) (Supplementary Figure S3). Of these, data in the bad ratings

was excluded from further processing.

Given the rapid and considerable development of the brain

during preschool-aged children, special consideration is essential to

examine the contrast imaging and brain morphology in preschool-

aged children (26). In this study, we identified the remaining

images that underwent visual assessment using Quality Assurance

(QA) tools and ENIGMA (Enhancing Neuro Imaging Genetics

through Meta-Analysis) algorithms, generating quantitative and

qualitative information regarding the image quality. The two

automatic assessments are as follows: First, all subcortical
Frontiers in Pediatrics 03
segmentation of regional volumes was evaluated through the QA

tools to identify the potential outliers at the individual level within

the population. Second, we plotted the cortical surface

segmentation to provide qualitative information by combining

snapshots of inner and outer slices through ENIGMA algorithms.

Additionally, errors with brain segmentation may arise because

of inaccuracies in children’s white matter (WM) intensity during

intensity normalization. To avoid this, we used control points

manually to regulate the WM hypointensities for identified

subjects, keeping it within the range of 80–110 (27). Finally, to

maximize accuracy, two independent researchers conducted

visual inspections of the reanalyzed images to select the final set

of images for inclusion.
2.5 Image processing

Preschool-aged children with neurological disorders, history of

neurological or psychiatric disorders, or negative results on brain

MRI were excluded. Our study focuses on the most relevant

regions of interest, specifically within the fronto-limbic neural

circuitry. The 11 regions of interest were chosen based on

previously identified areas associated with executive function,

decision-making, attention, and emotion regulation (16, 41, 42).

The region of interest (ROI)s used in this study were the 11

fronto-limbic regions: the subcortical regions of the thalamus,

amygdala, and hippocampus; the rostral anterior cingulate cortex

(rostral ACC), caudal anterior cingulate cortex (caudal ACC) and

posterior cingulate cortex (PCC) through the medial and lateral

orbitofrontal cortex (medial OFC and lateral OFC); and the

superior temporal gyrus (STG), inferior parietal cortex (IPC),

and fusiform. ROI approach was used to extract the fronto-

limbic regions according to the Desikan-Killiany Atlas. As a

significant correlation was observed between the regional volume

measurements and the estimated total intracranial volume

(eTIV), all the regional volumes were divided by eTIV, and

multiplied by 1,000 to normalize the individual variations in

skull size to reduce interindividual variation and minimize subtle

distortions in brain imaging. The relative volume was determined

as follows:

Relative volume ¼ Region of interest
eTIV

� 1, 000

For cortical thickness, we analyzed the widely used absolute

value and obtained the relative cortical thickness for each area of
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the brain by dividing it by the mean cortical thickness within the

same hemisphere.

Relative thickness ¼ Region of interest
Mean thickness
2.6 Statistical analysis

To evaluate corticalmaturationwith age between 1 and 5 years, we

used a generalized additive model (GAM) adjusting for sex to detect

nonlinear patterns between age and brain measures. The GAM is

ideal for addressing the internal dependency structure of the data,

including regional correlations in volume and thickness, as well as

potential non-Gaussian distributions (43, 44). GAM effectively

captures nonlinearities and variations, allowing for flexible and

precise estimation of nonlinear effects. We have applied the GAM

model to investigate the relationship between cortical measurements

and age (in months) over a 5-year period. This method is

particularly valuable for analyzing the rapid developmental changes

in preschool-aged children, where complex nonlinear patterns arise

due to both macrostructural and microstructural brain changes. The

R package (45) was used to visualize the non-linear trajectory across

all ages. Additionally, we evaluated the Bayesian information

criterion to identify the most parsimonious model fit. For multiple

comparisons, the significant p-value was adjusted using FDR-

corrected across eight brain regions for cortical thickness and eleven

brain regions for volume, respectively.

An asymmetry index (AI) was calculated to characterize

lateralization during cortical maturation, determining the

thickness and volume of 11 fronto-limbic brain regions for each

individual. The following equation was used:

AI ¼ (Left� Right)
(Leftþ Right)

TheAI values of the twomeasureswere analyzedusing a slidingwindow

approach with age to identify the specific age intervals of significant

asymmetric cortical development. By ordering the participants

according to the number of months, the average AI at 12-month

intervals was calculated. The Wilcoxon signed-rank test (46) was used

to measure the level of left-right lateralization of the groups, with the

null hypothesis centered on an asymmetric mean of zero.
3 Results

3.1 Brain tissue volumes

The sample (n = 57) in this study was included 41 male and 16

female. Supplementary Figure S4A shows the eTIV of the five age-

groups. The eTIV exhibited an increasing pattern from 1 to 5 years.

No significant year-by-year change was observed among 5 groups,

aged 1 to 5 years (p = 0.180, p = 1.000, p = 0.213, and p = 0.756,

respectively). However, significant difference was observed

between the ages 1 and 4 years and between the ages 1 and
Frontiers in Pediatrics 04
5 years (p = 0.023 and p = 0.049, respectively). The relative and

absolute values (original volume × 1,000/eTIV) of the five groups

in the total gray matter, subcortical gray matter, cerebral cortex,

and cerebral WM. They are shown in Supplementary Figure S4B

and Table S1, respectively.
3.2 Maturation trajectories of the fronto-
limbic volume and thickness

To characterize maturation in the fronto-limbic thickness

and volume from 1 to 5 years, GAM models were fit to the data. In

relative cortical volume, we found that cortical volume followed

diverse trajectories with gradual increases throughout the fronto-

limbic regions (Supplementary Figures S5A,B). Additionally, growth

curves in relative cortical thickness showed a progressive decreasing

pattern compared to cortical volume across age (Supplementary

Figure S6). Also, the subcortical volume was found to increase over

the preschool-aged range (Supplementary Figure S5C).

The results of GAM models revealed that the effective degree of

freedom (edf) values, which indicate model complexity, were

significantly correlated with age in some brain regions in cortical

thickness, and subcortical volume (Figure 1). We observed that the

cortical thickness revealed significantly decreasing pattern in the

right rostral ACC (edf = 1.0, F = 6.906, p = 0.032); medial OFC

in both the left (edf = 1.839, F = 11.88, p < 0.001) and right

(edf = 1.792, F = 6.542, p = 0.016) hemispheres; and an increasing

pattern in the right STG (edf = 2.651, F = 4.56, p = 0.032).

Subcortical volume, which is significantly pronounced

in preschool-age children in the right hippocampus (edf = 1.0,

F = 11.65, p = 0.006), and amygdala in both the left (edf = 1.0,

F = 10.74, p = 0.022) and right (edf = 1.0, F = 19.04, p = 0.001)

hemispheres. The edf results and statistical values of each brain

region are shown in Supplementary Tables S2 and S3.
3.3 Asymmetries of the fronto-limbic
volume and thickness

Figure 2 provides a schematic analysis of average brain asymmetries

across all children. Left-ward asymmetry in cortical volume was

observed in the STG, rostral ACC, and fusiform. Conversely, right-

ward volume asymmetry was found in the IPC, caudal ACC, PCC,

and medial OFC (Figure 2A). In terms of cortical thickness,

conspicuous left-ward lateralization was evident in most of the

fronto-limbic regions, except for the STG and rostral ACC

(Figure 2B). Regarding the volume of subcortical regions, the

thalamus and hippocampus showed prominent left-ward asymmetry,

while the amygdala revealed right-ward asymmetry (Figure 2C).
3.4 Age-related structural asymmetries of
the fronto-limbic volume and thickness

The differences between the left and right hemispheres in age-

related asymmetries are shown in Figure 3 and Table 2. Significant
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FIGURE 2

Average asymmetries of the fronto-limbic regions. (A) Population average regional asymmetries of cortical volume. (B) Population average regional
asymmetries of cortical thickness. (C) Population average regional asymmetries of subcortical volume. Colors indicate the directions of average
interhemispheric differences, with pink indicating left-ward asymmetry (i.e., a greater left-ward than right-ward measure), and green indicating
right-ward asymmetry (i.e., a greater right-ward than left-ward measure). ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; OFC,
orbitofrontal cortex; STG, superior temporal gyrus; IPC, inferior parietal cortex; fusiform, fusiform gyrus.

FIGURE 1

Effective degree of freedom (edf) values of brain regions showing significant correlations between brain measures and age (months). The edf reflects
the degrees of curvature of smooths: (A) edf values for cortical volume, (B) edf values for cortical thickness, and (C) edf values for subcortical volume.
Edf = 1 indicates a linear relationship; edf > 1 signifies more intricate associations between brain measures and age.

Lee et al. 10.3389/fped.2024.1362409
left-ward asymmetry of cortical volume was observed in the rostral

ACC (p = 0.021), STG (p = 0.038), and fusiform (p = 0.020).

In contrast, right-ward volume asymmetry was observed in

the caudal ACC (p = 0.011), PCC (p = 0.041), medial OFC

(p = 0.023), and IPC (p = 0.021) before the age of 5 years

(Figure 3A). In cortical thickness, the PCC (p = 0.039), IPC

(p = 0.047), and fusiform (p = 0.016) showed considerable left-

ward lateralization before the age of 5 years (Figure 3B).

Meanwhile, apparent asymmetry was not noted in the cortical
Frontiers in Pediatrics 05
thickness or volume of the lateral portions of the OFC. The

volume of the subcortical regions in the thalamus was revealed

(p = 0.027) (Figure 3C).
4 Discussion

This study revealed the normative trajectory and emergence of

structural asymmetry in the fronto-limbic regions of preschool-
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FIGURE 3

Sliding window analysis of normalized brain asymmetry. (A) Analysis of cortical gray matter volume asymmetry. (B) Analysis of cortical thickness
asymmetry. (C) Analysis of subcortical gray matter volume asymmetry. All the points exhibit the asymmetry index calculated for each region within
the sliding window analysis; positive score indicates left-ward asymmetry (Red point and arrow represent significant left asymmetry), while
negative score indicates right-ward asymmetry (Blue point and arrow represent significant right asymmetry). ACC, anterior cingulate cortex; PCC,
posterior cingulate cortex; OFC, orbitofrontal cortex; STG, superior temporal gyrus; IPC, inferior parietal cortex; fusiform, fusiform gyrus; FDR,
false discovery rate; LSD, least significant difference.

Lee et al. 10.3389/fped.2024.1362409
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TABLE 2 Sliding window analysis of the fronto-limbic asymmetry.

ROI Volume Thickness

Asymmetry Initial point (month) FDR Asymmetry Initial point (month) FDR
Rostral ACC Left 19.5 0.021 NA NA NA

Caudal ACC Right 25.5 0.011 NA NA NA

PCC Right 32.5 0.041 Left 40.5 0.039

Medial OFC Right 33.5 0.023 NA NA NA

Lateral OFC NA NA NA NA NA NA

STG Left 25.5 0.038 NA NA NA

IPC Right 19.5 0.021 Left 21.5 0.047

Fusiform Left 28.5 0.020 Left 27.5 0.016

Thalamus Left 23.5 0.027

Hippocampus NA NA NA

Amygdala NA NA NA

Data are represented as significant initial points were defined by FDR corrected p < 0.05.

ROI, region of interest; FDR, false discovery rate; NA, not available; ACC, anterior cingulate cortex; PCC, posterior cingulate cortex; OFC, orbitofrontal cortex; STG, superior temporal gyrus;

IPC, inferior parietal cortex; fusiform, fusiform gyrus.

Significant differences between the two hemispheres (p < 0.05) are highlighted in bold.
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aged children. Our study showed age-related variations in brain

volume and thickness within distinct regions of the fronto-

limbic. Cortical thinning of the bilateral medial OFC and right

rostral ACC was significantly observed during preschool

childhood. Additionally, our findings indicate a significant

increase in bilateral amygdala and right hippocampus volume

among preschool children, following an upward linear pattern.

Regarding brain lateralization, remarkable asymmetry was

detected in the volume of thalamus and the most of cortical

regions excluding the lateral OFC. These results on typical brain

development offer valuable insights for the timing of the fronto-

limbic neurodevelopmental trajectory.

Our study demonstrated a progressive annual thinning of most

fronto-limbic regions between the ages of 1 and 5. This observation

aligns with previous research findings regarding the changes in

cortical thickness during early childhood (10, 47). Cortical

thinning is linked to intricate processes such as synaptic pruning

and intracortical myelination (2, 48). Across early childhood, this

phenomenon is considered a normal aspect of brain maturation

(49). Of the fronto-limbic regions, our result revealed that

cortical thickness of the bilateral medial OFC and right rostral

ACC exhibited significant decreases with age. The cortical

thickness of medial OFC stands out as the earliest region to

reach its peak at the second year of age (12, 50), following a

logarithmic decrease until 6 years of age (8). Interestingly, a

study comparing developmental changes in children with ASD

identified significant alterations in the cortical thickness of the

medial OFC compared to healthy and typical children (51).

These findings may suggest the importance and potential role of

the medial OFC trajectory in delineating early growth in healthy

and typical children, and emphasize the medial OFC as an

indicator of neurodevelopmental disorders and normal early

development. Additionally, STG in cortical thickness has been

showed notable positive relationships with age in preschool

children. The reason for these trends is unclear, but it could

indicate a simultaneous logarithmic increase in cortical

maturation and adjacent WM myelination from 1 to 6 years

of age (8).
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With the gray matter volume, there was significant association

between age and the relative volume of the bilateral amygdala

until 5 years of age, with steep positive association with age.

A previous study involving 1–6-year-old children showed

evidence of a significantly accelerating trend in amygdala volume

at 4–5 years (12). Furthermore, another study focusing on

individuals aged 8–30 demonstrated a consistent linear increase

in amygdala volume with age (52). Considering that the most

rapid and dramatic changes in subcortical volume occur during

childhood (4), this study suggests that the observed increase in

volume, reflecting amygdala maturation, may mark a pivotal

point in functional significance from a typical preschool-age-

related morphometric pattern.

Other than increased volume and thinned thickness, structural

lateralization is a multifaceted phenomenon that facilitates effective

information processing (25). The early stages of brain lateralization

are closely tied to the subsequent maturation of specific cognitive

and socio-emotional functions (25). Although various studies have

investigated the asymmetric changes in the cerebral cortex across

the lifespan (10, 53, 54), they have not identified the specific

time points at which age-related changes in the brain thickness

and volume of the fronto-limbic regions. We explored the

asymmetry in volume and thickness within the fronto-limbic

regions across ages. This study revealed that most fronto-limbic

regions display a noticeable emergence of cortical volume

asymmetry before the age of 5 years. This observation suggests

that establishing lateralization in these regions may constitute a

crucial structural and functional development stage. Regarding

cortical volume, left-ward prominence was observed in the STG

at the age of 2–3 years. During the early fetal development,

specifically between 20 and 28 gestational weeks, right-ward

volume asymmetry in the STG was evident in the specific

posterior regions near the lateral temporal gyrus (55). However,

the STG typically exhibits left-ward hemispheric volume

asymmetry in both children and adults (54, 56). The results of

this study suggest an asymmetric shift in the STG around 2–3

years of age; this may suggest a period of important change in

cortical volume lateralization, shifting the right hemisphere to
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the left hemisphere. Moreover, the significant left-ward

lateralization of the rostral ACC corresponds with the results of

previous studies examining childhood (10) and adolescence (57),

suggesting that structural and functional development can occur

early after birth.

The majority of the fronto-limbic regions demonstrate

asymmetric development in cortical volume before the age of 5,

whereas significant asymmetry in cortical thickness is observed

exclusively in the PCC, IPC and fusiform. The PCC is located in

the medial portion of the inferior parietal lobe and is connected

to the parietal lobe (58), where it receives information from it

(59). The significant lateralization of the IPC and PCC is

consistent with the functional development of the human brain,

in which the sensory-motor systems are located posteriorly and

mature before executive functions (5). Interestingly, the cingulate

cortex, which is highly cytoarchitectonically and anatomically

heterogeneous area (60, 61), exhibited different asymmetries in

the same internal structures (62). Previous study found that

brain metabolite ratios and types influenced gray matter

development in adolescents (63). These are believed to indicate

that the manifestation of divergent metabolite patterns influences

gray matter development, leading to diverse asymmetries within

specific internal structures (ie. caudal, rostral, and posterior).

Notably, they revealed that cognitive variations, attributed to

differences in both the types and levels of metabolites, became

apparent in the PCC (63). On the other hand, the OFC did not

show significant asymmetries in both cortical volume and

thickness during childhood. These findings suggest that the

frontal lobe undergoes a more prolonged maturation process

involving both functional and structural reorganizations than the

executive functions; moreover, functional specialization of the

frontal lobe, marked by the emergence of cortical asymmetry,

may signify a significant developmental milestone after

preschool-aged children.

For subcortical volume asymmetry, our study demonstrated

that the thalamus had significant left-ward asymmetry in

preschool-aged children (age: 2 years), which is remarkably

consistent in the left hemisphere from birth to adulthood (25,

64). Meanwhile, a study between childhood and adolescents with

ASD identified atypical right-ward asymmetry in the thalamus as

an important region underlying the anatomical basis of social

deficits (65). These inconsistent findings may be related to

alterations in the subcortical-cortical relays, potentially leading to

changes in functional connectivity and thereby impacting social

interactions (24). Although the generalizability of thalamic

asymmetry has not been fully explored, this study highlights the

importance of early stages in the structural and functional

development of the thalamus in brain lateralization for

developmental milestones.

In conclusion, we quantitatively analyzed trajectories of the

cortical thickness, cortical volume and subcortical volume.

Furthermore, we identified the emergence point of brain

lateralization in the fronto-limbic regions during preschool-aged

children. These findings suggest that the fronto-limbic structures

of the preschool-aged period may be potentially associated with

the cognitive and socio-emotional development in subsequent
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stage. Given that the fronto-limbic regions are closely associated

with various neurodevelopmental disorders, identifying its

trajectories and asymmetries provides critical insights regarding

clinical development for preschool-aged children.
5 Limitation

This study has several limitations that should be addressed in

future research. First, this study had a small sample size and

analyzed a cross-sectional scan along with non-uniform sample

sizes across different age groups, which may restrict the

interpretation of the results. Second, a potential concern for our

study is the use of FreeSurfer standard templates in preschool-

aged children, which may result in inaccuracies in segmentation

and parcellation. We should interpret our FreeSurfer analysis

results in preschool-aged children with caution and consider

using pediatric-specific tools or templates in future studies.

Third, cognitive development is more effectively explained by

systematic changes among various core regions than by the

maturation of individual core structures. Hence, further study

would be needed for a network-based approach, elucidating the

maturational changes in structural connectivity by exploring the

maturation of different core regions. Finally, analyzing cortical

volume, thickness and subcortical volume as indicators of brain

structure may not be sufficiently comprehensive in capturing the

complexity of maturation that occurs in early childhood.

Therefore, neuroimaging studies including various aspects of the

brain metrics such as surface area, curvature and gyrification

would be more valuable to achieve a comprehensive

understanding the mechanisms of brain development.
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