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Attention deficit hyperactivity disorder (ADHD) is the most common
neurodevelopmental disorder in children, characterized by age-inappropriate
inattention, hyperactivity, and impulsivity, which can cause extensive damage
to children’s academic, occupational, and social skills. This review will present
current advancements in the field of attention deficit hyperactivity disorder,
including genetics, environmental factors, epigenetics, and neuroimaging
features. Simultaneously, we will discuss the highlights of promising directions
for further study.
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental

disorder, characterized by extensive hyperactive, impulsive and/or inattentive behaviors

that impair daily functioning. Notably, it is estimated the global prevalence of ADHD as

7.2% (1, 2). And in China specifically, ADHD affected around 6.4% of children (3).

Long-lasting clinical symptoms are present in between 50% and 60% of ADHD patients,

frequently coexisting with additional disorders, namely anxiety, oppositional defiant

disorder, and tic disorders. These conditions can increase the risk of suicide and

delinquency and have a major negative influence on families and society (4, 5). The

complicated etiology of ADHD is frequently attributed to a confluence of hereditary and

environmental variables (6, 7). Research has demonstrated that structural abnormalities in

the brain, such as decreased brain volume and cortical surface area in ADHD, can cause

disturbances in brain function, which can result in executive dysfunction and a variety of

clinical symptoms, including impulsivity, hyperactivity, and inattention (7, 8).
2 The etiology and pathogenesis of ADHD

Although the exact cause of ADHD remains unidentified, most researchers contend

that it is a result of a combination of hereditary and environmental factors. Besides,

ADHD has a comparatively variable clinical presentation, by thoroughly examining its

various etiology and pathogenesis, new treatment approaches can be developed and

researched more easily.
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2.1 Genetic factors

The development of ADHD is largely influenced by genetic

factors, and investigations involving twins and family lines have

demonstrated a distinct familial clustering in the disorder’s

development. Additionally, research conducted by Uchida et al.

(9) found that children whose parents had ADHD were more

likely than their non-ADHD parents to experience ADHD and

other cognitive and psychiatric disorders. Faraone et al.

demonstrated that the heritability of ADHD in twins is

approximately 74% (10). Through a genome-wide association

study (GWAS) of ADHD, Demontis et al. (11) presented a

significant research paper in 2019 which achieved substantial

progress in identifying genetic risk factors and refining the

genetic architecture of the disease. The research revealed 12

independent genome-wide significant loci associated with ADHD

by combining a genome-wide association meta-analysis of

ADHD risk genes with data from the Danish Integrative

Psychiatric Research (iPSYCH) and 11 ADHD cohorts from

various nations that were gathered by the Psychiatric

Genomics Consortium (PGC), totaling 20,183 ADHD patients

and 35,191 controls.

Primarily, the identified risk genes are clustered in the cerebral

cortex and are associated with early brain development, principally

involving several brain-specific neuronal subtypes and midbrain

dopaminergic neurons. The risk gene loci are linked to

neurodevelopment, neurotransmitter transmission, and regulation

of gene expression. The aforementioned study provides

compelling evidence that ADHD is a polygenic disorder,

with several risk genes working together to determine the

development of the condition and varying degrees of illness risk

associated with each gene. In 2023, Demontis et al. identified 27

risk loci, comprising both the common loci from the 2019

analysis and recently found rarer genetic loci. Simultaneously,

after examining the expression of ADHD risk genes in different

tissues and cell types, the researchers discovered that many of

these genes were enriched in excitatory and inhibitory brain

neuronal cell types. Additionally, it was demonstrated that genes

expressed in dopaminergic mesencephalic neurons and genes

related to ADHD were significantly correlated (P = 0.005) based

on the results of single-cell RNA sequencing data and cell type-

specific analysis (12).

Furthermore, the ongoing advancement of research on

disease risk gene loci (13) will gradually lead to the genetic

elucidation of the effects of risk genes on the development of

particular neuronal subtypes and brain network connections, as

well as the further clarification of the connection between

attention-deficit, hyperactivity, and impulsive behaviors in

children with ADHD and abnormalities in brain development.

Based on prior research, an estimated 300 candidate genes have

been linked to the onset of ADHD. These genes are primarily

found in midbrain interneurons. We will then describe in

detail three common interneurons including dopaminergic

neurons, noradrenergic neurons, and 5-hydroxytryptamine (5-

HT) neurons.
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2.1.1 Association of dopaminergic genes,
dopamine neurotransmission pathway and ADHD
symptoms
2.1.1.1 Dopamine receptor genes
Dopamine receptor D4 (DRD4) is the most studied candidate

gene associated with increased risk of ADHD, DRD4 receptor

regulates dopamine signaling in the CNS and plays important

roles in attention, reward, and motivation. Chang et al. (14)

found that children with the DRD4 GG genotype were more

likely to experience ADHD than children with the DRD4 GA/

AA. Notably, variable Number Tandem Repeats (VNTR) is a

repeated section of the DNA sequence that is the main target of

variations in the DRD4 gene. The 7 repeat (7R) and the 4

repeat (4R) are two of the most prevalent variation types.

Research has identified a correlation between the 7R variation

and a higher likelihood of developing ADHD. According to

some research, those who have the DRD4 7R variation may be

more prone to ADHD in specific groups. However, the results

are inconsistent, as the association’s intensity and direction

changed based on populations and research. Thus, the DRD4

gene’s connection to ADHD remains debatable, and other

genetic and environmental variables may influence how the

gene functions. The relationship between DRD5 gene variations

and ADHD has not been researched adequately. Despite this,

Tong et al. (15) have suggested that some variations in the

DRD5 gene may be associated with an increased chance of

developing ADHD. Whereas other research has suggested that

the DRD5 gene and ADHD do not appear to be correlated.

Therefore, to validate the DRD5 gene’s involvement in the

pathogenesis of ADHD, additional research is required.

2.1.1.2 Dopamine transporter genes
An increased risk of ADHD has also been linked to variations in

dopamine transporter genes, such as those in the dopamine

transporter 1 (DAT1, also known as SLC6A3) gene. One of the

most extensively researched potential genes in the pathophysiology

of childhood ADHD is DAT1 (16). Research has indicated that

the 10R of the 40 bp VNTR in the 3′ untranslated region (3′
UTR) of DAT1 is strongly correlated with clinical symptoms in

ADHD children, particularly those with attention deficits and that

DAT1 haplotypes comprising the 10R of the 40 bp VNTR of the

3′UTR/the 6R of the 30 bp VNTR of the intron 8 are strongly

correlated with cognitive impairments in ADHD. The 10R/10R

genotype of DAT1 VNTR is related to ADHD in Korean children

(17). Study in Jordan children showed that the 10R allele of DAT1

was associated with ADHD in the children (18). On the other

hand, conflicting results were reported in the studies in the Omani

children, Han Chinese children, Iranian population and Turkish

population which showed no association significant between

VNTR polymorphism with ADHD (19–22). Meanwhile, it has

been reported that there is no association between VNTR

polymorphism of DAT1 genes and ADHD among Indonesian

children based on a case-control study (23). In 2020, Kuc et al.

also found that the SLC6A3 gene polymorphism was not

associated with the presence of ADHD (24).
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2.1.2 Genes associated with the 5-
hydroxytryptaminergic system

The frontal orbital-striatal pathway is regulated by

5-hydroxytryptamine (5-HT), and 5-hydroxytryptamine receptors

(5-HTR) are mainly located in the brain’s prefrontal cortex,

amygdala, and hippocampus (25). Deviations from normalcy in

these brain regions have a substantial impact on children with

ADHD’s hyperactivity, impulsivity and attention span. The

presence of two crucial 5-HT receptors, specifically

5-hydroxytryptamine 1A and 2A receptors, have been identified as

closely related to the behaviors associated with ADHD (26).

Additionally, the 5-hydroxytryptamine transporter (SERT), 5-HTR

1B and 5-HTR 2A genes are involved in the pathophysiology of

ADHD (27). The 5-hydroxytryptamine transporter gene (SLC6A4/

5-HTT) encodes the 5-hydroxytryptamine transporter (SERT) and

regulates the effectiveness of 5-HT. This gene promoter region

(5-HTTLPR) is associated with ADHD pathogenesis as the long

allele (L) and the short allele (S). Children with ADHD exhibit

more evident behavioral issues and hyperactivity when they have

the “S” allele and the “S/S” genotype, and a greater degree of

executive function impairment when they have the “L” allele (28).

2.1.3 Genes connected to the noradrenergic
system

The norepinephrine transporter (NET, SLC6A2) was discovered to

reuptake sympathetically released norepinephrine (NE) into the

presynaptic membrane via active transport. Since norepinephrine

transporter antagonists can affect the effectiveness of pharmacological

treatment in children with ADHD, the norepinephrine transporter

gene has emerged as the most extensively researched noradrenergic

system gene. According to Shang et al. (29), children with ADHD

can have their intrinsic brain activity, attention, and visual memory

regulated by the norepinephrine transporter gene. Shirama et al. (30)

concluded that NE modulation of serum concentrations and gene

interactions alter alertness in ADHD patients, leading to an increased

likelihood of dangerous behaviors in ADHD patients. The findings of

Hawi et al. (31) revealed a high correlation between the development

of ADHD and SLC6A2. Wang et al. (32) found that the α-2A

adrenergic receptor (ADRA2A) gene is also a candidate gene, and

children with the ADRA2A rs553668 GG/GA genotype were

more likely to develop ADHD than those with the ADRA2A

rs553668 AA genotype.
2.2 ADHD environmental risk factors

Environmental risk factors, which mostly include psychosocial

variables, pregnancy, and perinatal risk factors, are directly linked

to the development of ADHD.

2.2.1 Pregnancy and perinatal risk factors
The development of children with ADHD has been discovered

to be influenced by perinatal circumstances, environmental

variables, intrauterine factors, and maternal self-factors

throughout pregnancy. For example, children are more likely to
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acquire ADHD if their mothers smoke, drink excessively, or are

exposed to air pollutants (polycyclic aromatic hydrocarbons), or

field nonionizing nonionizing radiation when they are pregnant

(33–36). Acetaminophen exposure during pregnancy has been

reported to be highly related to a high incidence of ADHD in

children (37). There have also been reports of possible risk

factors for ADHD in children, including maternal pre-pregnancy

overweight or obesity, severe mental illness in the parents,

hypothyroxinemia, depression, and gestational diabetes

mellitus (38–43).

2.2.2 Psychosocial factors
Psychosocial factors primarily include parental mental health,

marital harmony, parental relationships, and family education

methods. However, the impact of the natural physical

environment, including the children’s living conditions and

family’s financial status on the onset of symptoms and overall

course of ADHD patients should not be discounted. For

instance, Nilsen et al. (44) discovered that children who are

exposed to cigarette smoke may be more likely to experience

symptoms of ADHD. The financial status of a family may also

effect a child’s likelihood of developing ADHD (45). Low family

income has often been linked to an elevated risk of ADHD in

children within research (46, 47). Meanwhile, the development of

ADHD can also be influenced by parental mental health, marital

status, and parental relationship status. A study (48) confirmed

that mothers of ADHD children exhibit more pronounced

symptoms of anxiety and depression than their fathers.

Furthermore, children with ADHD are frequently exposed to

inappropriate educational techniques for extended periods,

which makes them increasingly likely to exhibit abnormal

behavioral patterns.

Scholars have studied the mechanisms by which environmental

factors contribute to the development of ADHD in children. It was

found that children whose mothers smoked during pregnancy had

reduced volumes of cortical gray matter, cerebellum, and corpus

callosum, and thinning of frontal, temporal, and parietal regions,

along with alterations in the white matter microstructure of

several major connective bundles. Importantly these alterations in

brain regions have also been associated with deficits in cognitive

performance, auditory processing, social development and

ADHD. At the same time, studies have shown that adolescents

whose mothers smoked during pregnancy showed inefficient

recruitment of relevant brain regions (including the temporal

lobe, hippocampus and cerebellum) during response inhibition,

attention and memory tasks (49). Prenatal alcohol-exposed

children have reduced brain volumes and abnormalities in the

frontal, parietal, and temporal lobes in terms of volume, gray

matter density, shape, and cortical thickness (50), which have

been associated with attention deficits and impulsive behavior (51).

Peterson et al. applied magnetic resonance imaging studies have

found that prenatal exposure to PAH air pollutants disrupts the

development of white matter in the left hemisphere of children,

particularly in the frontal, parietal, and temporal lobes, which can

lead to ADHD symptoms and externalizing problems since this
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white matter contributes to attention and impulse control (33). Non-

clinical studies have shown evidence of various potential

mechanisms for the deleterious effects of acetaminophen on

neurodevelopment. Blecharz-Klin et al. (52) found that rats

receiving therapeutic doses of acetaminophen significantly

modulated neurotransmission in brain structures (prefrontal

cortex, hypothalamus, and striatum) associated with behavior and

working memory.

The contribution of maternal overweight/obesity to

unfavorable brain development is partly influenced by

inflammatory phenomena. Thus, inflammation may play a role

in the association between maternal overweight/obesity and

ADHD in children and adolescents. Obese pregnant women have

higher circulating levels of pro-inflammatory cytokines than

normal-weight pregnant women, and the normal developmental

trajectory of the fetal brain may be interrupted by exposure to

infections and high levels of pro-inflammatory cytokines, with

long-lasting or persistent consequences for gray matter volume

and white matter integrity (53, 54). This leaves the fetus

vulnerable to psychiatric complications, and thus ADHD is

associated with elevated levels of inflammatory cytokines (55, 56).

Recent data from the existing literature suggests that gestational

diabetes mellitus (GDM) promotes altered structural brain

morphology in the offspring. Van Dam et al. found reduced

neuronal excitability and neuronal plasticity in children whose

mothers had GDM, suggesting that GDM may lead to central

nervous system dysfunction, which may be further associated

with impaired cognitive and motor outcomes (57). In a recent

study, researchers used diffusion tension imaging studies to show

that infants of mothers with GDM exhibited microstructural

white matter abnormalities associated with impaired

neurocognitive abilities (58). Lynch et al. found that reduced

hippocampal volume in specific subregions of children exposed

to GDM in utero is accompanied by specific alterations in

hippocampal morphology (59). In another recent study, Ahmed

et al. observed reduced cortical thickness in multiple brain

structures and poorer overall cognitive performance in diabetes-

exposed offspring (60).
2.3 Epigenetic involvement in the
pathogenesis of ADHD

In the field of genetics, epigenetics focuses on gene expression

and functional regulation rather than alterations to the DNA

sequence. The most popular topics of study in epigenetics

include DNA methylation, histone modification and non-coding

RNA (61). Neurodevelopmental disorders are diseases in which

epigenetics plays a prominent role.

2.3.1 DNA methylation
DNA methylation is one of the most researched types of

modification in the field of epigenetics. By adding methyl groups

to the DNA bases, it controls the expression of genes. Research

has revealed that the DRD4 gene exhibits evidence of

methylation, with varying levels of methylation among
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individuals diagnosed with ADHD (61). Moreover, variations in

the DNA methylation of genes associated with the dopamine

signaling pathway may result in modified expression levels of the

relevant genes, which could impact dopamine signaling and

neurodevelopment, ultimately linking them to the pathogenesis

of ADHD (62, 63). In the methylome analysis of salivary DNA

from children with ADHD, Wilmot et al. (64) discovered altered

DNA methylation of the vasoactive intestinal peptide receptor 2

(VIPR2). Additionally, methylation of cytosine-phosphate-

guanine (CpG), a crucial location upstream of DRD4, plays a

significant part in dopamine’s ability to regulate. Meanwhile,

Wilmot also demonstrated that male children with ADHD had

higher levels of CpG methylation in their peripheral tissues,

indicating that DNA methylation markers in these children’s

peripheral tissues may be useful for research in the future. While

the study by Walton et al. (65) did not find evidence of

differential methylation of DRD4 and VIPR2, it discovered that

potential symptomatic changes in children with ADHD have

been distinguished by DNA methylation at birth at multiple

genomic locations.

Additionally, early-life methylation patterns in the peroxisome

network may impair the production of docosahexaenoic acid

(DHA), which may contribute to the symptoms of ADHD in

children and adolescents. Chen et al. (66) studied twin children

with ADHD and discovered several different methylated genes

between ADHD and non-ADHD siblings. In contrast to the

Wilmot result of hypomethylation of the VIPR2 gene, differential

methylation of the VIPR2 gene was also discovered, with

hypermethylation in three afflicted twins.

2.3.2 Histone modification
Another significant epigenetic mechanism that alters the

modification marks on histone proteins to control gene expression

is histone modification. Common histone modifications linked to

gene activation and expression include acetylation, methylation

and phosphorylation. They play an important role in different

nuclear processes, such as replication, DNA repair, transcription,

and chromatin structure stabilization (67). However, relatively little

work has been done on the role of histone modifications in the

pathogenesis of ADHD. Xu et al. (62) studied blood samples from

Chinese Han children and found increased expression of histone

deacetylase 1 (HDAC1) in children with ADHD compared to

healthy controls, suggesting that protein acetylation is reduced in

the group of children with ADHD. Histone methylation and

acetylation abnormalities, can all result in aberrant gene

expression, which can then influence neurodevelopment, synaptic

function, and dopamine signaling, impacting the pathogenesis

of ADHD.

2.3.3 Non-coding RNAs
Non-coding RNAs are also implicated in the pathophysiology

of ADHD, in addition to DNA methylation and histone

modification. The expression and function of genes can be

controlled by these non-coding RNA molecules (68). Notably,

individuals with ADHD may have different levels of several non-

coding RNAs’ expression. These non-coding RNAs have the
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potential to impact neurodevelopment, synaptic function, and

dopamine signaling pathways through controlling the expression

of particular genes. Srivastav et al. (69) observed that peripheral

microRNA concentrations were different in both animal models

and children with ADHD. In 2023, Dypås et al. discovered 32

microRNAs that were strongly linked to features related to

ADHD, including hyperactivity (29) and inattention (3) (70).
3 Comorbidities of ADHD

Comorbidity refers to the presence of more than one disease

diagnosis in a patient, and ADHD is frequently comorbid with

other disorders, both psychiatric disorders and non-mental

diseases, with up to 70%–80% of individuals with ADHD

experiencing concomitant psychiatric disorders throughout their

lives (71), including oppositional defiant disorder (ODD),

conduct disorder (CD), major depressive disorder (MDD),

bipolar disorder (BD), anxiety disorders (AD), and substance use

disorders (SUD). In addition, ADHD is highly comorbid with

other neurodevelopmental disorders, such as autism spectrum

disorders (ASD), learning disabilities (LD), and tic disorders

(TD). According to recent research, non-mental disorders are

very common in individuals with ADHD and greatly lower

quality of life. Research on non-mental diseases that co-occur

with ADHD has demonstrated a strong correlation with obesity,

diabetes mellitus, sleep disorders, epilepsy, and allergic diseases

(72–74). Comorbidities frequently cause children with ADHD to

have significantly impaired social functioning and complicate

their clinical presentation, diagnosis, and course of treatment.

For this reason, it is critical to understand why comorbidity

between ADHD and other diseases is so common.

Studies have revealed a biological explanation for the co-

occurrence of ODD in children with ADHD. This includes a

shared genetic basis involving the genes encoding androgen

receptors and adrenal hormones. Additionally, it has been

proposed that there is a strong correlation between serum 5-

hydroxytryptamine concentrations and aggressive behavior in

individuals. Furthermore, Noordermeer et al. demonstrated that

children with comorbid ODD and ADHD displayed genetic

variations in working memory, facial expression detection, and

temporal processing, indicating neurocognitive impairment (75).

According to an etiological study of children with co-occurring

CD and ADHD, there may be hereditary and environmental

factors that contribute to both conditions (76). The persistent

weight of linked emotional and cognitive features in people with

ADHD, as well as the association between psychosocial and

functional stressors in daily life, may be the cause of ADHD and

mood disorders and the prevalence of comorbid anxiety and

SUD (77–79). Moreover, rather than being the result of exposure

to these exposures, mental comorbidity may also be a direct

expression of common genetic variables between ADHD,

comorbid conditions, and related emotional, cognitive, and

behavioral features. Fraporti et al. (80) reported that the

interaction between the ADORA2A gene and the DRD2 gene

affects anxiety disorders in children with ADHD. Demontis et al.
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discovered an association between anxiety disorders and the

DRD2 gene in children with ADHD. A GWAS meta-analysis of

ADHD revealed that obesity, insomnia, ASD, schizophrenia,

MDD, and cannabis use disorders have significant genetic

correlations with ADHD, and there is genetic overlap between

them (74). Therefore, a major contributing factor to the

explanation of the correlation between co-occurring features and

comorbid psychiatric disorders and ADHD is genetics.

One of the most widely studied co-occurring nonmental diseases

in ADHD patients is epilepsy. The prevalence of epilepsy ranges

from 0.5% to 0.9% in children worldwide (81), and it is often

comorbid with other psychiatric disorders, such as ASD, ADHD,

and AD, with ADHD being the most common. Some researchers

have also suggested that the relationship between epilepsy and

ADHD is bidirectional (82) and that ADHD may contribute to an

elevated risk of seizures, while chronic recurrent abnormal

discharges in children with epilepsy may exacerbate symptoms of

ADHD, such as poor attentional control and impulsive and

hyperactive behavior. The pathogenesis of epilepsy co-occurring

with ADHD is often caused by a combination of factors and may

include related mechanisms such as structural brain abnormalities,

genetic factors, and neurobiochemical mechanisms.

In terms of brain structure, Karalok et al. (83) reported that

both children with benign childhood epilepsy with

centrotemporal spikes (BECTs) and children with BECTs with

comorbid ADHD showed cortical structure abnormalities

(cortical area thinning), but comorbid ADHD in children with

epilepsy was more strongly associated with cortical area thinning.

In terms of genetic factors, the genotypic association between

ADHD and epilepsy is extremely high, and this correlation can

be explained by the influence of family aggregation, mainly on

the maternal side, as well as by individual-specific environmental

factors (84). A number of studies have suggested that epilepsy

comorbid with ADHD may be due to the presence of common

genetic abnormalities between the two, mainly in the IQSec2

gene, the SLC6A1 gene, the SLC9A9 gene, the Dlg4 gene, and

the Vamp2 gene (85–87). In terms of neurobiochemistry,

abnormalities in dopamine receptor function or dopamine

overproduction in the central nervous system are currently

considered to be the main mechanisms for the co-occurrence of

epilepsy and ADHD.
4 Neuroimaging features

Based on some studies, cortical maturation in ADHD patients

involves multiple regions and cortical dimensions. Primarily, this is

manifested in ADHD patients as delayed developmental

trajectories. Previously, Shaw et al. (88) also demonstrated that

cortical maturation in ADHD patients is significantly delayed.

Likewise, Qian et al. (89) found developmentally relevant delays

in inhibitory and transfer functions in children with ADHD.

Children with ADHD are more affected by subcortical

abnormalities; the more delayed subcortical structure

development, the more prominent the hyperactivity and

impulsivity symptoms in the child, and the slower the cortical
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thinning of the prefrontal and cingulate regions (90, 91). Besides, a

report published in 2021 identified that children with ADHD had

smaller cerebral cortex total surface area, cortical thickness and

subcortical areas (7). Simultaneously, the developmental

trajectory of gray matter volume and cortical thickness is

correlated with changes in symptoms of ADHD. The more

severe the symptoms, the slower the brain matures (65, 92).

Therefore, the characterization of the corresponding brain

regions of ADHD patients in magnetic resonance imaging will be

explored in terms of the following imaging techniques.
4.1 Functional magnetic resonance imaging

Functional magnetic resonance imaging (fMRI) primarily uses

magnetic fields to measure the blood oxygen level-dependent

(BOLD) response in the cerebral cortex and subcortical regions.

By gathering data from participants while they are at rest and in

various task-design scenarios, fMRI can indirectly reflect how the

brain functions.

The resting-state fMRI describes the low-frequency

fluctuations that arise spontaneously during an MRI scan while

the patient’s body is at rest and not thinking. The resting-state

network describes the multiple brain regions where the fMRI

signals are correlated with each other in the resting state. The

default mode network (DMN), a significant resting-state

network, is made up of brain areas that, in healthy individuals,

exhibit increased activity during waking rest and deactivation

with increasing attentional demands (93, 94). However, this

negative correlation between the default mode network and

attention will be diminished or nonexistent in ADHD patients,

which could account for the reduced sustained attention

brought on by default mode network-mediated attention

deficiencies (95–98).

Moreover, Sun et al. (99) demonstrated that children with

ADHD had more fragmented resting-state network connection

patterns and delayed functional network development. Research

employing resting-state fMRI has demonstrated dysfunctional

connectivity in the brain regions of the dorsal anterior cingulate

cortex and posterior cingulate cortex and aberrant developmental

patterns in the interaction between the dorsal anterior cingulate

cortex and DMN in patients with ADHD (99). Furthermore,

TIAN et al. (100) discovered that children with ADHD had

significantly improved functional connectivity in the dorsal

anterior cingulate cortex as well as bilateral thalamus, bilateral

cerebellum, and bilateral insula. Additionally, children diagnosed

with ADHD exhibited reduced functional connectivity in the

areas of the thalamus and basal ganglia (96).

fMRI combines many task paradigms to represent the various

cognitive processes occurring in the brain. Studies on ADHD

patients have revealed impairments in cognitive abilities such as

working memory, sustained attention, and inhibitory function

(101). Research has demonstrated (102) that when engaged in

working memory tasks, individuals with ADHD exhibit

decreased activity in bilateral frontal lobes, frontal-to-parietal
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controls, working memory-related brain regions consistently and

repetitively exhibit underactivation (103, 104). Children with

ADHD have also been observed to show under-activation of

brain regions associated with inhibitory control in inhibitory

function tasks (103, 104).

Furthermore, Christakou et al. (105) used magnetic

resonance imaging to demonstrate that patients with ADHD

exhibited significantly higher activation in precuneus regions

but significantly lower activation in the left dorsolateral

prefrontal cortex, superior parietal gyrus, and striatal-thalamic

regions in an alertness task involving sustained attention.

Additionally, children with ADHD mostly exhibit decreased

activation of the right dorsolateral frontal-basal ganglia-

thalamic-parietal network when doing tasks that target

attentional processes (103, 106). Reduced frontal-striatal loop

activation has also been seen in children with ADHD during

sustained attention activities (107, 108).
4.2 Functional near-infrared spectroscopy

Functional near-infrared spectroscopy (fNIRS) utilizes near-

infrared light to track variations in oxygen and deoxyhemoglobin

concentrations over time. Notably, it has been used extensively in

studies because it is less sensitive to motion artifacts than fMRI,

safe, inexpensive, and requires less body immobilization. fNIRS is

a useful tool for measuring brain activity during resting and task

states. Blood flow and volume rise when brain areas are activated

in response to stimuli, and this can be measured by determining

the concentration of local hemoglobin (HbO), deoxyhemoglobin

(HbR), or total hemoglobin (HbT). Thus, fNIRS is a valuable

assessment instrument for neurodevelopmental research,

particularly in analyzing the effects of interventions on children

with ADHD (109, 110).

Researchers have demonstrated that resting-state fNIRS is

repeatable in terms of functional connectivity and network

topological characteristics (111–114). According to research

conducted in 2020 by Wang et al. (115), children with ADHD

had significantly lower functional connectivity and global

efficiency of brain networks during the resting state when using

fNIRS. Concurrently, each network node in the brain experienced

corresponding changes in efficiency. The results may indicate

deficiencies in reaction inhibition and information overload in

vision and attention in children with ADHD, according to the

dual pathway hypothesis. It was further established that functional

connection networks and symptoms of ADHD are related.

Besides, a negative correlation was identified between the reduced

efficiency of the right somatomotor network nodes and the

symptoms of hyperactivity and impulsivity. In 2021, based on a

multiscale entropy study, Hu et al. found (116) that children with

ADHD had lower brain signal variability in several functional

brain networks (such as the default mode, frontoparietal network,

attentional network, and visual network) than did healthy

children, aligning with Wang’s et al. (115) findings.
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When examining the potential connection between alterations

in brain activation and executive function in ADHD patients,

fNIRS is a highly effective tool (117, 118). Meanwhile, a task-

based investigation of dynamic functional connectivity in

children with ADHD was carried out by Sutoko et al. (119). The

frontal-cingulate-striatal-thalamic and frontal-parietal-cerebellar

networks, which control working memory, attention, and

inhibitory function, exhibit complicated multisystem deficits in

ADHD patients.

In inhibitory control tasks, adolescents with ADHD have

inferior connectivity within the inhibitory network (120) Sutoko

et al. (121) discovered that children with ADHD tend to show a

decreased likelihood of an advantageous connectivity state and an

increased likelihood of other connectivity states in an inhibitory

control task. In a 2023 study, Hou et al. (122) demonstrated that

activation areas inhibiting cognitive interference ability were

concentrated in the bilateral prefrontal cortex, whereas activation

areas inhibiting control skills were broadly distributed in the

bilateral prefrontal cortex, parietal and frontal regions, the left

temporal and superior temporal cortex, the right inferior frontal

gyrus, and the middle frontal gyrus. According to Inoue et al.

(123), children with ADHD showed decreased prefrontal

activation during a go/no-go task. Children with ADHD showed

lower levels of brain activity in the left prefrontal cortex during

go/no-go task, according to a 2017 study (124). Furthermore, Wu

et al. (125) discovered that during a go/no-go task, children with

ADHD had decreased levels of oxyhemoglobin concentration in

the prefrontal brain. Prior research utilizing fMRI has also

revealed that when children with ADHD do an inhibitory task,

there is a significant bilateral decrease in cerebral blood flow in

the prefrontal cortex region (126, 127).

In working memory tasks, the activation areas of verbal

working memory in healthy individuals were primarily located in

the right prefrontal cortex (PFC), particularly in the right ventral

lateral prefrontal cortex (VLPFC) and dorsal lateral prefrontal

cortex (DLPFC), and the activation areas of visuospatial working

memory were found in the right prefrontal cortex, the frontal

pole, and the left superior frontal cortex. However, the activation

areas of patients with ADHD were less significant than those of

healthy individuals, and the corresponding brain regions of

working memory were either non-activated or weakly activated

(122). The well-known working memory paradigm known as the

n-back task has been used in functional neuroimaging studies of

ADHD (128). Using fNIRS during the n-back task, Gu et al.

(129) discovered that prefrontal complexity was lower in ADHD

patients than in healthy controls. Two recent fNIRS

investigations have demonstrated that when working on working

memory tasks, the left DLPFC is more active in patients with

ADHD (130, 131).
5 Future research directions

Future research on ADHD will focus on the following areas.

Firstly, to more precisely clinically phenotype ADHD, it might be
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possible to synthesize genetic GWAS big data analysis with findings

from ADHD cognitive science, brain connectivity mapping, and

neuroimaging; in the future, and it might be possible to phenotype

the ADHD phenotype in terms of functional impairment

dimensions. Secondly, objective markers from genetics, epigenetics,

and environmental factors that are strongly linked to the

development of ADHD will be identified and utilized to facilitate

early screening and support early diagnosis. Thirdly, neuroimaging

studies of ADHD will gradually transition from MRI or near-

infrared spectroscopic studies of ADHD to comprehensive studies

integrating ADHD risk genes, specific cell types, developmental age-

related brain networks, and neural network connectivity related to

specific brain functions (cognition, emotion regulation, etc.).

Additionally, they will map ADHD brain functions related to the

age of onset of ADHD and its phenotypes, providing a powerful

adjunct to the diagnosis of ADHD, as well as to typing, intervention

and evaluation of therapeutic efficacy.

Furthermore, given the research on the mechanism of

ADHD psychology and cognitive deficits, a digital, multi-

scenario cognitive training system suitable for ADHD children

of different ages will be developed, an accurate ADHD

assessment system based on cognitive, behavioral, and

emotional analyses as well as a digital cognitive and

psychological intervention system will be established, and an

intervention on ADHD cognitive deficits will be carried out

with ADHD data-based prescriptions.

Besides, we will integrate ADHD neurological examination,

cognitive and behavioral assessment, and brain network connection

image analysis (resting state and task state) to assess ADHD

children in all aspects, formulate individualized intervention plans,

carry out related neuromodulation including repetitive transcranial

magnetic stimulation, electroencephalographic biofeedback,

magnetic resonance biofeedback, and transcranial direct current

(DC)/alternating current (AC) stimulation, and observe the changes

in the neuromodulation technology on the neural network

connection and neural function, and establish reasonable and

feasible neuromodulation therapeutic guidelines.

Finally, the pharmacological personalized treatment approach

is a new direction for future ADHD treatment, aiming to identify

biomarkers that can predict treatment response and guide

personalized intervention. Based on genomics, neuroimaging and

other neurological techniques to reveal the underlying biological

mechanisms of ADHD, new interventional drugs can be

developed to combat ADHD, which will help to target the

treatment of different phenotypes of ADHD.
6 Conclusions

In summary, ADHD is a critically important

neurodevelopmental condition in children. Through genetic

GWAS analysis, epigenetic and neuroimaging studies in children

with ADHD, researchers have discovered genome-wide significant

loci associated with the development of ADHD, as well as

thinning of gray matter thickness throughout the entire cerebral
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cortex, abnormalities in brain structure and function, and delayed

development of neural networks in children with ADHD. This

review offers potential uses in the investigation of the brain

underpinnings of development, aging, and neurological illnesses.
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