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Two compound heterozygous
variants in the CLN8 gene are
responsible for neuronal
cereidolipofuscinoses disorder
in a child: a case report
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Background: Neuronal Ceroid Lipofuscinosis (NCL) disorders, recognized as the
primary cause of childhood dementia globally, constitute a spectrum of genetic
abnormalities. CLN8, a subtype within NCL, is characterized by cognitive decline,
motor impairment, and visual deterioration. This study focuses on an atypical
case with congenital onset and a remarkably slow disease progression.
Methods: Whole-genome sequencing at 30× coverage was employed as part of
a national genomics program to investigate the genetic underpinnings of rare
diseases. This genomic approach aimed to challenge established classifications
(vLINCL and EPMR) and explore the presence of a continuous phenotypic
spectrum associated with CLN8.
Results: The whole-genome sequencing revealed two novel likely pathogenic
mutations in the CLN8 gene on chromosome 8p23.3. These mutations were
not previously associated with CLN8-related NCL. Contrary to established
classifications (vLINCL and EPMR), our findings suggest a continuous
phenotypic spectrum associated with CLN8. Pathological subcellular markers
further validated the genomic insights.
Discussion: The identification of two previously undescribed likely pathogenic
CLN8 gene mutations challenges traditional classifications and highlights a
more nuanced phenotypic spectrum associated with CLN8. Our findings
underscore the significance of genetic modifiers and interactions with unrelated
genes in shaping variable phenotypic outcomes. The inclusion of pathological
subcellular markers further strengthens the validity of our genomic insights. This
research enhances our understanding of CLN8 disorders, emphasizing the need
for comprehensive genomic analyses to elucidate the complexity of phenotypic
presentations and guide tailored therapeutic strategies. The identification of new
likely pathogenic mutations underscores the dynamic nature of CLN8-related
NCL and the importance of individualized approaches to patient management.
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1 Introduction

Neuronal Ceroid Lipofuscinosis (NCL) disorders are the most

common neurodegenerative diseases in childhood, and are

reported as the leading cause of childhood dementia worldwide

(1, 2). The higher prevalence of selected forms of NCL in

restricted geographic areas is historical and might reflect early

progress in molecular diagnosis in some countries (3).

Epidemiological data indicates an incidence of about 1/1,000,000

(4), and the estimated total incidence ranges from 0.01 to 9 per

100 000 live births (5, 6).

Ceroid-lipofuscinosis, neuronal 8 (CLN8) belongs to the NCL

disorders and predominantly affects the central nervous system,

leading to progressive cognitive decline, motor impairment, and

visual deterioration. Initial descriptions of CLN8 delineated two

clearly distinct phenotypes. The late infantile Turkish variant

(vLINCL) represents the most severe form, typically initiating

between 2 and 7 years (7, 8). Affected patients develop

myoclonic epilepsy and ataxia, accompanied by developmental

regression leading to the loss of the ability to walk and talk.

Cognitive capacity progressively declines in this form and

affected individuals rarely survive beyond late childhood or early

adolescence (7). Northern epilepsy or progressive epilepsy with

mental retardation (EPMR) is the less severe form of the disease,

characterized by recurrent seizures (9). It usually does not

present myoclonus or visual failure, unlike vLINCL. The usual

onset occurs between 5 and 10 years. As the disease advances,

affected individuals develop ataxia, other motor dysfunctions,

and a gradual decline in cognitive abilities (9, 10). EPMR has a

much slower course, and patients usually live longer than those

with vLINCL (11).

The genetic basis of CLN8 involves loss-of-function mutations

in the CLN8 gene, located on chromosome 8p23.3, which encodes a

transmembrane endoplasmic reticulum protein. The function of

the CLN8 protein has yet to be entirely elucidated, but it is

required for the endoplasmic reticulum-to-Golgi transfer of

lysosomal enzymes. CLN8 deficiency leads to depletion of soluble

enzymes in the lysosome, thus impairing lysosome biogenesis

and leading to a lysosomal storage disorder (12). It has been

demonstrated that CLN8 protein forms a complex with the

product of CLN6, another gene whose loss of function is

associated with NCL, necessary to recruit lysosomal enzymes and

promote their Golgi transfer (13). Apparently, the knockdown of

CLN8 led to an increase in the size of the Golgi apparatus, the

number of mobile vesicles, and the velocity of endo-lysosomes,

alongside significant lysosomal alkalinization in CLN8-deficient

cells (14). Also, these findings (14) indicate that CLN8 deficiency

is involved in atrophy, shortening, and degeneration of the

neural dendritic tree. These suggest that the abnormalities

induced by CLN8 deficiency in the basal endo-lysosomal system

underlie morphological changes in neurons that ultimately

contribute to the characteristic neurodegeneration observed in

this NCL.

Despite classically defined age windows, an increasing

number of patients demonstrate variable progression and

onset age, even within the same family (15–17). This clinical
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variation is typically attributed to patients’ genetic background

[i.e., modifier genes (15)] and the severity of causal mutations.

Recently, mutations in unrelated genes have been considered

modifiers of gene expression, and interactions between

mutated genes and modifiers can lead to clinical variations

and observed phenotypic heterogeneity (1). Rare cases with

CLN8 pathogenic variants report congenital presentations or

symptoms onset in the first year of life, as well as

presentations deviating from previous NCL paradigms, such as

the absence of myoclonic seizures or visual sensory loss (10,

18, 19). These reports further suggest a continuous spectrum

of phenotypes, a phenotypic heterogeneity associated with

CLN8 instead of a clear distinction between EPMR and

vLINCL (20, 21).

Here, we present a congenital case of CLN8 with a very slow

disease progression confirmed by pathologic subcellular markers.

Whole genome sequencing (WGS) revealed the diagnosis in the

context of a national genomics academic program.
2 Case report

The patient is a ten-year-old Uruguayan male, son of non-

consanguineous parents, with no relevant family or perinatal

history. In the neonatal stage, he presented sucking disorders,

which led to malnutrition in the first trimester of life. He

presented developmental compromise from an early age,

achieving cephalic support at nine months and independent

standing at three years of age, without ever having acquired

independent walking or oral language. He never presented a

loss of acquired maturational behaviors. At ten years of

age, he presents a severe intellectual deficit and autism

spectrum disorder (ASD), characterized by limited

communicative intention and visual contact with frequent

manual stereotypies (flapping).

At three years of life, he started with epilepsy in the form of

asymmetric and alternating hemibody focal tonic seizures,

occasionally evolving to generalized clonic seizures, always of short

duration. He never presented with myoclonic seizures. Since the

onset of seizures, he has always presented several seizures per

week, with a poor response to multiple antiepileptic drugs

(valproic acid, levetiracetam, phenobarbital, clobazam, cannabis).

Physical examination showed a normal head circumference

without dysmorphic features, poor eye contact, and frequent

manual stereotypies. He presented nonparetic hypotonia with

normal osteotendinous reflexes and a plantar cutaneous reflex in

bilateral flexion.

A first brain magnetic resonance imaging (MRI) was

performed at two years of age, which was normal. An additional

brain MRI was done at nine years of age, which showed

cerebellar and mild cerebral atrophy (Figure 1). A basic

metabolic study was performed, which included normal urine

organic acids and normal blood amino acids. Transferrin

isoelectrophoresis was normal. Visual and auditory evoked

potential tests at the age of 3 years were normal. Multiple

electroencephalograms (EEG) have been performed since age
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FIGURE 1

Brain MRI. (A) Sagittal T1 sequences at two years old, and (B) nine years old. Progressive cerebellar and discrete cerebral atrophy are observed.
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three, showing a poorly organized and slow background rhythm

with focal activity in different topographies. No EEG with low-

frequency photic stimulation was conducted.

Karyotyping and array comparative genomic hybridization

were normal.

He did not receive any other pharmacological treatments. Since

infancy, he has been receiving speech and occupational therapy,

with limited progress in cognitive domains. The child attends a

particular education school.

Although the first clinical manifestations occurred

congenitally and the child has achieved few developmental

milestones throughout his life, there was no progression of the

condition beyond the appearance of his epilepsy, behaving

almost statically.
3 Methods

3.1 Standard protocol approvals and patient
consents

This project was approved by the Ethics Committee from the

Institut Pasteur de Montevideo (IP011-17/CEI/LC/MB). Written

informed consent was obtained from the patient’s guardians.
3.2 Whole genome sequencing and
bioinformatics analysis

We carried out the WGS of the patient with paired-end reads

protocol on a Hiseq X ten Illumina sequencer (30x, 150PE), with

an average depth of ∼70×. The quality of reads was analyzed

using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/), and they were mapped onto the human reference genome

(GRCh37) using BWA (22). Only unique reads mapping in proper

pairs were further considered. Variant calling was performed using
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GATK (best practices) (23), and ANNOVAR (24) was used for

annotation. The mitochondrial genome was also analyzed using

MToolBox for mapping, haplogroup prediction, variant calling

and annotation, and heteroplasmy estimation. More details are in

the Supplementary Material.

Sanger sequencing was used to confirm the mutations in the

index case.
3.3 Electron microscopy

Microscopic analysis of ultrastructural patterns of cellular

deposits helps categorize patients into possible NCL subtypes, as

lipopigment morphotypes generally strongly correlate with

genotype (2). Skin biopsy (punch) was performed and fixed in a

mixture of 2.5% glutaraldehyde, 2% formaldehyde, 0.1 M sodium

cacodylate buffer, pH 7.4, 2 hs at room temperature. More details

are in the Supplementary Material.
4 Results

4.1 Two compound heterozygous variants
are likely causative of the patient’s
phenotype

WGS delivered 785.952.690 paired reads that passed the QC

controls. 753.615.267 reads (95.89%) were mapped onto the

reference genome (GRCh37), and 729.372.752 reads (92.80%)

were properly paired.

The data showed two variants in trans within the CLN8 gene

(Figure 2). One allele harbors the variant chr8:1728651, C/T

(NM_018941:exon3:c.C779T:p.Pro260Leu), which has been

reported in heterozygosity in 1000G, ExAC and gnomAD

databases in 6, 31 and 78 individuals, respectively, resulting in

allele frequencies of 0.00119808, 0.0003 and 0.0007, respectively
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FIGURE 2

IGV view of the reads mapping onto the CLN8 gene (partial view). The two compound heterozygous variants are located (1728651 and 1728654). Blue
and red bars mark the presence of a single nucleotide variant allele in the reads (light blue and red horizontal bars). Not all reads are shown (the
coverage for the two variants is 35x). Reference genomic and protein sequences are shown below. The two variants are always in different reads,
being aligned to different chromosomes (compound heterozygosity).
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(Figure 2, left variant). Several physico-chemicals in silico scores

classified this variant as pathogenic (PolyPhen (25), SIFT (26),

MutationTaster (27), FATHMM (28)), and it has a CADD (29)

Phred meta predictor value of 21. Conservation scores were all

high (LRT (30), GERP (31), phyloP (32)).

The other allele harbors the variant chr8:1728654, T/C

(NM_018941:exon3:c.T782C:p.Val261Ala) that was previously

reported in heterozygosity in only three individuals in the

gnomAD database with a population frequency of 0.00001193

(Figure 2, right variant). In silico scores also classify this variant

as deleterious (PolyPhen, Sift, MutationTaster, FATHMM) and

its CADD score is 15.65. Additionally, this Val261Ala variant

alters the first amino acid of the signal peptide 261-VDWNF-265

of CLN8 protein, which is necessary for its transport from the

endoplasmic reticulum to the Golgi apparatus (12). The

Pro260Leu variant, referred to as first, alters the amino acid

immediately upstream of this signal sequence since the two

variants are in adjacent codons.

Both mutations have been submitted to ClinVar under

accession numbers SCV004697978 (February 29th, 2024) and

SCV004697994 (March 4th, 2024), respectively.

The two variants found can be classified as likely pathogenic

according to ACMG criteria: i. Pro260Leu missense variant has

low frequency (Pathogenic Moderate rule 2; PM2), detected in

trans with another likely pathogenic mutation (PM3), is a

missense variant in a gene where missense variants are a

common mechanism of disease (Supporting pathogenic rule 2;

PP2) (8). Additionally, multiple lines of evidence of in silico
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scores support a deleterious effect (PP3); the patient’s

phenotype is highly specific for a disease with a single gene

etiology (PP4). Integrating all rules, 2 PM and 3 PP, leads to a

likely pathogenic classification. This variant has been reported

in Clinvar with conflicting interpretations of pathogenicity,

but mostly as a variant of uncertain significance (https://www.

ncbi.nlm.nih.gov/clinvar/variation/205196/); ii. Val261Ala

missense variant can also be classified as likely pathogenic

with the same rules applied. This variant has been reported in

Clinvar in a few patients and is always classified as a variant

of uncertain significance (https://www.ncbi.nlm.nih.gov/

clinvar/variation/1000047/). We have identified the two

variants in compound heterozygosity with additional data to

consider them as likely pathogenic mutations.
4.2 Electron microscopy

Skin biopsy analysis has become the most common

pathological diagnostic tool for NCL and a range of other

childhood neurodegenerative diseases, where abnormal

accumulation of macromolecular material is a prominent feature

and a pathogenic hallmark (33). In CLN8-related cases, electron

microscopy usually reveals storage material adopting curved

profiles attached to the membrane, fingerprints, and limited

deposition areas of osmiophilic granular material (34, 35). In the

present patient, only granular osmiophilic deposits (GROD) were

observed (Figure 3) despite performing additional deeper sections.
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FIGURE 3

Electron microscopy. Abnormal intracellular deposits were observed in the skin’s hypodermal fibroblast, consistent with the diagnosis of GRODs.
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5 Discussion

We present a new case of NCL caused by two previously

unreported likely pathogenic mutations in the CLN8 gene. The

patient had an atypical presentation, being congenital but with a

very slow progression of the disease, an observation that supports

a relatively broad spectrum of presentation of NCL types.

Epilepsy is common to all forms of NCL (1). While generalized

epileptic seizures [Generalized tonic-clonic seizure (GTCS),

myoclonic, atonic, or absence] are present in all known cases of

CLN8, focal seizures, as reported in our case, have been

infrequently documented. It is also noteworthy that spontaneous

myoclonus was absent in our case. Myoclonus is a typical feature

of NCL, although there are reports of cases lacking this type of

crisis. As observed in our case, the EEG shows a progressive

slowing of the background rhythm, along with interictal

discharges, including slow spike-wave or polyspike-wave

complexes (20). A characteristic feature of the EEG in NCL

patients is the paroxysmal response to spike-wave, evoked by

intermittent low-frequency photic stimulation (1–3 Hz) (1, 36).

However, different types of NCL show varying susceptibility to

photoparoxysmal response (2). Unfortunately, performing a low-

frequency photic stimulation EEG in our case was impossible.

The progression and severity of deterioration vary widely and

generally parallel to the overall course of the disease (20). In the

present case, it has been congenital and very slowly progressive,

simulating a non-progressive course. Behavioral phenotypes with

ASD features have also been reported before (2, 36).

Heterozygous variations in CLN8 have been proposed to confer

increased susceptibility to ASD (37).

Brain MRI may appear normal in the early stages of the disease.

Cerebellar atrophy has become a consistent feature over time and is

present in our patient at age 9, affecting both the vermis and

cerebellar hemispheres as previously described (2, 36).

Supratentorial cerebral atrophy is often observed but could be a

late feature, as in our patient (20). A relevant aspect of this

clinical case is two MRIs separated seven years from each other,

in which progressive brain atrophy is not observed. As we
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already mentioned, we did not observe neurological clinical

progressivity either.

Treatment is symptomatic and multidisciplinary, focusing on

providing the best quality of life (1, 38). Some pharmacological

treatments are in preclinical studies: AMPA receptor modulator

therapy (ZK-187638), retigabine, insulin-like growth factor 1, as

well as gene therapy (vectors-Amicus Therapeutics’ AAV9-

CLN8) (11, 16). Stem cell therapy in mouse and dog models of

CLN8 led to CLN8 expression in the spinal cord but not in the

CNS (11). Most of these therapies in development are potentially

disease-modifying, meaning they may delay or even halt disease

progression, but few are likely to reverse the disease, even

partially. Therefore, early diagnosis and treatment will become

increasingly crucial as these damage-limiting interventions

become available (16). Reports on life expectancy and mortality

in NCL are scarce. Variability within each form, even in CLN8,

does not allow precise life expectancy predictions in individual

patients. Over the last two decades, generally longer survival has

been observed in patients with many forms of NCL, regardless of

mutation severity. Such findings can largely be attributed to

improved care for these patients (1).

Ultrastructural examination through skin biopsy remains

useful for confirming genetically undiagnosed atypical forms (2).

In this case, it was motivated by the variants detected in the

CLN8 gene after WGS analysis. Results showed typical findings,

consisting of abnormal accumulation of macromolecular material.

To date, ClinVar reports eight missense, 14 frameshifts, 21

nonsense, and one splice site CLN8 mutations classified as

pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on

26th February 2024). Studies have also been published reporting

those mutations associated specifically with CLN8 disorder

(accessible through the NCL resource https://www.ucl.ac.uk/ncl-

disease/). According to the numbers obtained from ClinVar,

missense mutations appear to be an unusual or under-detected

cause in CLN8-related disorders.

A close inspection of the substitutions also supports

pathogenicity considerations of the patient’s variants. First, Pro260

is a strictly conserved residue, probably due to a stabilizing role of
frontiersin.org
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the C-terminus of an alpha helix in its cytoplasmic face, just after the

transmembrane segment (39–41). The Pro260Leu substitution may

imply a conformational distortion of the protein, affecting its

dimerization (42) and hence its downstream actions, which

include exporting protein products to the lysosome (12). Second,

the effect of the Val261Ala mutation may be less dramatic, yet

changing the start of the 261VDWNF265 motif, an export signal

from the endoplasmic reticulum to the Golgi (43). In line with a

recessive inheritance pattern and the fact that the parents are

healthy, we surmise that both variants compromise the protein

function. Cascading effects at the molecular and cellular level

would result from expressed pools of proteins carrying one or the

other mutation.

The discovery of these two missense variants in a new case of

NCL expands the repertoire of reported variants associated with

this disorder, providing insights into the intricate nature of

phenotypic presentations in CLN8. Functional studies providing

evidence of a loss of function effect of the two variants are

needed, and the impact of specific missense mutations in the

product of CLN8 deserves further investigation. Defining genetic

(and eventually epigenetic) variation that impacts CLN8 function

will be essential to understanding the increasingly complex

relationships between NCL genotype and phenotype and

advancing treatment options (15).
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