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Inborn errors of immunity with
susceptibility to S. aureus
infections
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1Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
2Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology
and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular
in patients with an underlying medical condition. It is equipped with a large
variety of virulence factors enabling both colonization and invasive disease.
The spectrum of manifestation is broad, ranging from superficial skin
infections to life-threatening conditions like pneumonia and sepsis. As a major
cause of healthcare-associated infections, there is a great need in
understanding staphylococcal immunity and defense mechanisms. Patients
with inborn errors of immunity (IEI) frequently present with pathological
infection susceptibility, however, not all of them are prone to S. aureus
infection. Thus, enhanced frequency or severity of S. aureus infections can
serve as a clinical indicator of a specific underlying immunological impairment.
In addition, the analysis of immunological functions in patients with
susceptibility to S. aureus provides a unique opportunity of understanding the
complex interplay between staphylococcal virulence and host immune
predisposition. While the importance of quantitatively and qualitatively normal
neutrophils is widely known, less awareness exists about the role of specific
cytokines such as functional interleukin (IL)-6 signaling. This review
categorizes well-known IEI in light of their susceptibility to S. aureus and
discusses the relevant associated pathomechanisms. Understanding host-
pathogen-interactions in S. aureus infections in susceptible individuals can
pave the way for more effective management and preventive treatment
options. Moreover, these insights might help to identify patients who should
be screened for an underlying IEI. Ultimately, enhanced understanding of
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FIGURE 1

Host-pathogen interactions in S. aureus infec
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pathogenesis and immune responses in S. aureus infections may also be of
relevance for the general population.

KEYWORDS

S. aureus, inborn errors of immunity (IEI), immunodeficiency, STAT3 deficiency, neutrophil

dysfunction, chronic granulomatous disease (CGD), neutropenia, IL-6 deficiency
Introduction

The current list of inborn errors of immunity (IEI) comprises

more than 485 monogenetic gene defects (1). Enhanced

susceptibility to a specific pathogen such as Staphylococcus aureus

(S. aureus) may raise suspicion of a certain type of immunological

impairment. Staphylococcus aureus is a great challenge to our

health care systems (2). Despite being considered a commensal,

with a colonization rate of 20%–30% in the healthy population

(3), it can also cause a wide variety of different infections. It is a

leading cause of skin and soft tissue infections and abscesses, but

may also lead to lung infections, osteomyelitis or endocarditis, in

particular in patients with underlying conditions (2). The ability to

colonize but also to cause harm to the host, emerges from a

complex interaction between the pathogen and its host (4).

Staphylococcus aureus is a specialist in adapting to the human host

by evading almost every aspect of the immune system (5). In the
tions. The figure visualizes
deficiency. Commonly asso

o S. aureus infection are pr
plete. The figure was create
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last decades, changes in strains have led to an increase of S.

aureus infections in otherwise healthy individuals (6). Thus,

staphylococcal defense in the individual is shaped by both

pathogen virulence factors as well as the patient’s immune

predisposition (4). Recurrent or severe S. aureus infections may

both be an indicator of certain IEI and specific IEI can teach us

about essential immune functions for staphylococcal defense.
S. aureus immune evasion and host immune
response

Staphylococcal infections often arise from asymptomatic

colonization and breaches through skin and mucosal barriers (7)

(Figure 1). Immune evasion strategies of S. aureus are abundant

and tackle particularly innate immunity (8, 9). Examples include

inhibition of immune recognition, prevention of complement
key immunological defense mechanisms and highlights host factors
ciated laboratory findings in the respective setting are also displayed.
ovided. The figure provides a simplified overview, and displayed host
d with BioRender.com.
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activation (10), resistance to phagosomal killing (5) and direct

killing of immune cells through different leucocidins (7).

In addition, presence of peptidoglycan layer, polysaccharide

capsule and surface proteins hamper opsonization (7). The most

important players in S. aureus defense are phagocytes. In

particular neutrophils, along with tissue-resident or monocyte-

derived macrophages, are instrumental in identifying, engulfing,

and eliminating staphylococci (11). As the first line of innate

cellular defense, they also orchestrate subsequent immune

responses. The crucial role of neutrophils is clearly evidenced by

the enhanced staphylococcal susceptibility of patients with

numeric or functional neutrophil defects (12, 13). Staphylococcus

aureus has developed numerous mechanisms to reduce

neutrophil extravasation, activation, and chemotaxis (9), and may

also evade neutrophil extracellular traps using nucleases and

proteases (14). Secretion of exopolysaccharides and biofilm

formation inhibit phagocytosis (7). When internalized by

phagocytes, S. aureus may neutralize reactive oxygen species and

employ enzymes for survival (8). Through intracellular survival

both in phagocytic and non-phagocytic cells, S. aureus may

evade antibiotic killing and facilitate subsequent dissemination

(15). Induction of IL-10 by S. aureus may lead to a phenotypic

switch in the immune response during persistent staphylococcal

infection allowing its persistence as commensal (16). Toxins like

Panton–Valentine leucocidin (PVL), which are harbored by

some more virulent strains, destroy immune cells and may

lead to treatment failure and severe infections even in

immunocompetent patients (17, 18). While most virulence

factors address innate immunity, S. aureus may also interfere

with the adaptive immune response, using proteins like SpA to

bind immunoglobulins (19) and superantigens like TSST-1 to

induce cytokine release and toxic shock syndrome (20).

The evasion strategies of S. aureus challenge infection

management, prevention and vaccine development (8). We

provide an overview of IEI that render individuals susceptible to

S. aureus infections (Table 1 and Supplementary Table S1),

highlighting key immunological defense mechanism involved in

staphylococcal immunity.
IEI with low neutrophil numbers and
susceptibility to S. aureus infections

Severe congenital neutropenia (SCN) is usually characterized

by severe neutropenia (<500/µl) due to myeloid maturation arrest

in the bone marrow. Over 20 different genes have been identified

(21). Lack of mature neutrophils leads to a severe infectious

phenotype with potentially life-threatening disease in the first

months of life. Infections are caused not only by S. aureus but

also by gram negative bacteria, and blood stream infections are

common. Depending on the underlying gene defect there may be

additional somatic features (Supplementary Table S1) (22).

Primary autoimmune neutropenia (AIN) of infancy, which is

the most common type of neutropenia in childhood and may also

present with nearly absent neutrophils and susceptibility to

staphylococcal skin infections (abscesses, furunculosis), needs to
Frontiers in Pediatrics 03
be separated from SCN. AIN is typically detected in infancy,

frequently as an incidental finding, and shows spontaneous

remission in early childhood (23). Neutrophils mature normally

in the bone marrow but peripheral numbers may be very low

due to the presence of anti-neutrophilic antibodies. Infections are

less severe compared to SCN. While the detection of anti-

neutrophilic antibodies is suggestive of AIN it does not fully

exclude additional SCN. Thus, in cases with severe infections or

persistent neutropenia bone marrow evaluation and genetic

testing may be indicated. If detected in older children or adults,

AIN is more likely to be an immune phenomenon related

to another IEI/autoimmune disorders requiring further

diagnostic workup (24).
IEI with neutrophil function defects and
susceptibility to S. aureus infections

Chronic granulomatous disease (CGD) represents the most

common hereditary phagocyte dysfunction with an estimated

prevalence of around 1:200,000 (25, 26). CGD leads to deficient

reactive oxygen species (ROS) generation due to loss-of-function

mutations affecting different aspects of the multicomponent

enzyme NADPH oxidase in phagocytes (Nox2) (27). CGD

patients experience severe infections accompanied by granuloma

and abscess formation. Staphylococcus aureus is the most

common pathogen isolated from skin infections/abscesses, liver

abscesses and lymphadenitis, but it may also lead to pulmonary

infections or sepsis. Patients are also very susceptible to

Aspergillus spp. (26). Other characteristic pathogens in CGD

include gram negative bacteria (e.g., Salmonella) and catalase

positive bacteria (e.g., Burkholderia, Serratia and Nocardia) (12,

28). Additionally, CGD is associated with inflammatory

complications like colitis, which might be related to defective T-

cell regulation but also hyperactivation of NF-kB and

inflammasome pathways (27, 29).

Leukocyte adhesion deficiency (LAD) is characterized by

functional defects in neutrophil adhesion, integrin activation or

rolling, leading to an inability to migrate effectively to infection

sites (30). This results in a striking discrepancy with lack of pus

formation at infection sites despite significant leukocytosis with

neutrophilia in the blood. LAD patients typically experience

recurrent bacterial and fungal infections, delayed wound healing,

and other associated features (31). Three different genetic defects

affecting neutrophils are known. Associated features are omphalitis

and gingivitis (LAD I), developmental impairment and short

statue (LAD II), and bleeding tendency (LAD III) (30, 32).
Combined IEI which frequently cause
neutropenia or neutrophil dysfunction

Neutropenia has also been described in certain combined

immunodeficiencies. Typical examples are CD40Ligand (CD40l)

and CD40 deficiency, which are characterized by abnormal serum

immunoglobulin levels due to impaired interaction between CD40l
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on T cells and CD40 on antigen-presenting cells (33, 34). These

conditions lead to both impaired cellular and humoral immunity,

which results in a broad infection phenotype. Patients frequently

present with opportunistic infections (e.g., pneumocystis jirovecii,

cryptosporidium, aspergillus spp.) (35). IgM may be elevated

concomitantly to low IgA and IgG, which lead to bacterial

respiratory and gastrointestinal infections (33). Intermittent or

permanent neutropenia might be related to deficient release of

growth factors important for granulopoiesis due to impaired

CD40-CD40l-interaction (36). Furthermore, functional defects in

neutrophils have been described in CD40l deficiency (37).

Mutations in Ras-related C3 botulinum toxin substrate 2 (RAC2)

are also typically affecting neutrophil function. RAC2 is an essential

regulator of neutrophil chemotaxis and contributes to NADPH

oxidase function (38). Autosomal-dominant (AD) RAC2 loss of

function (LOF) mutations cause LAD-like disease with neutrophilia

and functional neutrophil defects (e.g., deficient chemotaxis and

ROS generation) (39). In contrast, AD RAC2 gain of function

(GOF) mutations lead to (severe) combined immunodeficiencies

with lymphopenia and low immunoglobulins, frequent neutropenia

and functional neutrophil abnormalities (38, 40).

Neutropenia has also been reported in some patients with

deficiency in phosphoglucomutase 3 (PGM3), a disorder of

glycosylation which is currently classified as autosomal-recessive

Hyper IgE syndrome (1). PGM3 deficiency presents with eczema,

eosinophilia, elevated IgE, but may also display a CID/SCID

phenotype, facial dysmorphism and neurocognitive impairment (41).

Patients with autosomal-recessive deficiency of dedicator of

cytokines (DOCK) 8 display severe atopic dermatitis with

S. aureus colonization and skin infections (DOCK8 deficiency).

Osteomyelitis has also been reported (42). DOCK8 plays a

crucial role in lymphocyte proliferation, migration of dendritic

cells, and generation of long-term memory in B- and T cells,

thus predisposing patients to a mostly severe phenotype

regarding viral and mycobacterial infections (43). Dysfunction of

regulatory T-cells together with S. aureus exposure have been

suggested to drive severe eczema in DOCK8 deficiency (44) and

DOCK8-deficient murine neutrophils were prone to undergo

S. aureus-induced cell death (45). In addition, reduced signal

transducer and activator of transcription 3 (STAT3) signaling

and low T helper 17 (Th17) cells have also been reported (46).
IEI with staphylococcal susceptibility
associated to defective cytokine signaling

Autosomal-dominant Hyper-IgE syndrome due to dominant-

negative mutations in STAT3 (STAT3-HIES) is one of the key IEI

associated with a specific susceptibility to S. aureus infections,

particularly in the skin and lung (47). Recurrent “cold” abscesses

with lacking systemic signs of infections are typical. STAT3

functions as a transcription factor downstream of the tyrosine

kinases janus activated kinase (JAK)1, JAK2, and tyrosine kinase 2

(TYK2) and enables signal transduction through various cytokines,

such as interleukin-6 (IL-6), IL-10, IL-11, IL-21, and IL-23 (48).

STAT3 deficiency results in failure of Th17 cell differentiation
Frontiers in Pediatrics 05
(49). Th17 function has been shown to be pivotal in Candida

defense (50), explaining the patients’ predisposition to

mucocutaneous candidiasis. Th17 cells aid epithelial cells to

produce neutrophil-recruiting chemokines and antimicrobial

factors such as ß-defensins, which may be relevant for

staphylococcal defense (51). STAT3-deficient neutrophils display

normal functions (52), but are prone to undergo S. aureus-

induced cell death (53). Furthermore, STAT3-HIES patients

display variable antibody responses and low numbers of memory

B cells, which likely contributes to enhanced incidence of

respiratory infections with H. influenzae and S. pneumoniae (52).

STAT3 is ubiquitously expressed and multisystemic features are

present. Thus, deficient epithelial STAT3 signaling may contribute

to aberrant staphylococcal control by cytokine dysregulation and

aberrant tissue remodeling (54, 55). STAT3 is involved in both

pro- and anti-inflammatory signaling which complicates our

understanding of single factors for the overall phenotype.

Autosomal-recessive ZNF341 deficiency leads to reduced

cytokine signaling via STAT3 and resembles STAT3-HIES by

displaying similar multisystemic features (e.g., bone fractures,

retention of primary teeth, facial dysmorphism) but also

staphylococcal infections (56).

IEI affecting single cytokines may teach us about their

individual contribution. Lack of functional IL-6 cytokine family

signaling reduces typical local inflammatory reaction, leads to

low CRP and reduced systemic symptoms although tissue

damage may be considerable. Defective IL-6 signaling either by

IL-6 receptor deficiency (57) or by partial IL-6 signal

transducer deficiency (IL6ST) (58) also leads to pyogenic

infections, cold abscesses and pulmonary S. aureus infections.

Additionally, phenocopies of IEI such as autoantibodies against

IL-6 show increased susceptibility to S. aureus infection lacking

CRP response (59). Staphylococcus aureus infections are also

described in ERBIN deficiency which recapitulates some features

of STAT3 deficiency (60).

Frequent S. aureus skin infections have also been reported in

patients with STAT1GOF who are very susceptible to fungal

infections, have low Th17 cells, and display a high rate of

autoimmune features (61, 62).
IEI with defects in toll-like receptor (TLR)-
signaling and susceptibility to S. aureus

Autosomal-recessive IRAK-4 and MyD88 deficiencies affect

TLR and IL-1R induced activation of NF-κB and MAPKs

through the classical pathway (63). They disrupt key pathways in

the innate immune response and usually present with bacterial

pyogenic infections early in life (<2years of age). Most common

pathogens are S. pneumoniae, S. aureus and Pseudomonas

aeruginosa (64). Lack of TLR-induced signaling affects

particularly the production of IL-6 and IL-8, and may lead to

severe invasive infections (e.g., meningitis, sepsis, osteomyelitis,

arthritis and abscesses), but also localized skin infections,

lymphadenitis and ENT infections, usually without marked fever

or increase of CRP (64). Still, pus is seen at the site of infection,
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which underlines that pus formation is not dependent on TLR-

related cytokine signaling. As signs of infections may be absent

but invasive infection may be rapidly progressing, it is vital to

initiate empirical antibiotic treatment as soon as infection

is suspected (64).

NEMO deficiency and IκBα GOF, which affect both NF-κB

and TRIF-dependent signaling, result in a broad spectrum of

immune dysfunctions and present also typically with colitis and

ectodermal dysplasia. Apart from pyogenic bacterial infections,

patients may also display mycobacterial infections, severe viral

infections and opportunistic infections (64). Recently, more rare

genetic defects associated to TLR-signaling have been reported,

with variable phenotype depending on the protein involved.
Other diseases with susceptibility to
S. aureus

Apart from classical IEI, increased susceptibility to S. aureus

infections has also been reported in diseases such as cystic

fibrosis, HIV infection and/or diabetes mellitus (65–68). In

addition to aberrant host immune response, susceptibility to

S. aureus may also be enhanced by colonization of multi-

resistant strains (MRSA) carrying specific virulence factors.
Discussion: controversies, current
knowledge gaps and future
perspectives

While the key role of innate immunity for staphylococcal

defense is well-established, the contribution of adaptive

immunity is less clear.

In regards to B-cell immunity, evidence for a protective role of

S. aureus antibodies is scarce. In fact, it has lately been suggested

that S. aureus may induce non-protective antibodies, which then

interfere with protective immune responses (69) facilitating

commensalism and recurrent infections. Furthermore, patients

with antibody deficiency do not display a specifically enhanced

susceptibility to S. aureus, while they are clearly susceptible to

other bacteria with a polysaccharide capsule (e.g., S. pneumoniae,

H. influenzae). In contrast to the successful vaccine development

for other encapsulated bacteria, there is still no available vaccine

against S. aureus, and even adequate antibody induction to

relevant S. aureus virulence factors did not lead to protection

(70). The ability of anti-TSST-1 antibodies to provide protective

immunity against superantigen-driven toxic shock syndrome

appears to be an exception to the above, with IVIG being used as

potential adjunctive therapy to ameliorate the symptoms (71).

Regarding the relevance of T cells, Th17 cells are often

suggested to contribute to anti-staphylococcal-response,

particularly at mucosa and skin sites (51). In mice, several

studies document the importance of functional IL-17 signaling

for the protection against mucocutaneous S. aureus infections

(72, 73). Patients with IL-17RA deficiency are very prone to

mucocutaneous candidiasis but do also display staphylococcal
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skin infections (74, 75). The initial hypothesis regarding the

relevance of Th17 cells to prevent staphylococcal skin infection is

closely related to the observed lack of Th17 in STAT3 deficiency

(51). While the role of Th17 for candida defense is supported by

other IEI with specifically deficient IL-17 signaling such as IL-17

autoantibodies (75), their relevance for S. aureus infections

appears less significant. In the context of STAT3-HIES, the

abundant changes in different cytokine signaling pathways and

the contribution of ubiquitously deficient STAT3 needs to be

considered. Of note, deficient IL-6 cytokine signaling is sufficient

to predispose to staphylococcal infection even in the setting of

normal Th17 cells (58, 76), and mere lack of Th17 cells does not

induce susceptibility to S. aureus infection as evidenced in

patients with IL12B/IL12RB1 deficiency (77) or CARD9

deficiency (78). Notably, STAT3-deficient patients with somatic

mosaicism and normal Th17 compartment may still present with

boils and pneumonia (79). Thus, lack of IL-17 signaling alone is

likely insufficient in explaining enhanced susceptibility to S.

aureus, even though patients may be more prone to folliculitis (74).

IEI with impairments in TLR and NF-κB signaling pathways

such as in IRAK-4 or MyD88 deficiency, underline the

significance of these pathways in recognizing and responding to

S. aureus (80). Patients with STAT3-HIES, ZNF341 deficiency,

partial IL6ST deficiency and IL-6 receptor deficiency all share

deficient IL-6 signaling and enhanced frequency of “cold”

staphylococcal abscesses and lung infections (1). IL-6 is a

pleiotropic cytokine that is vital for acute-phase responses,

defense against bacterial infections and tissue regeneration (81).

The shared phenotype argues for an essential role of IL-6 in

staphylococcal defense (82). Still, the precise molecular

mechanism behind this particular predisposition and the

contribution of other pathways is unknown.

Complement deficiencies might serve as additional risk factors

in the context of S. aureus infections due to the crucial role of the

complement system in opsonizing pathogens and facilitating their

clearance by phagocytes. Susceptibility to S. aureus infections has

been described in patients with C2 and C3 deficiencies (83) and

complement activation was found to reduce persistent

intracellular S. aureus burden in keratinocytes (84). Still, the role

of complement in the defense against this pathogen appears less

pronounced compared to its critical function in combating other

encapsulated bacteria.

More recently, it has been proposed that specific genes may

predispose to more severe infections via impairment of selective

immune defense mechanism such as the altered response of non-

leukocytic cells to staphylococcal alpha-toxin in OTULIN

haploinsufficiency (85). With the growing use of NGS our

understanding of specific factors in staphylococcal immunity will

likely expand further. Still, the rareness of single IEI may hamper

reliability of certain genotype-phenotype associations. An

example is TYK2 deficiency, where the originally identified

patient with susceptibility to S. aureus and hyper-IgE phenotype

(86) was later judged to display deficient IL-6 signaling unrelated

to TYK2 deficiency (87).

Last, the ability of S. aureus to survive intracellularly, notably

within neutrophils, macrophages and as small colony variants in
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epithelial cells, complicates the immune response and treatment

strategies and might facilitate recurrent infections (88). Together

with the multiple other evasion strategies this poses significant

challenges in vaccine development against S. aureus. In the light

of growing rates of MRSA, it therefore remains essential to

continue to assess host-pathogen interactions on a functional

level and further enhance our understanding about crucial

immune defense mechanisms.
Conclusion and diagnostic suggestions

➢ Basic immunological workup in patients with recurrent or

severe S. aureus infections should include a differential blood

count and IgG, IgA, IgM, IgE

➢ Specific testing for CGD, HIES, complement deficiency, LAD,

TLR deficiency, exclusion of secondary immunodeficiencies

and assessment for phenocopies of IEI as well as genetic

analysis may be warranted

➢ Inconclusive immunological investigation should be

complemented by assessment of staphylococcal colonization
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