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Acid base and metabolic
parameters of the umbilical cord
blood and cerebral oxygenation
immediately after birth
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Objective: Aim was to investigate whether acid-base and metabolic parameters
obtained from arterial umbilical cord blood affect cerebral oxygenation after
birth in preterm neonates with respiratory support and in term neonates
without respiratory support.
Study design: This was a post-hoc analysis of secondary outcome parameters of a
prospective observational study including preterm neonates with and term neonates
without respiratory support. Non-asphyxiated neonates with cerebral oxygenation
measured with near-infrared spectroscopy during the first 15 min and with blood
gas analyses from arterial umbilical cord blood were included. Arterial oxygen
saturation (SpO2) and heart rate (HR) were monitored with pulse oximetry. Potential
correlations were investigated between acid-base and metabolic parameters
(pH-value, bicarbonate, base-excess, and lactate) and crSO2/cFTOE5 min after birth.
Results: Seventy-seven neonates were included: 14 preterm neonates with
respiratory support (mean gestational age [GA] 31.4 ± 4.1 weeks; mean birth
weight [BW] 1,690± 640 g) and 63 term neonates without respiratory support
(GA 38.7 ± 0.8 weeks; BW 3,258±443 g). Mean crSO2 5 min after birth was
44.0%± 24.2% in preterm and 62.2%± 20.01% in term neonates. Mean cFTOE
5 min after birth was 0.46± 0.06 in preterm and 0.27 ±0.19 in term neonates. In
preterm neonates with respiratory support higher lactate was significantly
associated with lower crSO2 and SpO2 and tended to be associated with higher
cFTOE. In term neonates without respiratory support no significant correlations
were found.
Conclusion: In non-asphyxiated preterm neonates with respiratory support,
lactate levels were negatively associated with crSO2 and SpO2, whereas in
term neonates without respiratory support no associations were observed.

KEYWORDS
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1 Introduction

The transition from fetus to newborn represents a highly complex physiological

process (1). Initial clinical assessment of the newborn is routinely performed using the

Apgar score introduced by Virginia Apgar in 1953 (2). Especially in preterm infants,

monitoring by pulse oximeter and/or electrocardiogram is recommended to ensure

continuous monitoring of heart rate (HR) and arterial oxygen saturation (SpO2) (3–5).
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However, brain monitoring is not routinely used yet, even though

the brain is the organ, which might be mostly affected by hypoxia.

Brain function of the newborn immediately after birth is usually

assessed just by clinical evaluation of muscle tone and reflexes (3).

Monitoring systems such as Doppler ultrasonography and

electroencephalography are of limited value due to their lack of

feasibility during immediate neonatal transition (3, 6). Near-infrared

spectroscopy (NIRS) represents a method with increasing

importance to measure cerebral oxygenation. Based on different

absorption spectra of oxygenated and deoxygenated hemoglobin

regarding the emitted infrared light, relative changes of these

parameters can be measured and cerebral regional oxygen saturation

(crSO2) can be derived. Further, cerebral fractional tissue oxygen

extraction (cFTOE) can be calculated using the equation

(SpO2-crSO2)/SpO2 (7). This non-invasive continuous monitoring

of crSO2 represents a mixed arterial, capillary, and particularly

venous saturation and reflects the balance between oxygen supply

and oxygen consumption of the brain (6, 8). Within the first

minutes after birth, crSO2 has been shown to rise to a plateau earlier

than peripheral arterial oxygen saturation in term infants, even if the

data on this is not fully conclusive (8, 9). In addition, crSO2-guided

therapy in extremely immature neonates results in a significant

reduction in cerebral hyperoxia and hypoxia, although this is not

associated with a significantly lower incidence of death and brain

injury (8, 10, 11).

crSO2 depends on cerebral blood flow (CBF), which is a result of

cerebral perfusion pressure (CPP) and cerebral vascular resistance

(CVR), on cerebral oxygen consumption (cVO2) and on arterial

oxygen content (CaO2), which mainly depends on arterial oxygen

saturation and hemoglobin level (Hb). Several of these parameters

are influenced by acid-base balance (pH, HCO3, BE and lactate) (12).

Acid-base parameters of arterial umbilical cord blood such as

pH, HCO3, BE and lactate provide information about the metabolic

status of neonates at birth. Severe metabolic acidosis—defined by a

pH below 7.0 and a base deficit above 12 mmol/L—is associated

with increased neonatal mortality and morbidity (13). Acid-base

parameters obtained from venous umbilical cord blood show higher

pH values than arterial umbilical cord blood due to the placental

origin, whereas samples from heel capillary blood usually indicate

lower pH values than arterial umbilical cord blood because of poor

peripheral microcirculation (14–16).

The aim of the present study was to analyze the possible impact

of acid-base status, measured from a blood sample of the umbilical

artery at birth on cerebral oxygenation 5 min after birth in non-

asphyxiated preterm neonates with respiratory support and in

stable term neonates without respiratory support.
2 Material and methods

2.1 Design

This was a post-hoc-analysis of secondary outcome parameters

of prospective observational studies conducted from October 2015

to September 2018 at the Division of Neonatology, Department of

Pediatrics and Adolescent Medicine, Medical University of Graz,
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Austria. The Regional Ethics Committee approved the study and

written parental consent was obtained before birth (EC number:

27–465 ex 14/15).
2.2 Inclusion and exclusion criteria

Pretermneonates with respiratory support and stable termneonates

without respiratory support delivered by Cesarean section, who were

included in the prospective observational study were eligible. Neonates

with missing data of the monitoring parameters or acid-base and

metabolic parameters were excluded. Neonates with major congenital

malformations, and laboratory signs of asphyxia (umbilical artery

pH <7.0, BE >12 mml/L or Lactate >2.9 mmol/L) were excluded.
2.3 Measurements during immediate
transition

After delivery, the neonates were immediately taken to the

resuscitation desk and placed supine under an overhead heater.

Plastic wraps were used to prevent hypothermia in preterm

neonates <29 weeks’ gestation. Neonatal stabilization was

performed according to neonatal resuscitation guidelines (4, 5)

by specialized resuscitation teams (neonatologist/experienced

resident and nurse) who were not involved in the study.

Respiratory support was provided by continuous positive airway

pressure or positive pressure ventilation using a T-piece device

(Neopuff Infant Resuscitator, Fisher & Paykel Healthcare,

Auckland, New Zealand). Oxygen levels were titrated according

to neonatal resuscitation guidelines (4, 5). SpO2 and HR were

monitored by a pulse oximetry probe (IntelliVue MP30 Monitor,

Philips, Amsterdam, The Netherlands) placed around the right

wrist/hand. CrSO2 was measured using an INVOS 5100 monitor

(Covidien, Minnesota, USA) with a neonatal sensor fixed on the

left forehead of each neonate. Averaging time of SpO2, HR and

crSO2 was 8 s and values were stored every second. cFTOE was

calculated with the following formula: (SpO2-crSO2)/SpO2.

Cerebral oxygenation was monitored during the first 15 min after

birth. Measurements were recorded by the multi-channel system

alpha-trace digital MM (BEST Medical Systems, Vienna, Austria)

for subsequent analyses. The acid-base and metabolic parameters

from arterial umbilical cord blood were analysed with a blood

gas analyser (ABL 800 Flex; Fa.Drott, Wiener Neustadt, Austria).
2.4 Statistical analysis

Demographic and clinical data are presented as mean ±

standard deviation (SD) or median with interquartile range

(IQR), as appropriate. Data of preterm neonates with respiratory

support and term neonates without respiratory support were

compared using t-test for independent samples, Mann-Whitney-U

or Chi-square test as appropriate.

Mean of values of minute 5 after birth of SpO2, HR, crSO2 and

cFTOE values were correlated to pH, bicarbonate (HCO3), base
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excess (BE) and lactate using Spearman’s rank correlation

coefficient or Pearson’s correlation, as appropriate. This time-

point was chosen to be close to the blood sample time-point.

The analyses were performed in an explorative sense. Therefore,

no correction for multiple testing was performed.

A p-value <0.05 was considered statistically significant. The

statistical analyses were performed using IBM SPSS Statistics

27.0.0 (IBM Corporation, Armonk, NY, USA).
3 Results

Out of 224 eligible neonates 77 were included (Figure 1): 14

preterm neonates with respiratory support and 63 stable term
FIGURE 1

Patient flow diagram. NIRS, near infrared spectrometry.
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neonates without respiratory support. Most neonates were

excluded due to missing NIRS data at minute five or missing

acid-base and metabolic parameters of umbilical artery.

Demographic data of preterm and term neonates are

presented in Table 1.

Concerning monitoring parameters (Table 1) preterm neonates

receiving respiratory support showed significantly lower values of

crSO2 and SpO2 and higher values in cFTOE than term neonates

without respiratory support, whereas there was no statistically

significant difference in HR. Besides lactate levels, which were

statistically significantly higher in preterm neonates with

respiratory support, no statistically significant differences were

observed regarding pH, HCO3 or BE between the two

groups (Table 1).
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TABLE 1 Demographics, monitoring data 5 min after birth and acid base
metabolism of the umbilical artery in preterm neonates with respiratory
support and stable term neonates without respiratory support.

Preterm
(n = 14)

Term
(n = 63)

p-value

Demographics Gestational age
(weeks)

31.4 ± 4.1 38.7 ± 0.8 <0.001

Birth weight (g) 1.690 ± 640 3.258 ± 443 <0.001

Female sex (%) 4 (29) 24 (38) 0.693

Apgar 1 min 8 (6.75–8) 9 (9–9) <0.001

Apgar 5 min 9 (8–9) 10 (10–10) <0.001

Apgar 10 min 9 (9–9.25) 10 (10–10) <0.001

Monitoring SpO2 (%) 66 ± 12 83 ± 9 <0.001

Pulse (bpm) 148 ± 16 154 ± 17 0.275

CrSO2 (%) 44.0 ± 24.2 62.2 ± 20.01 0.012

FTOE 0.46 ± 0.2 0.27 ± 0.19 0.011

pH 7.32 ± 0.06 7.32 ± 0.03 0.815

Acid-base
metabolism

Bicarbonate
(mmol/L)

22.9 ± 2.5 23.0 ± 1.20 0.839

Base excess
(mmol/L)

0.70 ± 2.89 1.37 ± 1.55 0.418

Lactate (mmol/L) 2.6 ± 1.5 1.7 ± 0.42 0.012

Data are presented as mean values ± SD or median (IQR). SpO2, arterial oxygen

saturation; CrSO2, cerebral regional oxygen saturation; FTOE, fractional tissue

oxygen extraction.
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In preterm neonates with respiratory support lactate levels

correlated significantly negatively with crSO2 and SpO2 5 min after

birth (Table 2). In term neonates no correlations were observed.
4 Discussion and conclusion

In the present study we have demonstrated that crSO2 and

SpO2 5 min after birth were associated with lactate levels in

compromised preterm neonates with respiratory support, whereas

in stable term neonates without respiratory support no

associations were observed. In addition, lactate in preterm

neonates also tended to be associated with cFTOE. Apart of

lactate no further parameters of acid-base status were associated

with SpO2, HR, crSO2 or cFTOE, neither in preterm neonates

with respiratory support nor in stable term neonates.

SpO2 represents the percentage of hemoglobin saturated with

oxygen in peripheral arterial blood (17). Our findings regarding
TABLE 2 Correlation analyses of SpO2, pulse, CrSO2 and FTOE measured 5 min
and in preterm neonates with respiratory support and stable term neonates

pH Bicarbo

r p-value r
Preterm (n = 14) SpO2 0.402 0.154 0.051

HR −0.167 0.644 −0.248
crSO2 0.461 0.131 0.344

FTOE −0.38 0.279 0.003

Term (n = 63) SpO2 −0.008 0.952 0.104

HR −0.118 0.368 −0.112
crSO2 0.085 0.515 0.139

FTOE −0.19 0.147 −0.133

SpO2, arterial oxygen saturation; CrSO2, cerebral regional oxygen saturation; FTOE, fr

*p-value <0.05.
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SpO2 values in term neonates 5 min after birth are consistent

with those of Rabi et al. (18), who described median SpO2 values

of 81% (75–83).

Lactate is produced as a metabolite in anaerobic glycolysis and

is elevated in case of impaired cellular oxygenation (19). The

correlations in the present study were observed despite the fairly

narrow lactate range within the study population with values

<2.9 mmol/L. Similar findings with negative correlations between

lactate levels obtained from capillary blood and crSO2 and with

positive correlations between lactate levels and cFTOE in preterm

neonates 15 min after birth were published by Mattersberger

et al. (20) as well as by Janaillac et al. (21) in extremely preterm

infants in the first 72 h after birth. The observed correlations

could be explained by the fact that lactic acidemia induces

pulmonary vasoconstriction and decreases cardiac stroke volume

as a result of impaired cardiac contractility (22). Subsequently,

low cardiac output leads to reduced oxygen supply of peripheral

tissue and diminished peripheral oxygen saturation. The

association between elevated lactate levels and poor

hemodynamics has also been described in previous studies

(23, 24). Considering lactate as a parameter of hemodynamics,

the observed association between lactate levels and cerebral

oxygenation may reflect impaired cerebrovascular autoregulation

in preterm neonates. Intact cerebrovascular autoregulation allows

constant CBF over a wide range of blood pressure, resulting in

CBF independency of CPP. Impaired cerebrovascular

autoregulation leads to a pressure-dependent CBF due to its

linear correlation with CPP, resulting in deleterious CBF

fluctuations in response to CPP variations (12, 25–28). Several

studies have already indicated impaired cerebrovascular

autoregulation in compromised preterm neonates (25–27, 29–33).

Considering that in the present study cFTOE also tends to be

associated with lactate in preterm neonates, low crSO2 may not

only be a result of diminished oxygen content -in terms of low

SpO2-, but also due to increased oxygen extraction in the

cerebral microcirculation. In contrast, studies of infants

diagnosed prenatally with congenital heart disease (34) and of

critically ill neonates and of infants without cerebral damage (35)

do not indicate associations between lactate levels and cerebral

oxygenation. However, they showed negative correlations between

cerebral oxygenation and SpO2. Since these studies included
after birth with umbilical artery pH, bicorbonate, base excess and lactate
without respiratory support.

nate Base excess Lactate

p-value r p-value r p-value
0.863 0.013 0.964 −.540* 0.046

0.489 −0.367 0.267 0.146 0.687

0.273 0.253 0.428 −0.589* 0.044

0.994 −0.039 0.914 0.59 0.073

0.423 0.145 0.261 0.112 0.393

0.398 −0.149 0.256 0.257 0.052

0.290 0.085 0.514 0.024 0.854

0.316 −0.068 0.603 0.077 0.566

actional tissue oxygen extraction.
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cerebral oxygenation measurements beyond the immediate fetal to

neonatal transition and differentiation between preterm and term

neonates was not considered, the differences in their findings

could be result of a better cerebral autoregulation.

As far as other acid-base and metabolic parameters are concerned,

these were slightly more alkaline compared to previous publications,

which mostly included neonates born by vaginal delivery (19, 36).

This is most probably due to the effect that neonates with laboratory

signs of asphyxia were excluded, since we wanted to analyse the

effect of blood gases and lactate in non-asphyxiated neonates.

Furthermore, differences might be due to differences in the

metabolic stress of the fetus caused by repeated uterine contractions

during vaginal delivery (19) and Cesarean section.

Measurement of umbilical cord blood pH, HCO3 and BE

provides essential information about acid-base metabolism and

extrauterine adaption of newborns (13). In accordance to the

present study no correlations between crSO2 and pH were found

in children during cardiopulmonary bypass surgery (37), in

infants diagnosed prenatally with congenital heart disease during

the first 72 h (34) and in stable preterm neonates in neonatal

intensive care (38). HCO3 is the physiologically most important

buffer system in the human body (39). BE is used for

quantification of changes in metabolic acid-base status and

together with umbilical artery pH it is crucial to estimate the risk

for newborn cerebral damage (40, 41). Mattersberger et al. (20)

indicated positive correlations between HCO3 measured 15 min

postnatally and cFTOE in term neonates and correlations of

lower pH and BE also measured 15 min postnatally with lower

crSO2 and higher cFTOE in preterm neonates. A point of

innovation of the present study compared to Mattersberger et al.

is the fact that by using umbilical cord blood the blood sampling

is immediately after birth and might help to predict changes in

the transition period and especially predict cerebral oxygenation

in this vulnerable period (42). Furthermore capillary blood gas

measurements do not always predict arterial blood gas values in

an accurate way (13). In contrast, neither in stable preterm

neonates in neonatal intensive care (38) nor in critically ill

neonates and infants without cerebral damage (35) correlations

were found between crSO2 and BE. Aldrich et al. (43) showed,

that crSO2 is positively correlated with pH and negatively with

BE shortly before birth and negative correlations between crSO2

and BE and HCO3, respectively were reported by Nissen et al.

(44) in term-born infants with hypertrophic pyloric stenosis. A

possible explanation of the differences to our findings are

different study populations, comorbidities but also the fact, that

in contrast to the present study, blood gas analysis were obtained

from capillary blood. Samples obtained from arterial blood or

umbilical cord blood tend to have more alkaline pH values than

those of capillary blood (45). The present study was a post-hoc-

analysis with all its inherent limitations. The small sample size of

preterm neonates with respiratory support and possible

interactions between the investigated acid-base and metabolic

parameters and cerebral oxygenation mark further shortcomings.

However, the described correlations in preterm neonates could

be interpreted as an impaired cerebral autoregulation and are

therefore an important finding.
Frontiers in Pediatrics 05
In conclusion, in non-asphyxiated preterm neonates with

respiratory support lactate levels were significantly associated

with crSO2 and SpO2, whereas in stable term neonates without

respiratory support no associations were observed.

Future studies will be necessary to evaluate causal relationships

between acid-base and metabolic parameters and cerebral

oxygenation during the period of transition from fetal to

neonatal life.
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