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Background: Bloodstream infection (BSI) poses a significant life-threatening risk
in pediatric patients with osteoarticular infections. Timely identification of BSI is
crucial for effective management and improved patient outcomes. This study
aimed to develop a machine learning (ML) model for the early identification of
BSI in children with osteoarticular infections.
Materials and methods: A retrospective analysis was conducted on pediatric
patients diagnosed with osteoarticular infections admitted to three hospitals in
China between January 2012 and January 2023. All patients underwent blood
and puncture fluid bacterial cultures. Sixteen early available variables were
selected, and eight different ML algorithms were applied to construct the
model by training on these data. The accuracy and the area under the receiver
operating characteristic (ROC) curve (AUC) were used to evaluate the
performance of these models. The Shapley Additive Explanation (SHAP) values
were utilized to explain the predictive value of each variable on the output of
the model.
Results: The study comprised 181 patients in the BSI group and 420 in the non-
BSI group. Random Forest exhibited the best performance, with an AUC of
0.947 ± 0.016. The model demonstrated an accuracy of 0.895 ± 0.023, a
sensitivity of 0.847 ± 0.071, a specificity of 0.917 ± 0.007, a precision of
0.813 ± 0.023, and an F1 score of 0.828 ± 0.040. The four most significant
variables in both the feature importance matrix plot of the Random Forest
model and the SHAP summary plot were procalcitonin (PCT), neutrophil count
(N), leukocyte count (WBC), and fever days.
Conclusions: The Random Forest model proved to be effective in early and
timely identification of BSI in children with osteoarticular infections. Its
application could aid in clinical decision-making and potentially mitigate the
risk associated with delayed or inaccurate blood culture results.
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Introduction

Blood culture serves as a crucial diagnostic tool for infectious

diseases in pediatric patients. Positive results indicate bacteremia

or BSI, prompting appropriate antibiotic treatment. BSI, at times,

coincide with osteoarticular infections (1–3), potentially leading

to multifocal haematogenous osteomyelitis or sepsis, with septic

shock being a significant cause of mortality (4, 5). However,

blood culture results are susceptible to false positives resulting

from contamination and false negatives due to prior antibiotic

usage (6–8). Moreover, the process typically takes 12 to 48 h to

yield results, exposing pediatric patients to potential risks (9–11).

To enhance the reliability and speed of BSI detection, several

approaches have been developed. Serum marker tests such as

C-reactive protein (CRP) and PCT offer quick and straightforward

methods aiding in early diagnosis and treatment monitoring.

However, they lack specificity and can be influenced by various

factors (12). Polymerase chain reaction (PCR) boasts high

sensitivity and specificity, facilitating the rapid identification of

pathogenic microbial DNA or RNA and providing faster results.

Nevertheless, PCR is relatively expensive and can be affected by

sample quality and detection methodology (13). Pathogen gene

microarray testing, despite its capability to simultaneously detect

multiple pathogens, remains less accessible due to its high cost and

the requirement for specialized equipment and expertise (14).

ML stands as the cornerstone technology of artificial

intelligence (AI) today, facilitating intricate decision-making

processes through learning. Its application in healthcare is

increasingly prevalent, enabling analysis of variables pertinent to

clinical outcomes and supporting various clinical activities.

Compared to conventional regression analysis, ML offers

superior modeling of complex relationships (15, 16). Figueroa-

Phillips et al. (17) developed a clinical prediction model for

central line-associated BSI, aiming to mitigate unnecessary

hospital admissions and antibiotic usage. Similarly, Tabaie et al.

(18) utilized deep learning models to integrate structured and

unstructured data, achieving timely prediction of BSI among

children with central venous lines. While these ML models

demonstrated convenience and rapidity in BSI detection, they

were constrained by variations in variable selection depending on

the disease within the study population, rendering them less

suitable for pediatric patients with osteoarticular infections. Thus,

there arises a necessity to develop a diagnostic model for BSI

tailored specifically to ensure the medical safety of pediatric

patients with osteoarticular infections.

The objective of this study was to harness ML algorithms to

craft an AI model customized for the early detection of BSI

linked with osteoarticular infections in the pediatric population.
Materials and methods

Patient information

In this study, pediatric patients diagnosed with osteoarticular

infections were admitted to three hospitals in China between
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January 2012 and January 2023. The inclusion criteria were as

follows: ① Diagnosis of osteoarticular infections, including

osteomyelitis and septic arthritis; ② Availability of complete

original data, encompassing medical history, laboratory test results,

and imaging data. Exclusion criteria included: ① Neonatal

patients (≤28 days old); ② Inconsistent results of blood and

puncture fluid cultures; ③ Chronic osteoarticular infections,

including the formation of dead bone or sinus tracts; ④ Patients

with tuberculosis, syphilis and fungal infections were excluded;

⑤ Suspected cases of aseptic arthritis or tumor-related lesions;

⑥ Patients with uncertain health status or immune deficiency.

Data from 764 patients were initially collected using the

electronic medical record system. Subsequently, 601 patients with

complete data preservation were ultimately enrolled in the study.

The age range of the patients spanned from over 28 days to 14

years old, mean 6.08 ± 3.92 years. The detailed screening process

was depicted in Figure 1.
Bacterial culture

The presence and type of BSI were determined based on a

positive blood culture result. Bacterial cultures of both the blood

and puncture fluids were systematically conducted for all cases.

Blood culture: 1–3 ml of peripheral venous blood was collected

and injected into a paediatric aerobic blood culture bottle, which

was placed in the BACT/ALERT 3D blood culture instrument. If

there was bacterial growth, the instrument would alarm and

microbiology staff would swab, stain, microscope the bottle and

transfer the bacteria to a Columbia Blood Plate and a Chocolate

Plate and incubate the plate for 24 h at 5% carbon dioxide and

35°C. After colony growth, the bacteria were identified and drug

susceptibility testing was performed using a VITEK 2

COMPACT instrument.

Puncture fluid culture: puncture fluid was inoculated directly

into Columbia Blood and China Blue plates and incubated for

24 h at 35°C in 5% carbon dioxide. After colony growthed,

bacterial identification and drug susceptibility testing were

performed using a VITEK 2 COMPACT instrument.

To mitigate the effects of sampling contamination, two distinct

sets of collection devices and two culture bottles were utilized for

specimen collection. Positive bacterial culture was confirmed if the

results of both cultures were consistent. In the investigated cohort,

blood culture yielded positive results in 202 patients and negative

findings in 420 patients. Conversely, puncture fluid culture yielded

positive outcomes in 294 patients, while 328 patients yielded

negative results. Furthermore, to enhance the consistency of the

pathological diagnosis of osteoarticular infections and BSI, 21

patients with disparities in bacterial identification between blood

culture and puncture fluid culture results were excluded. The

culture results were summarized in Table 1.
Clinical variables

In this study, sixteen independent variables available for

assessment during the initial consultation underwent meticulous
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FIGURE 1

Flow chart of study inclusion.

TABLE 1 Culture results of blood and puncture fluid.

Pathogens Blood culture
(+) (n= 183)

Puncture
fluid culture (+)

(n = 275)
Staphylococcus aureus, n (%) 129 (70.5) 211 (76.7)

Methicillin resistant
Staphylococcus aureus, n (%)

28 (15.3) 37 (13.4)

Pyogenic streptococcus, n (%) 5 (2.7) 10 (3.6)

Staphylococcus hominis, n (%) 15 (8.2) 9 (3.3)

Haemophilus influenzae, n (%) 4 (2.2) 4 (1.5)

Streptococcus pneumoniae, n (%) 2 (1.1) 4 (1.5)
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scrutiny. The patient’s demographic characteristics (age, gender

and weight) and clinical history (fever days, peak temperature,

recent diseases, symptom duration, symptoms of other systems)

were extracted from the medical records. Serum markers,

including WBC, N, platelet count (PLT), hemoglobin (Hb), CRP,

erythrocyte sedimentation rate (ESR), and PCT, were also

extracted. Imaging variable such as bone damage was evaluated

using radiography or computed tomography (CT). Symptom

duration was defined as the interval between the onset of

clinical symptoms and the time of consultation. Recent

diseases included trauma or other infectious conditions such as

respiratory, gastrointestinal, urinary tract, and soft tissue

infections. Symptoms of other systems included cough, diarrhea,

vomiting, headache, and convulsion.
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Data preprocessing

Based on the original data, all null data were removed. Data

with a z-score above the threshold were considered anomalous

and subsequently removed from the dataset. Through this

preprocessing procedure, 181 patients in the BSI group and 420

patients in the non-BSI group were included in the study. Peak

temperature was classified into five grades based on the degree of

fever: 36.3–37.2°C was normal, 37.3–38°C was mild fever, 38.1–

39°C was moderate fever, 39.1–41°C was high fever and

temperatures exceeding 41°C was super-high fever. Recent

diseases were categorised into three conditions: none, trauma,

and infection. Symptoms of other systems and bone damage

were classified as either yes or no. Ordinal coding was applied to

categorical features such as gender, peak temperature, recent

diseases, symptoms of other systems, and bone damage.
Machine learning procedure

The study utilized classification models from Python 3.11.4 and

scikit-learn 1.2.2 to construct predictive models by training on the

collected data. The models included Logistic Regression,

Kneighbors, Gaussian NB, Linear SVC, Decision Tree, SGDC

lassifier, Random Forest, and Gradient Boosting Trees. The entire
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dataset was split into training and testing sets using a 70–30 ratio,

with five-fold cross-validation employed during model training to

enhance model robustness and mitigate overfitting. Various

evaluation metrics, such as accuracy, sensitivity, specificity,

precision, and F1 score, were computed for each model. ROC

curves were generated, and the AUC was calculated using the

trapezoidal method to assess the models’ performance. The

selection of the optimal model for training was based on both

AUC and accuracy. An importance matrix was utilized to

illustrate all the features predictive of BSI. The SHAP (19)

method was employed to assess the value for each variable

within the model based on the training dataset. Additionally,

SHAP dependence plots were generated to explain how

individual features influence the output of the ML algorithm.
TABLE 2 Comparison of the clinical characteristics of BSI and non-BSI
group.
Statistical analysis

The data analysis was conducted using SPSS 27.0 software

(IBM Corp., Armonk, NY, USA). Quantitative data were

presented as mean ± standard deviation (SD). Differences in

predictive variables between the BSI group and non-BSI group

were compared. Continuous variables were compared using

the independent t-test, while the Chi-square test was

utilized for categorical variables. Statistical significance was

defined as P < 0.05.
Variables BSI (+)
(n= 181)

BSI (−)
(n= 420)

P-value

Age (years) 6.58 ± 3.53 5.87 ± 3.89 0.04

Gender, n (%) 0.6

Male 114 (18.97) 255 (42.43)

Female 67 (11.15) 165 (27.45)

Weight (kg) 27.02 ± 14.30 24.56 ± 13.10 0.04

Fever days (days) 5.54 ± 3.57 3.79 ± 2.99 <0.001

Peak temperature, n (%) <0.001

Normal 8 (1.33) 40 (6.66)

Mild fever 1 (0.16) 39 (6.49)

Moderate fever 62 (10.32) 228 (37.94)

High fever 109 (18.14) 113 (18.80)

Super-high fever 1 (0.16) 0 (0)

Recent Diseases, n (%) <0.001
Results

Participant characteristics

The clinical characteristics of the BSI and non-BSI groups were

summarized in Table 2. Variables including age, weight, fever days,

peak temperature, recent diseases, WBC, N, CRP, ESR, PCT, and

bone damage exhibited statistically significant differences between

the two groups (P < 0.05). However, variables such as gender,

symptom duration, PLT, Hb, and symptoms of other systems did

not show statistically significant differences between the two

groups (P > 0.05).

None 85 (14.14) 235 (39.10)

Trauma 64 (10.65) 86 (14.31)

Infections 32 (5.33) 99 (16.47)

Symptom duration (days) 6.99 ± 4.57 7.51 ± 5.86 0.24

Serum indicators
WBC (×109/L) 16.89 ± 4.62 13.07 ± 4.48 <0.001

N (×109/L) 12.38 ± 4.33 8.59 ± 4.15 <0.001

PLT (×109/L) 368.52 ± 150.63 384.62 ± 133.02 0.19

Hb (g/L) 113.39 ± 13.97 114.14 ± 13.05 0.53

CRP (mg/L) 90.20 ± 51.88 61.02 ± 51.94 <0.001

ESR (mm/h) 67.23 ± 23.44 57.48 ± 28.27 <0.001

PCT (ng/ml) 1.77 ± 2.38 0.50 ± 1.97 <0.001

Symptoms of other systems 0.07

Yes, n (%) 28 (4.66) 92 (15.31)

no, n (%) 153 (25.46) 328 (54.57)

Bone damage 0.034

yes, n (%) 45 (7.49) 141 (23.46)

no, n (%) 136 (22.63) 279 (46.42)
Model performance

The performance of the eight ML algorithms were presented in

Table 3. Additionally, the ROC curves and micro-average AUC for

each model were depicted in Figure 2. Among the models, Random

Forest exhibited the highest AUC (0.947 ± 0.016), followed by

Gradient Boost Tree (0.942 ± 0.017), Decision Tree (0.818 ±

0.061), Logistic Regression (0.785 ± 0.057), Gaussian NB (0.779 ±

0.049), Linear SVC (0.772 ± 0.069), SGDC lassifier (0.726 ±

0.071), and Kneighbors (0.662 ± 0.025).

In terms of accuracy on the testing dataset, Random Forest

achieved the highest accuracy (0.895 ± 0.023), followed by

Gradient Boosting Trees (0.889 ± 0.032), Decision Tree (0.855 ±

0.041), Logistic Regression (0.802 ± 0.037), Gaussian NB (0.737 ±
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0.033), LinearS VC (0.697 ± 0.081), Kneighbors (0.686 ± 0.020)

and SGD (0.640 ± 0.136).

Based on these results, Random Forest was selected as the

representative evaluation model for further analysis due to its

superior performance metrics.
The feature importance

The feature importance analysis conducted within the Random

Forest model provided insights into the relevance of each variable.

As depicted in Figure 3, the results revealed that PCT emerged as

the most influential variable for detecting BSI. Furthermore, the

SHAP summary plot of the Random Forest model and the top

features predictive of BSI were illustrated in Figure 4. Notably,

PCT emerged as the most important feature, with a mean SHAP

value of 0.252. Both the feature importance matrix plots and

SHAP summary plots identified PCT, N, WBC, and fever days as

the four most crucial predictor factors for BSI.

In Figure 5, the results of the SHAP dependence plots

were depicted. The y-axis represented the SHAP value of the

feature, while the x-axis illustrated the changes in feature
frontiersin.org
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TABLE 3 Performance of the various algorithmic models.

Machine learning algorithms Accuracy Sensitivity Specificity Precision F1 Score
Logistic Regression 0.802 ± 0.037 0.512 ± 0.085 0.929 ± 0.021 0.754 ± 0.072 0.607 ± 0.072

Kneighbors 0.686 ± 0.020 0.364 ± 0.025 0.824 ± 0.034 0.476 ± 0.067 0.411 ± 0.037

GaussianNB 0.737 ± 0.033 0.282 ± 0.156 0.936 ± 0.053 0.689 ± 0.096 0.370 ± 0.126

LinearSVC 0.697 ± 0.081 0.367 ± 0.347 0.834 ± 0.242 0.480 ± 0.259 0.335 ± 0.240

Decision Tree 0.855 ± 0.041 0.724 ± 0.118 0.912 ± 0.022 0.778 ± 0.058 0.747 ± 0.080

SGD 0.640 ± 0.136 0.530 ± 0.344 0.686 ± 0.338 0.547 ± 0.149 0.422 ± 0.160

Random Forest 0.895 ± 0.023 0.847 ± 0.071 0.917 ± 0.007 0.813 ± 0.023 0.828 ± 0.040

Gradient Boosting Trees 0.889 ± 0.032 0.840 ± 0.074 0.910 ± 0.032 0.802 ± 0.073 0.818 ± 0.056

FIGURE 2

ROC curves of various algorithms.

FIGURE 3

Importance matrix plot of the random forest model.

Liu et al. 10.3389/fped.2024.1398713
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FIGURE 4

SHAP summary plot of all random forest model features. The higher the SHAP value of a feature, the higher the risk of BSI. The summary plot displayed
SHAP values, which combined feature importance with feature effects. Each point on the plot represented a Shapley value for a patient’s feature. The
colour indicated the value of the feature, ranging from low to high. The features were ordered based on their importance.

Liu et al. 10.3389/fped.2024.1398713
values. SHAP values above zero for specific features indicated an

increased risk of BSI.

The importance of these features, as provided by the SHAP

value, could be visualized by the length of the bar in the SHAP

dependence plots. A longer bar shape indicated a higher SHAP

value, suggesting that the variable was of greater importance in

influencing the model’s prediction. In these plots, features that

pushed the forecast higher (acting as risk factors) were displayed

in red, while features that pushed the forecast lower (acting as

protective factors) were displayed in blue.Two patients were

selected from the test dataset, as illustrated in Figure 6. The

results revealed that PCT contributed the most compared to

the other variables, as indicated by the length of the bars and the

colors representing the direction of influence on the forecast.
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Discussion

BSI associated with osteoarticular infections in children

warrants special attention due to the vulnerability of children’s

immune systems and the potential for systemic infections to be

overlooked. In this study, the Random Forest model

demonstrated superior performance in identifying BSI associated

with osteoarticular infections. This model holdes promise in

aiding clinical decision-making, particularly in cases where

culture results are incorrect or delayed, thereby potentially

improving patient outcomes.

To the best of our knowledge, this study represented the first

attempt to utilize ML algorithms for detecting BSI in children

with osteoarticular infections. Sixteen clinical variables available
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FIGURE 5

SHAP dependence plot of the random forest model. The SHAP dependence plot explains how a single feature inffuences the model’s output. Feature
SHAP values above 0 indicate an elevated risk of BSI.

FIGURE 6

The SHAP explanation force plots of two patients. (A) Example of high risk according to SHAP value. (B) Example of low risk according to SHAP value.

Liu et al. 10.3389/fped.2024.1398713
at the time of the visit were carefully selected and utilized to train

eight ML algorithms, highlighting the simplicity and convenience

of facilitating timely decision-making in clinical settings.

Ultimately, the Random Forest model emerged as the optimal

choice, achieving the highest AUC (0.947 ± 0.016) and accuracy

(0.895 ± 0.023). The feature importance matrix plot (Figure 3)

and SHAP summary plot (Figure 4) further revealed that
Frontiers in Pediatrics 07
PCT, N, fever days, and WBC played significant predictive

roles in identifying BSI. These findings underscore the

potential of ML-based approaches in enhancing the early

detection and management of BSI in pediatric patients with

osteoarticular infections.

In this study, both the feature importance matrix plot and the

SHAP analysis identified PCT as the most critical factor for BSI.
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This finding was further corroborated by the SHAP dependence

plot (Figure 5), which demonstrated that as the concentration of

PCT increased, the risk of BSI also increased. Previous studies

have established PCT as a vital indicator of sepsis, with the

majority of sepsis cases resulting from worsening BSI (20–23).

Plasma PCT levels are known to be elevated in patients with

severe infections such as sepsis, while they tend to be lower in

patients with less severe inflammatory responses. Notably, studies

have consistently demonstrated that PCT is a superior indicator

for the early prediction of BSI compared to CRP (24–26), which

aligns with the findings of this study.

Neutrophils are the most abundant leukocytes and play a

crucial role in the immune response against infections.

Dysfunctional antimicrobial effector functions and impaired

migration of neutrophils have been observed in BSI (27). This

may explain the high feature importance of WBC and N

observed in the model training. Notably, we selected neutrophil

count rather than neutrophil percentage as a variable because

previous studies have demonstrated that neutrophil percentage is

unreliable in predicting BSI (28). Additionally, we opted not to

include the neutrophil-to-lymphocyte ratio (NLR) as a training

variable due to its reliance on other biological markers to

enhance diagnostic accuracy for BSI (29).

Fever is a common symptom observed in infectious diseases and

can arise from both osteoarticular infections and BSI. When bacteria

invade the body, the immune system initiates a cascade of defense

mechanisms to combat the pathogen. These mechanisms

include the inflammatory response and thermoregulation. During

inflammation, various inflammatory mediators such as cytokines,

chemokines, and other inflammatory molecules are released. Some

of these mediators, including interleukin-1, interleukin-6, and

tumor necrosis factor, can elevate the body’s set point for

temperature regulation by acting on the thermoregulatory

center in the hypothalamus of the brain. This leads to an

increase in body temperature, resulting in fever (30). Unlike

localized osteoarticular infections, BSI represents a systemic

state of infection where bacteria have a more widespread effect

throughout the body. If left untreated, this systemic infection

can persist and worsen. This broader impact of infection may

explain the significance of fever days in the model training,

as it reflects the duration and severity of the systemic response

to infection.

Additionally, this study excluded neonatal patients, as they

typically have an underdeveloped immune system and may

present with atypical clinical symptoms (31). Including neonatal

patients in the study could potentially introduce confounding

factors that might interfere with the training of the model.

Therefore, focusing solely on pediatric patients beyond the

neonatal period helps ensure the consistency and reliability of the

model’s predictions.

For different medical conditions, specific ML algorithms may

offer superior prediction accuracy. In this study, RandomForest

emerged as the top-performing algorithm, demonstrating its

effectiveness in feature learning. However, Random Forest
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typically requires a large dataset for optimal performance, as it

leverages ensemble learning to improve predictive accuracy.

Consequently, the inclusion of a substantial amount of data

enhanced the reliability of the model’s results. Future research

endeavors should prioritize revalidating the model by

incorporating datasets from multiple research centers. This

collaborative approach can enhance the model’s predictive

accuracy and generalizability across diverse patient populations

and clinical settings. Moreover, extending the capabilities of the

model to predict specific bacterial infections would represent a

valuable advancement. Such enhancements would provide early

guidance for the judicious and targeted use of antibiotics,

contributing to efforts aimed at combating antimicrobial

resistance and improving patient outcomes.

The study has several limitations that warrant

acknowledgment. Firstly, the inclusion criteria may have

inadvertently excluded true-positive cases with inconsistent

results due to procedural errors or other factors. Secondly, the

dataset utilized in this study was limited in scope, making it

difficult to make predictions about the specific bacterial species

responsible for the infections. Thirdly, the applicability of the

findings may be constrained in cases involving patients with

multiple bacterial infections, as all positive cases included in the

analysis exclusively featured a single bacterial infection.
Conclusion

The Random Forest model constructed in this study performed

well in the early detection of combined BSI in children with

osteoarticular infections and may aid in clinical decision making.
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