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Post-translational modifications
and bronchopulmonary dysplasia
Kun Yang, Ting He, Xue Sun and Wenbin Dong*

Department of Neonatology, Children’s Medical Center, The Affiliated Hospital of Southwest Medical
University, Luzhou, China
Bronchopulmonary dysplasia is a prevalent respiratory disorder posing a
significant threat to the quality of life in premature infants. Its pathogenesis is
intricate, and therapeutic options are limited. Besides genetic coding, protein
post-translational modification plays a pivotal role in regulating cellular
function, contributing complexity and diversity to substrate proteins and
influencing various cellular processes. Substantial evidence indicates that
post-translational modifications of several substrate proteins are intricately
related to the molecular mechanisms underlying bronchopulmonary dysplasia.
These modifications facilitate the progression of bronchopulmonary
dysplasia through a cascade of signal transduction events. This review
outlines the relationships between substrate protein phosphorylation,
acetylation, ubiquitination, SUMOylation, methylation, glycosylation, glycation,
S-glutathionylation, S-nitrosylation and bronchopulmonary dysplasia. The aim
is to provide novel insights into bronchopulmonary dysplasia’s pathogenesis
and potential therapeutic targets for clinical management.
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Introduction

Bronchopulmonary dysplasia (BPD) represents a chronic lung ailment affecting

premature infants, characterized by complex pathogenesis and clinical manifestations

associated with elevated morbidity and mortality rates (1). Despite remarkable

advancements in perinatal medicine, understanding the pathophysiology of BPD remains a

formidable challenge. Therefore, investigating BPD’s pathogenesis from multiple

perspectives is of paramount importance. Post-translational modifications (PTMs) are

distinct chemical alterations occurring at amino acid termini or side chains of proteins

subsequent to translation. These modifications bestow proteins with high complexity and

diverse biological functions. Over 200 PTMs have been identified, most of which are
Abbreviations

BPD, bronchopulmonary dysplasia; PTMs, post-translational modifications; MAPK, mitogen-activated protein
kinases; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; ERS, endoplasmic reticulum
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decapentaplegic; TGF-β, transforming growth factor-β; GRP78, glucose-regulated protein 78; Drp1, dynamin-
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proteases; NRF2, nuclear factor erythroid 2-related factor 2; Keap1, kelch-like ECH-associated protein 1; C/
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catalyzed by enzymes, with some being non-enzymatic reactions (2).

Table 1 lists the characteristics of several common PTMs. A growing

body of evidence indicates that PTMs play a significant role in the

development of various diseases associated with prematurity, with

BPD being of particular interest (6, 7). This review delves into the

potential relationships between well-studied PTMs such as

phosphorylation, acetylation, ubiquitination, and methylation, and

the development of BPD. Beyond elucidating the fundamental

principles of these PTMs, the focus lies in elucidating how these

modifications influence specific substrate protein characteristics,

thus impacting BPD. Understanding the molecular mechanisms of

protein PTMs holds significance as it may unveil new avenues for

therapeutic strategies in managing BPD.
Phosphorylation

Phosphorylation, one of the most common PTMs, plays a crucial

role in various cellular processes. It influences substrate protein

interactions, enzyme activity, subcellular localization, half-life and

the turnover of target proteins through kinases (which add

phosphate groups via phosphorylation) and phosphatases (which

remove phosphate groups via dephosphorylation). Phosphorylation

predominantly occurs at serine, threonine, and tyrosine residues on

substrate proteins (8). In this section, we will discuss the

significance of phosphorylation modifications on several substrate

proteins, including members of the mitogen-activated protein
TABLE 1 Characteristics of several common PTMs (3–5).

PTMs Modifying
group

Modifying
group types

Modification
location

Phosphorylation Phosphate group Small chemical
group

Serine, threonine and
tyrosine

Acetylation Acetyl group Small chemical
group

Lysine

Methylation Methyl group Small chemical
group

Lysine and arginine

Succinylation Succinyl group Small chemical
group

Lysine

Ubiquitination Ubiquitin Polypeptide chain Lysine

Neddylation NEDD8 Polypeptide chain Lysine

SUMOylation SUMO Polypeptide chain Lysine

Glycosylation Glycans Complex molecules Serine or threonine

Glycation Glucose Complex molecules Inconclusive

Lipidation Lipid groups Complex molecules Inconclusive

Prenylation Isoprenoid lipids Complex molecules Cysteine

S-
Glutathionylation

Glutathione Complex molecules Cysteine

S-Nitrosylation Nitrosyl group Small chemical
group

Cysteine

PTMs, post-translational modifications; SIRT5, sirtuin 5; DUBs, deubiquitinating enzymes; NEDD

like modifier; SENPs, SUMO-specific proteases; FPPS, farnesyl pyrophosphate synthase; GGPPS

GSNOR, S-nitrosoglutathione reductase; Trx, thioredoxin.
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kinases family, small mothers against decapentaplegic, dynamin-

related protein 1, glycogen synthase kinase-3β, and nuclear factor-

kappa B, particularly concerning their roles in BPD (Figure 1A).
Mitogen-activated protein kinases (MAPK)

MAPK, a pivotal family of proteins, includes extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38

kinase. ERK is primarily associated with cell genesis, proliferation,

and differentiation, p38 is responsible for inflammation, apoptosis,

and autophagy, while JNK is involved in cellular stress responses,

differentiation, proliferation, and apoptosis (9). A growing body of

evidence suggests that phosphorylation modifications of MAPK

family members are closely intertwined with BPD. Studies have

revealed that ERK phosphorylation accelerates lung fibroblast

proliferation, transdifferentiation, and migration. This acceleration

is achieved by expediting the cell cycle progression from the G1 to

S phase and enhancing the synthesis of α-SMA, contributing to

hyperoxia-induced lung fibrosis in neonatal rats (10, 11).

Additionally, ERK phosphorylation promotes mitochondrial

apoptosis and inflammatory pathways, which are significant

factors in BPD (12). Conversely, decreased levels of

phosphorylated ERK have been found to offer protection against

hyperoxia-induced lung injury in neonatal rats (13). These

findings suggest that inhibiting ERK phosphorylation may be a

potential protective strategy for BPD. However, conflicting studies
Key enzymes Cell biological processes
involved

Kinases and phosphatases Signal transduction, protein
interactions and subcellular localization

Acetyltransferases and deacetylases Transcription, protein degradation,
stress response and cellular metabolism

Methyltransferases Cell differentiation, transcription and
DNA damage response

SIRT5 Metabolic homeostasis and epigenetic
regulation

E1 activating enzymes, E2 conjugating
enzymes, E3 ligating enzymes and DUBs

Cell cycle, proliferation, differentiation,
apoptosis and DNA damage repair

E1-E2-E3 multi-enzyme system and
deneddylases

Protein interactions, signal
transduction, cell cycle and autophagy
response

E1 activating enzyme (SAE1/SAE2), E2
conjugating enzyme (Ubc9), E3 ligation
enzymes and SENPs

Cell cycle, DNA damage repair, protein
transcription, interactions and inter-
nucleoplasmic transport

Glycosyltransferase and glycosidases Protein secretion, transport, folding and
degradation

Non-enzymatic reaction Reduces protein activity

Lipotransferases Protein transport, location and
interactions

FPPS and GGPPS Signal transduction

GST and Grx Redox regulation

GSNOR and Trx Redox regulation

8, neural precursor cell-expressed, developmentally downregulated 8; SUMO, small ubiquitin-

, geranylgeranyl pyrophosphate synthase; GST, glutathione S-transferase; Grx, glutaredoxin;
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FIGURE 1

PTMs of several substrate proteins are involved in the pathogenesis of BPD. PTMs including (A) phosphorylation, (B) glycosylation, (C)
S-glutathionylation, (D) ubiquitination, (E) SUMOylation, (F) methylation, and (G) acetylation alter the activity of substrate proteins, which can
positively or negatively affect BPD through a series of signal transduction events. Schematic created by Figdraw (www.figdraw.com). PTMs, post-
translational modifications; BPD, bronchopulmonary dysplasia; ERK, extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; ERS,
endoplasmic reticulum stress; Smad, small mothers against decapentaplegic; Drp1, dynamin-related protein 1; BPD-PH, BPD-pulmonary
hypertension; GSK-3β, glycogen synthase kinase-3β; IκB, inhibitor of κB; IKK, inhibitor of κB kinase; NF-κB, nuclear factor-kappa B; Keap1, kelch-
like ECH-associated protein 1; NRF2, nuclear factor erythroid 2-related factor 2; MnSOD, manganese superoxide dismutase; ACE-2, angiotensin-
converting enzyme-2; Nr2f2, nuclear receptor subfamily 2, group F, member 2; C/EBPα, CCAAT/enhancer-binding protein alpha; OTUs, ovarian
tumor proteases; PTEN, phosphatase and tensin homolog; SIRT1, sirtuin 1; SENPs, SUMO-specific proteases; DNMT, DNA methyltransferase;
RUNX3, runt-related transcription factor 3; HDACs, histone deacetylases; CINC-1, cytokine-induced neutrophil chemoattractant-1; FoxO1,
forkhead box O1.
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propose that ERK phosphorylation could mitigate hyperoxia-

induced lung injury in mice by promoting angiogenesis (14).

Menon et al. (15) have indicated that phosphorylated ERK levels

increase early during hyperoxia exposure, potentially as a

compensatory mechanism to promote angiogenesis. Nevertheless,

sustained hyperoxia reduces phosphorylated ERK, hindering cell

cycle progression and, consequently, pulmonary angiogenesis.

Moreover, phosphorylated ERK activates cell survival signaling to

mitigate hyperoxia-induced damage to lung epithelial cells (16).

These contradictory findings underscore the complexity of the role

played by phosphorylated ERK in BPD pathogenesis. Thus, it is

essential to further investigate whether additional factors influence

the impact of phosphorylated ERK in BPD, beyond the

considerations related to the study population and exposure factors.

The JNK signaling pathway is closely associated with

endoplasmic reticulum stress (ERS), and plays a significant role

in the pathogenesis of BPD. Specifically, the phosphorylation of

inositol-requiring enzyme 1 alpha (IRE1α) and JNK leads to

apoptosis in lung epithelial cells associated with ERS (17). This
Frontiers in Pediatrics 03
indicates that JNK signaling activation contributes to cell death

and ERS in the context of BPD. Conversely, inhibiting the

phosphorylated IRE1α/JNK pathway has been shown to attenuate

lung tissue inflammation, oxidative stress and apoptosis in a rat

model of hyperoxia-induced lung injury (18). Phosphorylated

p38 promotes this transition, which is associated with the

development of lung fibrosis. This transition involves the

conversion of alveolar epithelial cells (AECs) into mesenchymal-

like cells, contributing to tissue scarring (19). Phosphorylated p38

inhibits the expression of claudin-18, a protein that plays a role

in maintaining the integrity of the alveolar epithelial barrier. This

disruption can lead to increased permeability and tissue damage

(20). Activation of p38 signaling can induce ferroptosis, a type of

programmed cell death characterized by lipid peroxidation and

iron-dependent cell damage (21). Phosphorylated p38 can

activate oxidative stress pathways and promote apoptosis in

AECs, contributing to tissue injury (22). Additionally,

phosphorylated p38 can enhance the expression of IL-33, a

cytokine that has the ability to degrade fibronectin via its
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receptor neutrophil extracellular traps. This process is relevant to the

pathological progression of BPD (23). Conversely, down-regulation

or inhibition of phosphorylated p38 signaling has shown promise

in attenuating BPD in neonatal mice by reducing inflammation

(24). This suggests that targeting the p38 pathway could be a

therapeutic approach to mitigate the effects of BPD.
Small mothers against
decapentaplegic (smad)

Smad proteins are crucial transcription factors that regulate gene

expression. They are affected by various modifications, with

phosphorylation being a key one. Phosphorylated Smad is a

critical component of the transforming growth factor-β (TGF-β)

pathway (25), which is closely related to BPD. Studies have

identified that the TGF-β/phosphorylated Smad3 signaling

pathway can trigger cell death and impair lung development,

particularly in mice lacking the chaperone protein GRP78 in the

endoplasmic reticulum (26). Elevated levels of phosphorylated

Smad2/3 may also contribute to problems with pulmonary blood

vessel development in BPD (27). Exposure to high levels of

oxygen increases the phosphorylation of Smad2 and Smad3 in

lung microvascular endothelial cells, leading to changes that

promote endothelial-mesenchymal transition and, subsequently,

pulmonary hypertension in mice (28). Therefore, targeting Smad

phosphorylation shows promise as a therapeutic approach for

BPD. In fact, inhibiting TGF-β-induced Smad2/3 phosphorylation

has been shown to delay the development of BPD (29).
Dynamin-related protein 1 (Drp1)

Drp1 is a key regulator of mitochondrial dynamics and

undergoes various PTMs, including phosphorylation,

SUMOylation, S-palmitoylation, ubiquitination, S-nitrosylation,

and O-GlcNAcylation (30). Phosphorylation of Drp1, specifically

at serine 616, appears to be involved in the development of BPD.

Increased phosphorylation at this site is associated with

mitochondrial fragmentation in lung endothelial cells and the

formation of BPD-related pulmonary hypertension (BPD-PH) in

rats exposed to high oxygen levels (31). Interestingly, different

phosphorylation sites on Drp1 respond differently to lung injury

caused by hyperoxia. Reduced phosphorylation at serine 637, for

instance, is related to mitochondrial dysfunction in a mouse

model of acute lung injury (ALI) (32). In contrast, in another

in vitro experiment, hyperoxia increased phosphorylation of

Drp1 at the serine 616 site to cause increased mitochondrial

fragmentation in lung endothelial cells (33).
Glycogen synthase kinase-3β (GSK-3β)

GSK-3β is a serine/threonine kinase that plays a role in various

cellular processes, including cell proliferation, DNA repair, the cell

cycle, and metabolic pathways, by phosphorylating target proteins

(34). For instance, it can lead to sustained fibroblast activation by
Frontiers in Pediatrics 04
phosphorylating β-catenin at tyrosine 489 (6). This phosphorylated

GSK-3β/β-catenin pathway can thicken alveolar septa and promote

the differentiation of lung mesenchymal stromal cells (35). These

are important events in the development of BPD. Rodent models

further demonstrate that GSK-3β-mediated inflammation and

oxidative stress play an important pathological role in hyperoxia

lung injury (36). Interestingly, in a rat BPD model, increased

GSK-3β phosphorylation led to lung inflammation and

simplification of alveolar and pulmonary vascular structures (37).

This suggests that, in addition to its role in modifying other

proteins through phosphorylation, GSK-3β’s own activity is

influenced by phosphorylation. Specifically, increased

phosphorylation at serine 9 promotes the nuclear translocation of

β-catenin, which disrupts alveolar and vascular development and

contributes to pulmonary hypertension associated with hyperoxia-

induced lung injury in mice (38).
Nuclear factor-kappa B (Nf-κB)

NF-κB is a transcription factor that plays a crucial role in

various cellular processes, including inflammation, cell survival,

and differentiation. The phosphorylation modification of NF-κB

is significant in regulating these processes (39). Elevated levels of

NF-κB phosphorylation were associated with inflammation and

apoptosis in a rat model of BPD (40). Conversely, inhibiting NF-

κB phosphorylation reduced oxidative stress and inflammation

induced by hyperoxia in AECs and alleviated lung injury caused

by hyperoxia in neonatal mice (41, 42). It is important to

consider the roles of two upstream factors, inhibitor of κB (IκB)

and inhibitor of κB kinase (IKK), in activating NF-κB. IKK

becomes activated through phosphorylation and subsequently

inactivates IκB by phosphorylation, leading to the nuclear

translocation of NF-κB (39). In fetal lung fibroblasts, hyperoxia

induces the phosphorylation of IκBα at tyrosine 42, activating

NF-κB and contributing to apoptosis and oxidative stress (43).

Additionally, inhibiting phosphorylated IKK/NF-κB is associated

with the protective effect of IL-3 deficiency against hyperoxia-

induced lung injury in mice (44).

In fact, the phosphorylation modifications of substrate proteins

involved in the pathogenesis of BPD may extend beyond the

examples mentioned above. For instance, in a rat model of

hyperoxia-induced BPD-PH, reduced phosphorylation of

endothelial nitric oxide synthase (eNOS) at the serine 1,177 site

may contribute to increased pulmonary vascular tone (45).

Hyperoxia also inhibits the phosphorylation of GTP-cyclohydrolase-

1 at the serine 51 site, impacting tetrahydrobiopterin synthesis and

potentially playing a role in hyperoxia-induced lung injury in rats

(46). Clinical studies have shown that low levels of phosphorylated

vasodilator-stimulated phosphoprotein, which affects cell

proliferation and migration, are observed in the lung tissue of

infants who succumb to BPD (47). Protein kinase B (Akt) is

involved in various biological activities, such as cell survival and

proliferation. Its phosphorylated form mediates forkhead box O3

(FoxO3) and E26 oncogene homologue 1 signaling, which plays an

important role in counteracting hyperoxia-induced apoptosis in
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AECs (48, 49). However, due to space limitations, we regret that we

cannot provide a comprehensive summary of all phosphorylation

modifications of substrate proteins related to BPD. This remains an

avenue for future research. Nevertheless, gaining a comprehensive

understanding of these phosphorylation modifications of substrate

proteins is likely to enhance our comprehension of the pathogenesis

of BPD. Additionally, finding a balance between phosphorylation

and dephosphorylation of substrate proteins may represent a

potential therapeutic strategy for BPD.
Acetylation

The process of acetylation modifications is controlled by two

classes of enzymes: histone acetyltransferases, which are

responsible for adding acetyl groups to lysine residues on target

proteins, and histone deacetylases (HDACs), which catalyze the

removal of acetyl groups (50). A growing number of studies have

shown that acetylation modifications can influence the progression

of BPD (Figure 1G). In a rat model of BPD, hyperoxia inhibits the

activity of HDACs, leading to an increase in cytokine-induced

neutrophil chemoattractant-1, which promotes inflammation and

disrupts alveolar development (51). Moreover, a reduction in

HDACs activity could attenuate the deacetylation of MyD88 and

NF-κB, exacerbating sepsis-induced lung inflammation and

impairing lung development in mice, leading to pathological

changes similar to those observed in BPD (52). Conversely,

enhanced HDACs activity alleviates lipopolysaccharide-induced

alveolar developmental arrest in rats by inhibiting TGF-α (53).

These compelling findings suggest that HDACs may serve as a

promising therapeutic target for BPD. However, the role of

HDACs in BPD appears to be controversial, as a previous animal

study demonstrated that reduced HDACs activity could enhance

the expression of acetylated histones H3 and H4, which supports

recovery from hyperoxia-induced lung injury in neonatal rats (54).

One possible explanation is that acetylation modifications of

different target proteins may have different effects against BPD.

It is worth mentioning that the class III HDACs, which depend

on NAD+ and are known as the sirtuins (SIRTs) family, may play

an important protective role in BPD. Both human AECs and rat

BPD models have shown that the activation of SIRT1 reduces

hyperoxia-induced apoptosis by deacetylating p53 (55, 56). SIRT1

may also have the ability to reduce ERS associated with

hyperoxia ALI in rats, but whether the exact mechanism involves

the deacetylation of SIRT1 remains to be elucidated (57).

Furthermore, in vitro and in vivo experiments have demonstrated

that SIRTs can attenuate hyperoxia-induced AECs injury by

deacetylating FoxO1 (58). This is supported by our recent study,

which found that the attenuation of SIRT1’s ability to deacetylate

FoxO1 leads to hyperoxia-induced injury in umbilical vein

endothelial cells by inhibiting autophagy (59).
Ubiquitination

Ubiquitination is a process in which ubiquitin molecules

covalently bind to target proteins, leading to their degradation in
Frontiers in Pediatrics 05
a series of steps involving E1-activating enzymes, E2-binding

enzymes, and E3-ligases. Deubiquitinating enzymes (DUBs) are

responsible for removing ubiquitin from ubiquitinated proteins,

allowing for the dynamic reversibility of ubiquitination. Common

types of DUBs include ubiquitin-specific proteases (USPs),

ubiquitin C-terminal hydrolases, ovarian tumor proteases

(OTUs), and others (60). Experimental studies have shown that

ubiquitination modifications of specific target proteins are

associated with the pathophysiology of BPD (Figure 1D). For

instance, exposure to hyperoxia increases the ubiquitination

modification of angiotensin-converting enzyme-2, diminishing its

protective effect on lung epithelial cells (61). Additionally,

nuclear factor erythroid 2-related factor 2 (NRF2) plays a

protective role in BPD by regulating the antioxidant response

element, a process effective only when the ubiquitinated

degradation of NRF2 by kelch-like ECH-associated protein 1

(Keap1) is attenuated (62). Another target protein such as

nuclear receptor subfamily 2, group F, member 2, is inhibited

through ubiquitination by S-phase kinase-associated protein 2,

thereby inhibiting CCAAT/enhancer-binding protein alpha (C/

EBPα), which is necessary for the protection of lung cells in

mice with hyperoxia-induced lung injury (63). In addition to the

modification of target proteins, ubiquitination has been linked to

organelle activity. Increased total ubiquitinated proteins in AECs

have been shown to promote ERS-mediated apoptosis under

hyperoxia exposure (64).

On the other hand, DUBs have the potential to impact BPD,

even though direct evidence is lacking. Studies have revealed that

USP18 and USP25 attenuate oxidative stress and inflammatory

responses induced by lipopolysaccharide in human pulmonary

microvascular endothelial cells and lung epithelial cells by

inhibiting toll-like receptor 4/NF-κB and tumor necrosis factor

receptor-associated factor 6/MAPK signaling, respectively (65,

66). Furthermore, USP22 stabilizes SIRT1 activity through

deubiquitination, thereby promoting SIRT1’s ability to

deacetylate p53 and inhibit apoptosis (67). These findings suggest

that enhancing DUB activity may contribute to the recovery of

BPD. However, in BPD mouse models, He et al. (68) found that

OTU3 enhances the stability of phosphatase and tensin homolog

protein through deubiquitination, exacerbating lung injury and

inflammatory responses. This suggests that the relationship

between DUBs and BPD is complex, with the effects of DUBs on

BPD depending on the action of target proteins as well as the

subclasses of DUBs.
SUMOylation

Similar to ubiquitination, SUMOylation is a process where the

small ubiquitin-like modifier (SUMO) covalently attaches to lysine

residues of substrate proteins in a cascade reaction catalyzed by

three enzymes. In contrast, SUMO-specific proteases (SENPs)

promote the maturation of the precursor SUMO and perform

de-SUMOylation (69). An important consideration is that

reduced SUMOylation of SIRT1 may be involved in the

pathogenesis of BPD (7). There is evidence that hyperoxia
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upregulates SENP1 to increase the nucleoplasmic shuttling of

SIRT1 and inhibits its deacetylase activity, thus promoting

apoptosis in AECs (70). Conversely, the combination of

budesonide and Poractant Alfa injection reduces the hyperoxia-

induced increase in SENP1 in peripheral blood mononuclear

cells of preterm infants, which mitigates the nucleoplasmic

shuttling of SIRT1 and ultimately prevents BPD (71). These

findings suggest that enhancing the SUMOylation of SIRT1 is

beneficial for BPD. In addition to SIRT1, SUMOylation of other

target proteins may also contribute to the pathogenesis of BPD.

For example, SENP3 induces de-SUMOylation of hypoxia-

inducible factor-1 alpha (HIF-1α), activating JNK and promoting

M1 macrophage polarization and tissue factor-mediated

coagulation cascade, leading to lipopolysaccharide-induced ALI

in mice (72, 73). Moreover, fibrosis-inducing E3 ligase 1

promotes TGF-β signaling through the ubiquitinated degradation

of SUMO-E3 ligase protein inhibitor of activated signal

transducer and activator of transcription 4, thereby contributing

to bleomycin-induced lung fibrosis in mice (74). However, it is

worth noting that not all SUMOylation of target proteins is

beneficial for BPD (Figure 1E). In hyperoxia-induced neonatal

rat lung injury, as reported by Zhu et al. (75), the SUMOylation

of C/EBPα has a negative effect on the differentiation and

secretion of AECs.
Methylation

DNA methylation, histone modifications and microRNA

expression, along with the crosstalk between them, play significant

roles in lung development at various stages by regulating

phenotypic programming (76). As a result, epigenetic changes are

pivotal in BPD development (77). Among the common

complications of prematurity, BPD is one of the most likely to

experience abnormal DNA methylation (78). Differential DNA

methylation has been implicated in hyperoxia-exposed rat lung

tissues (79), as well as during alveolar septation formation in mice

and humans (80). Notably, in rats with hyperoxia-induced lung

injury, DNA methyltransferase (DNMT) 3b-mediated DNA

methylation and enhancer of zeste homolog 2-mediated tri-

methylation of lysine 27 on histone H3 decrease runt-related

transcription factor 3 proteins associated with lung epithelial

and vascular development, possibly contributing to the

pathogenesis of BPD (81). Furthermore, hyperoxia enhances DNA

hypermethylation of TGF-β pathway-related genes and immune

system-related genes, particularly the PI3K-AKT pathway, affecting

alveolar development and later abnormal responses to respiratory

infections in mice (82, 83). Additionally, DNMT-mediated

methylation of certain microRNA promoters is associated with

BPD severity (84). These findings suggest that targeting epigenetics

may be a potential strategy to alleviate BPD (Figure 1F). Indeed, it

has been shown that vitamin D promotes the methylation status

of vitamin D-responsive elements in the interferon-γ-promoter

region, thereby inhibiting interferon-γ expression and attenuating

lipopolysaccharide-induced BPD in rats (85). In BPD mouse

models, the application of DNA methylase inhibitors potentially
Frontiers in Pediatrics 06
reduces phosphorylated Smad2/3 and increases surface-active

protein C levels, thereby improving alveolarization (86).

Furthermore, DNA methylation inhibitors reverse hyperoxia-

induced aberrant methylation of the cell cycle inhibitor p16 gene,

thereby attenuating pulmonary fibrosis in neonatal rats (87).
Glycosylation

Glycosylation refers to the process of attaching glycans to

proteins and lipids, which is carried out by glycosyltransferases.

Conversely, glycosidases are responsible for breaking down

glycosidic bonds, leading to de-glycosylation (88). Glycosylation

plays a crucial role in various biological processes, including the

secretion and translocation of proteins. It also ensures the proper

folding of proteins and shields them from degradation by

proteases (89). There is evidence indicating that exposure to high

levels of oxygen, known as hyperoxia, can temporarily disrupt the

glycosylation balance in mouse lung microvascular endothelial

cells. This disruption may impact cellular interactions and signal

transduction (90). Furthermore, a protein called endoplasmic

reticulum protein 57, associated with glycosylation modifications,

has been found to contribute to hyperoxia-induced apoptosis in

human endothelial cells by inhibiting GRP78 and activating

caspase-3 (91). Clinical studies have shown that preterm infants,

especially those born at less than 28 weeks of gestational age,

exhibit increased glycosylation of IgG Fc in their peripheral blood.

This increased glycosylation may play a role in the development of

inflammatory diseases such as BPD (92).

O-GlcNAcylation is a specific type of glycosylation involving the

binding of O-linked β-N-acetylglucosamine (O-GlcNAc) to serine or

threonine residues of substrate proteins. O-GlcNAc transferase and

O-GlcNAcase are enzymes responsible for adding and removing

O-GlcNAcylation, respectively (93). This process is implicated in

various essential cellular activities, including gene expression, signal

transduction, cell cycle regulation, nutrient sensing, protein

homeostasis, cellular stress response and neuronal function (94).

O-GlcNAcylation is particularly closely related to oxidative stress

(95). For instance, reduced O-GlcNAcylation of lung tissue proteins

has been suggested as an essential response to injury in sepsis-

induced ALI models in mice (96). Conversely, O-GlcNAcylation of

specific target proteins, like SIRT1 at the serine 549 site, can

enhance its deacetylation activity (97), promoting recovery in BPD

by reducing apoptosis (56). However, in cases of hyperoxia-induced

injury in AECs, increased O-GlcNAcylation of the mitophagy

regulator Parkin can disrupt mitochondrial homeostasis and lead to

apoptosis (98) (Figure 1B). This indicates that O-GlcNAcylation

can have both positive and negative effects in BPD, depending on

the specific substrate proteins, and requires further investigation to

understand its precise mechanisms of action.
Glycation

In contrast to glycosylation, glycation (also known as the

Maillard Reaction) is a non-enzymatic reaction where free sugars
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covalently bind to proteins. This reaction produces advanced

glycation end products (AGEs), which are important stabilizing

substances (99). The receptor for AGEs (RAGE) is abundant in

AECs, where it plays a positive role in lung development.

However, under pathological conditions, RAGE interacts with its

ligands, including AGEs, leading to inflammation and oxidative

stress that can induce lung diseases (100). RAGE makes the

developing lung more susceptible to the harmful effects of

hyperoxia (101). Studies involving RAGE-deficient mice have

shown delayed hyperoxia-induced mortality and ALI (102).

RAGE also disrupts the alveolar-capillary barrier (103) and

promotes inflammatory signals, such as high mobility group box

1 (104) and NF-κB (105), which are significant mechanisms for

RAGE’s involvement in BPD. Clinical studies have identified

serum RAGE as a promising biomarker for predicting BPD,

suggesting that targeting RAGE may be a new approach to

treating lung diseases (106).
S-glutathionylation

S-Glutathionylation is a process where mixed disulfides are

formed between glutathione and specific cysteine residues on

target proteins (5). It plays a crucial role in regulating cellular

redox signaling. For instance, in lipopolysaccharide-induced

ALI in mice, S-glutathionylation of macrophage fatty

acid-binding protein 5 at cysteine 127 is enhanced. This

modification activates peroxisome proliferator-activated

receptor (PPAR), facilitating the cells to resist oxidative stress

(107). Significant changes in S-glutathionylation of proteins are

observed in mouse models of hyperoxia-induced lung injury,

underlining its critical role in BPD (108). S-glutathionylation

of the substrate protein Keap1 is necessary for activating

the antioxidant NRF2, which may protect experimental

neonatal rats against BPD (109) (Figure 1C). However,

S-glutathionylation of proteins can also have adverse effects

under certain conditions. For example, S-glutathionylation of

certain apoptotic proteins in lung epithelial cells has

potential pathophysiological significance in pulmonary fibrosis

(110). Additionally, hyperoxia-induced S-glutathionylation of

manganese superoxide dismutase increases mitochondrial

oxidative stress in macrophages, leading to increased mortality

in mice with ventilator-associated pneumonia (111). These

findings suggest that the process by which S-glutathionylation

of proteins affects BPD may involve a complex regulatory

network, and more evidence is needed to elucidate the

specific mechanisms.

Glutaredoxin (Grx), primarily responsible for deglutathionylation,

also plays a role in cellular redox signaling. Grx1 gene deficiency has

been found to stabilize HIF-1α and inhibit NF-κB, promoting

angiogenesis and reducing apoptosis to alleviate hyperoxia-induced

lung injury in mice (112). However, another study suggests that

Grx deficiency may increase the expression of TGF-β in respiratory

epithelial cells, potentially raising the risk of developing fibrotic

lung disease (113). The differing effects of Grx may depend on

oxidative inducers and the specific substrate proteins involved.
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S-nitrosylation

S-nitrosylation is a reaction where the nitrosyl group of nitric

oxide (NO) covalently binds to the thiol group of cysteine, forming

S-nitrosothiol. This process promotes pulmonary vasodilation but

can lead to alveolitis and constriction of pulmonary artery smooth

muscle in the presence of high inhaled NO doses and oxidative

stress. Therefore, maintaining a dynamic balance of S-nitrosylation

is beneficial for alveolar integrity and NO-mediated vasodilation

(114). S-nitrosoglutathione (GSNO) is a critical donor of NO that

promotes S-nitrosylation, while S-nitrosoglutathione reductase

(GSNOR) is responsible for de-S-nitrosylation by acting on GSNO

(5). Previous studies have shown that GSNO contributes to airway

relaxation in BPD mice, whereas GSNOR is associated with

increased airway hyperresponsiveness related to BPD (115, 116).

Knockout of the alcohol dehydrogenase-5 gene encoding GSNOR

has been shown to ameliorate BPD and BPD-PH (117). Clinical

studies have revealed high expression of GSNOR in the airways and

pulmonary vasculature of BPD patients (117), suggesting its

significance in BPD pathogenesis and its potential as a therapeutic

target for BPD-PH.

Thioredoxin (Trx) is another important regulator of

S-nitrosylation, and exposure to hyperoxia can impact Trx

function. The inhibition of Trx can interfere with heat shock

protein 90-mediated oxidative responses, negatively affecting cell

survival signaling pathways associated with BPD (118).

Conversely, promoting Trx expression can prevent hyperoxia-

induced loss of uncoupling protein 2 by activating the mitogen-

activated protein kinase kinase 4/p38/PPAR-gamma coactivator 1

alpha pathway, thus reducing superoxide anion production (119).

Trx also suppresses hyperoxia-induced inflammatory responses

(120). These effects of Trx have been shown to be beneficial in

mouse models of BPD. Furthermore, Trx enhances the ability of

mesenchymal stromal cells (MSCs) to resist hyperoxia injury by

inhibiting apoptosis-regulating kinase-1/p38-mediated apoptosis

signaling. This improvement in MSC efficacy holds promise for

treating BPD (121).
Conclusion

BPD is indeed a significant and challenging complication in

preterm infants, and gaining a deeper understanding of the

molecular mechanisms underlying its pathogenesis is crucial.

PTMs influence almost all cellular biological processes by altering

the function of substrate proteins in response to environmental

changes. Investigating the relationship between PTMs and BPD

is a promising avenue of research, as it can lead to early

detection of BPD and the development of innovative therapeutic

strategies. In this article, we have discussed the significance of

several common PTMs, including phosphorylation, acetylation,

ubiquitination, SUMOylation, methylation, glycosylation,

glycation, S-glutathionylation, and S-nitrosylation, in the context

of BPD (Figure 1). However, several important questions remain

unanswered. Firstly, many substrate proteins can undergo

multiple PTMs, and understanding how crosstalk between
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different PTMs influences BPD requires further investigation.

Secondly, the same PTMs can act on different substrate proteins,

resulting in diverse effects on BPD. Deciphering the roles of both

PTMs and substrate proteins in influencing BPD is a complex

task. Finally, establishing a comprehensive network of PTMs

related to BPD and harnessing PTMs to develop novel diagnostic

markers and therapeutic targets for BPD is an intriguing

prospect that holds the potential to transform our approach to

managing this condition.
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