
TYPE Mini Review
PUBLISHED 27 September 2024| DOI 10.3389/fped.2024.1432808
EDITED BY

Minesh Khashu,

University Hospitals Dorset NHS Foundation

Trust, United Kingdom

REVIEWED BY

Rachana Singh,

Tufts University, United States

Brian Scottoline,

Oregon Health and Science University,

United States

Roberto Murgas Torrazza,

Secretaría Nacional de Ciencia, Tecnología e

Innovación, Panama

*CORRESPONDENCE

Venkatesh Sampath

vsampath@cmh.edu

RECEIVED 14 May 2024

ACCEPTED 13 September 2024

PUBLISHED 27 September 2024

CITATION

Cuna A, Kumar N and Sampath V (2024)

Understanding necrotizing enterocolitis

endotypes and acquired intestinal injury

phenotypes from a historical and artificial

intelligence perspective.

Front. Pediatr. 12:1432808.

doi: 10.3389/fped.2024.1432808

COPYRIGHT

© 2024 Cuna, Kumar and Sampath. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Pediatrics
Understanding necrotizing
enterocolitis endotypes and
acquired intestinal injury
phenotypes from a historical and
artificial intelligence perspective
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1Division of Neonatology, Children’s Mercy Kansas City, Kansas City, MO, United States, 2School of
Medicine, University of Missouri-Kansas City, Kansas City, MO, United States, 3Division of Neonatology,
Hurley Medical Center, Flint, MI, United States
Necrotizing enterocolitis (NEC) remains a devastating disease in preterm and
term neonates. Despite significant progress made in understanding NEC
pathogenesis over the last 50 years, the inability of current definitions to
discriminate the various pathophysiological processes underlying NEC has led
to an umbrella term that limits clinical and research progress. In this mini
review, we provide a historical perspective on how NEC definitions and
pathogenesis have evolved to our current understanding of NEC endotypes.
We also discuss how artificial intelligence-based approaches are influencing
our knowledge of risk-factors, classification and prognosis of NEC and other
neonatal intestinal injury phenotypes.
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Introduction

Necrotizing enterocolitis (NEC) is a devastating disease in premature infants with an

incidence of 5%–12% in very low birthweight infants (1–4). While less common than in

preterm infants, recent studies have also identified risk-factors that predispose full-term

neonates to NEC (5–8). Despite significant progress made in understanding NEC

pathogenesis over the last 50 years, the inability of current definitions to discriminate

the various pathophysiological processes underlying NEC has led to an umbrella term

that limits clinical and research progress (9, 10). Further, the lack of precise clinical,

biochemical and radiological tools to define NEC has hindered progress in delineating

it from different conditions such as septic ileus (9). We propose that identifying

endotypes of NEC based on pathophysiology, epidemiology and diagnostic tools will

pave the way for precision approaches in preventing and treating NEC (11, 12). In this

review, we provide a historical perspective on how NEC definitions and pathogenesis

have evolved to our current understanding of NEC endotypes (Figure 1). We also

discuss how artificial intelligence (AI)-based approaches are influencing our knowledge

of risk-factors, classification and prognosis of NEC endotypes and other neonatal

intestinal injury phenotypes.
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FIGURE 1

NEC – a brief history in time. INC, International Neonatal Consortium; PAF, platelet activating factor; TANEC, transfusion-associated NEC; TLR,
Toll-Like Receptor.
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NEC: diagnosis and definitions over time

The earliest report of an endotype resembling NEC could be

Charles Billard’s description 200 years ago from the Hôpital des

Enfants Trouvés (13, 14). In his textbook, he describes

“gangrenous enterocolitis” in neonates, characterized by

abdominal distension, bloody stools, septicemia and death.

Autopsy reports showed the ileum was particularly affected with

erythema, swelling, ecchymosis, and friability (14). A systematic

report of preterm NEC is found in Bednar’s description of

“entero-colitis” in 25 infants admitted to the Vienna hospital for

foundlings between 1846 and 1847, 7 of whom were premature,

with majority developing disease between 3 and 30 days of life.

In 20 infants who died, autopsy showed evidence of necrosis,

gangrene and hemorrhage, very similar to current descriptions of

severe advanced NEC (15). In several neonatal intensive care

units established across Europe to care for preterm infants

between 1910 and 1940s, a NEC-like disease with pathological

features including intestinal perforation in lethal cases is

poignantly described (16, 17). Between 1948 and 1950, Schmidt

and Kaiser et al. described “enterocolitis ulcerosa” in 85 mostly

breast-fed preterm infants in Graz, Germany (18, 19). They

accurately documented the ileocecal involvement, peritonitis, and

perforation and speculated the role of a specific pathogen. Apart

from the lack of corroborative radiological, cytological and

bacteriology evidence, these physicians established the pathology

of NEC and identified the at-risk preterm infant population.

These studies did not delve into the pathophysiology of NEC,

but hinted at infectious etiology, including viruses.

While pneumatosis intestinalis had been reported in NEC before,

it was Berdon in 1964, who described the entire spectrum of what has

become the signe qua non of NEC diagnosis (20–22). Bell et al. in

1978 proposed the first systematic classification of NEC, grading it

from stage I to III based on clinical signs, biochemical markers,

radiological signs and disease severity (23). This significant advance

enabled consistency among clinicians and researchers to classify

NEC more accurately than before, and also provided severity-based

treatment guidelines. Around the time Bell et al. classified NEC,

several investigators using animal and human studies suggested

that hypoxia, formula feeding, speed of feed advancement and

infection were risk factors for NEC in the late preterm population

(24–26). Walsh and Kliegman in 1986 modified this classification
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to 6 categories with two subcategories for stage I, II and III (10).

In their classical paper, they also summarized the existing thoughts

on pathogenesis of NEC indicating the potential roles for direct

intestinal infections, bacterial overgrowth, formula feeding, milk

intolerance, ischemia, hypertonic enteral supplements in causing

mucosal injury and inflammation in an immature gut (10).

Interestingly, their summary hinted at multi-factorial causation and

a broad spectrum of mechanisms underlying NEC evolution. While

several other definitions including the Vermont Oxford Network,

Centers of Disease Control and Prevention and the UK Neonatal

Collaborative NEC Study group among others have defined NEC,

Bell’s staging and modified Bell’s staging are still the most

commonly accepted definitions for NEC (12). From mid-1980s to

the current era, several investigators have unraveled the role of

dysregulated Toll Like receptor 4 (TLR4) signaling, gut microbiome

and dysbiosis, inflammatory mediators and genetic predisposition

in NEC (1, 4, 27–35).

Recognizing the limitation of the Bell’s criteria in not recognizing

spontaneous ileal perforation (SIP), differentiating NEC in term

infants vs. preterm infants, and standardizing definitions for

research purposes, the International Neonatal Consortium NEC

definition groups proposed to classify NEC based on gestational-

age, timing of onset of disease, one of the two clinical signs

(hematochezia and abdominal distension), and radiological

evidence (9). These criteria demarcate NEC that develops in

preterm infants from NEC in term infants, and also distinguishes

SIP and septic ileus from NEC in preterm infants. While these

criteria do address some of the short comings of the previous NEC

definitions, it is agnostic with respect to the different pathogenic

mechanisms and the resulting endotypes. In the subsequent

paragraphs, we will briefly review current understanding of NEC

and NEC-like intestinal injury endotypes in preterm and term

infants focusing on differences in the pathogenic mechanisms,

timing of onset, distinguishing features, and prognosis. A summary

of different NEC endotypes is presented in Table 1.
Endotypes of NEC in preterm infants

Classical NEC
The most common endotype of NEC – coined “classical NEC” –

occurs in preterm infants. The onset of presentation of classical NEC
frontiersin.org
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TABLE 1 Summary of different endotypes of necrotizing enterocolitis.

Clinical presentation Age/Timing of presentation Proposed mechanism of injury
Classical NEC Sudden onset of feeding intolerance,

abdominal distention, and bloody stools with
systemic signs of illness

Preterm infants, typically occurring
between 2 and 6 weeks after birth, around
28–32 weeks postmenstrual age

Deviant host-microbiota interactions in the immature
gut triggering excessive intestinal inflammation. Other
factors include genetic predisposition and formula-
feeding.

Transfusion-associated
NEC

Symptoms of classical NEC after packed red
blood cell transfusion in otherwise stable
preterm infant with established feeding

Preterm infants, within 48–72 h of
receiving packed red blood cell transfusion

Ischemia-hypoxemia from chronic anemic state
followed by reperfusion injury from transfusion;
factors in transfused blood triggering excessive
intestinal inflammation

Virus-associated NEC Gastrointestinal symptoms such as emesis,
diarrhea, feeding intolerance ± systemic signs
such as fever, apnea, lethargy, or irritability

Preterm infants, occurring in clusters
coinciding with peak seasons of viral
transmission. Timing variable.

Direct invasion of virus into intestinal epithelial cells
leading to intestinal injury and inflammation

Cardiac NEC Signs of NEC occurring in infant with
congenital heart disease, especially lesions
with ductal-dependent systemic blood flow

Term infants, typically occurring in the first
two weeks of life and/or post-surgical
repair, but depends on feeding patterns

Mesenteric ischemia ± reperfusion injury in the setting
of cardiac lesion that disrupts systemic perfusion

NEC associated with
congenital intestinal
anomalies

Signs of NEC occurring in infants with
gastrointestinal anomalies such as
gastroschisis and Hirschsprung’s disease

Term and late-preterm infants, timing is
highly variable, but typically in the first
weeks of life and/or post-surgical repair

Structural and functional defects in the vasculature or
mucosa related to underlying gastrointestinal anomaly
that compromise circulation, barrier function and
motility

NEC associated with
impaired mesenteric
blood flow

NEC associated with conditions that could
impair mesenteric blood flow such as
perinatal asphyxia or polycythemia

Term infants, typically occurring in the first
week of life

Combination of mesenteric ischemia ± physiologic
demands of feeding

Spontaneous intestinal
perforation

Distinct entity from NEC presenting as
abdominal distention, associated with
exposure to hydrocortisone and indomethacin

Extremely preterm infants, typically
occurring in the first 10 days of life with
minimal or no feeds initiated

Focal intestinal necrosis of terminal ileum thought to
be related to bowel wall ischemia or deficiency of
muscularis propria

Cow milk protein
allergy

Bloody stools with no systemic signs of illness
that resolves with eliminating cow milk
protein in diet

Term and preterm infants, occurring much
later after several weeks of established feeds

Non-IgE mediated allergic reaction to cow milk
protein resulting in intestinal inflammation
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has an inverse relationship with gestational age (36), often occuring

in the 28–32 week postmenstrual age with sudden onset of feeding

intolerance, abdominal distention, and bloody stools that can

rapidly progress towards intestinal perforation, peritonitis, and

multi-organ dysfunction (4). The presence of pneumatosis

intestinalis and/or portal venous gas on imaging is diagnostic of

the disease, while free air heralds intestinal perforation requiring

surgery (37). A gasless abdomen, or fixed, dilated loops – defined

by persistent location and configuration for more than 24 h – are

also a concerning imaging finding for NEC (38, 39).

While the pathogenesis of classical NEC is multifactorial,

prematurity remains its single most important risk factor, with

NEC incidence rising as gestational age and birth weight

decrease. The immature preterm gut is structurally and

functionally underdeveloped, with decreased mucosal integrity,

reduced motility, and impaired barrier function. Preterm infants

also possess an immature immune system that predisposes them

to aberrant inflammatory responses. Experimental studies reveal

excessive Toll-like receptor (TLR) activation as a key pathway

that drives intestinal inflammation in NEC (40). The other major

player in classical NEC pathogenesis is the gut microbiota.

Dysbiosis – driven by formula-feeding, antibiotic exposure, and

perinatal stress – can induce aberrant inflammation in the

preterm gut causing mucosal injury, translocation of bacteria into

the circulation and subsequent multi-organ dysfunction (1, 29).

Conversely, factors that promote a healthy gut microbiome –

such as breastmilk, avoidance of prolonged antibiotics, and

probiotics – decreases the risk of NEC (41–44).
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Despite these advances in our understanding, classical NEC

remains a complex disease with significant morbidity and

mortality risks. For instance, NEC continues to occur despite

avoidance of formula-feeding, exclusive use of human

breastmilk, probiotics, and judicious antibiotic stewardship. It

remains a leading cause of mortality, especially in infants

with extensive intestinal necrosis requiring surgery. Survivors

of NEC are also at increased risk for complications

including strictures, short gut syndrome, growth failure, and

neurodevelopmental impairments.

Transfusion associated NEC (TANEC)
Another endotype of NEC in preterm infants is TANEC or

transfusion related acute gut injury. TANEC often develops

much later than classical NEC – after the 4th or 5th week of life

– in otherwise stable preterm infants who have been established

on enteral feeds for several weeks (45). Infants who develop

TANEC have chronic anemia for several weeks, and symptoms

of NEC often are evident within 48 h after packed red blood cell

transfusion (45).

The exact pathogenesis of TANEC remains unknown. One

proposed mechanism is that chronic anemia could mimic a state

of ischemia-hypoxia in the mesenteric bed, and transfusion could

trigger a reperfusion injury of previously ischemic intestinal

tissue (46, 47). The generation of reactive oxygen species with

reperfusion injury, combined with physiological demads of

feeding, could be sufficient to cause mucosal damage and

compromise the intestinal barrier, leading to TANEC. Based on
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this pathophysiology, withholding feeds around transfusion has

been adopted by some to prevent TANEC (48), although good-

quality evidence supporting this practice remains lacking (49).

Another proposed mechanism is that intestinal injury arises from

hemolytic factors in the transfused blood. In an experimental

model of TANEC, free hemoglobin and heme in packed red

blood cells were shown to activate monocytes and macrophages

in the intestine, triggering excessive TLR inflammation and NEC

(50). Interestingly, the Transfusion of Prematurity trial did not

show differences in NEC rates among extremely preterm infants

randomized to high vs. low transfusion thresholds, and a

secondary analyses showed no temporal relationship between red

blood cell transfusion and NEC (51, 52).

TANEC poses significant morbidity and mortality risks for

preterm infants. In one meta-analysis, TANEC had higher odds

of mortality compared to classical NEC (53). In contrast, a study

using the Canadian Neonatal Network database found no

significant differences in mortality and morbidities between

TANEC and classical NEC (54).
Viral infections and NEC
Gastroenteritis caused by viral pathogens can mimic NEC

(55, 56). Rotavirus (57, 58), cytomegalovirus (59), norovirus (60),

astrovirus (61, 62), and enterovirus have been implicated in

neonatal gastroenteritis (63). As viral infections are typically not

considered in the differential diagnosis of NEC, a high index of

suspicion is required. A viral cause is suspected when NEC occurs

in clusters, coinciding with peak seasons of viral transmission

(55, 64, 65). While clinical presentation can vary, most cases

present similarly as classical NEC with gastrointestinal symptoms

such as abdominal distention, feeding intolerance, bilious emesis,

and bloody stools. Some infants present with systemic signs such

as fever, apnea, lethargy, or irritability (e.g., norovirus); while

others present with extra-intestinal manifestations such as

respiratory symptoms (e.g., enterovirus) or hepatic dysfunction

(e.g., cytomegalovirus). Early recognition of viral NEC could limit

the use of antibiotics and direct appropriate anti-viral treatment,

such as ganciclovir for cytomegalovirus.

The pathogenesis of viral NEC includes direct invasion of virus

into intestinal epithelial cells, leading to cellular injury, disruption

of tight junctions, and loss of barrier function. Viral infection also

triggers an inflammatory response which can mimic classical NEC.

Nevertheless, viral NEC tends to have a more insidious onset and a

less fulminant clinical course compared to classical NEC, which

often presents with rapid progression.
Endotypes of NEC in term infants

Term infants can also develop NEC, although the incidence is

much less than in preterm infants. NEC in term infants typically

presents earlier than preterm NEC, with average age of onset in

the 1st week of life (5, 66). Term NEC is also typically secondary

to other underlying disease processes, most notably congenital

heart disease (67).
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Cardiac NEC
The incidence of NEC in term infants with congenital heart

disease is about 2%–6%. The highest risk seems to occurr in

conditions with ductal-dependent systemic blood flow such as

hypoplastic left heart disease (68–70), although other lesions

such as truncus arteriosus and common ventricle have been

reported (71). Some studies suggest that the colon is significantly

more involved in cardiac NEC (6), but others indicate the small

intestine remains the primary location (72).

The pathophysiology of cardiac NEC is thought to be from

mesenteric ischemia caused by anatomic lesions that disrupt

systemic perfusion during diastole (73). Reperfusion injury

following ischemia could also play a major role, particularly in

infants who remain at increased risk for NEC even after surgical

correction. Other mechanisms include hemodynamic changes

while on cardiopulmonary bypass during surgery, or from

medications such as vasopressin and opiates post-surgery (74–

76). Because feeding can alter gastrointestinal perfusion and

hemodynamics, there is often hesitancy to feed infants with

cardiac disease, despite the absence of high-quality evidence (77).

Infants with cardiac NEC can have poor outcomes despite its

occurrence predominantly in term infants. In one study,

mortality rates were higher in infants with cardiac NEC

compared to non-cardiac NEC (38% vs. 27%) (78). Prolonged

hospital stay, mechanical ventilation, and parenteral nutrition

were also noted (70, 71, 74). Although less common, NEC

associated with severe congenital heart disease has also been

reported in preterm infants, showing higher mortality compared

to NEC in preterm infants without congenital heart disease (79).
Gastrointestinal anomalies and NEC
Term and late-preterm infants with gastrointestinal anomalies –

such as intestinal atresia, malrotation with volvulus, Hirschsprung’s

disease, gastroschisis, and omphalocele – are also at increased risk

of NEC (80–82). In particular, NEC has been reported to occur in

up to 20% of infants with gastroschisis (81, 82). The pathogenesis

of NEC in these conditions is related to structural and functional

anomalies of the intestine including intestinal obstruction,

dysmotility, and vascular compromise. The anatomical complexity

of gastrointestinal anomalies can increase morbidity and mortality

of these infants who also develop NEC, as the presence of

gastrointestinal anomalies would typically require surgical repair of

the underlying anatomical defect.
Other conditions associated with term NEC
Other conditions that could impair mesenteric blood flow or

result in mesenteric ischemia – such as perinatal asphyxia,

polycythemia, and septic shock – have been reported in term

infants with NEC (67). In a review of term NEC cases at

Intermountain Health, all cases of term NEC occurred in infants

with gavage feeding, overfeeding, and/or feeding with formula

(83). Moreover, overfeeding has been shown to be sufficient to

elicit NEC injury in a mouse model (84). Thus, a possible

unifying hypothesis regarding the pathogenesis of term NEC is
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the combination of underlying conditions that impair mesenteric

blood flow with feeding.
Acquired intestinal injury phenotypes that
mimic NEC

Spontaneous intestinal perforation (SIP)
While SIP also develops in extremely preterm infants it is a

distinct entity from NEC. SIP tends to occur earlier, even

before feeds have been initiated, and is associated with

exposure to postnatal indomethacin and hydrocortisone

(85, 86). While both can present with abdominal distention,

SIP often presents with a bluish discoloration of the abdomen

(87). Gross examination of the intestine in SIP reveals the

perforation localized to the antimesenteric border of the small

intestine with healthy tissue surrounding it. In NEC with

perforation, the surrounding bowel is not healthy (88). The

absence of bowel injury allows for SIP to have simpler surgical

treatment with either peritoneal drainage, direct repair, or

resection and primary anastomosis (87). In contrast, surgical

NEC often requires resection of injured tissue with creation of

stomas. Mortality from SIP is also lower compared to surgical

NEC (89), but surprisingly morbidity and neurodevelopmental

outcomes were not better (90, 91).
Cow milk protein allergy (CMPA)
CMPA, also known as Food Protein-Induced Enterocolitis or

FPIES, can present in both term and preterm infants with bloody

stools and is thus an important differential for NEC (92). CMPA

tends to occur much later, after several weeks of established feeds

with formula or breastmilk that contains cow’s milk protein (8).

Severe cases can present with pneumatosis intestinalis, but

otherwise do not progress towards systemic and multi-organ

dysfunction (93). It can be difficult to distinguish CMPA from

NEC. Typically, CMPA is suspected when reintroduction of feeds

that contain cow-milk protein leads to “reoccurrence” of NEC-

like symptoms (94). The pathogenesis of CMPA is non-IgE
TABLE 2 Summary of different machine learning models used in NEC researc

ML model Category Contextual applications
Artificial Neural
Network (ANN)

Supervised/Unsupervised Used to predict NEC risk based on
data.

Deep Learning (DL) Supervised/Unsupervised Used for examining imaging data r
level analysis.

Logistic regression Supervised Used to classify the presence or ab
binary classification.

Decision tree Supervised Used for risk stratification and outc
patients.

Random forest Supervised Utilized for the identification of sig
associated with NEC.

Naïve bayes Supervised Employed for the categorization of
according to predetermined charac

Support Vector
Machine (SVM)

Supervised Used to distinguish between neonat
who are not.

Back-propagation
neural network

Supervised Utilized to train ANN models spec
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mediated allergic reaction to cow milk protein resulting in

infiltration of intestinal mucosa with eosinophils, lymphocytes,

and mast cells (95). In contrast to NEC, CMPA is a benign

condition with low morbidity and typically improves with

elimination of cow’s milk protein from the infant’s or mothers diet.
Machine learning in NEC risk identification,
diagnosis, and endotype classification

While clinicians have strived to define NEC more precisely and

differentiate it from conditions that mimic NEC, these

classifications still rely on prior conditioned learning (11). The

potential for artificial intelligence (AI)-based approaches to

classify in an unbiased fashion disease endotypes has resulted in

several studies applying machine learning (ML) to classify NEC.

AI is particularly useful in analyzing large datasets to detect

intricate patterns not discoverable to human intelligence, and

holds promise to improve diagnosis, classification, and

management of acquired intestinal injury (96). When AI is

utilized to analyze data within frameworks such as specific

diagnosis/labels, known risk factors, or pre-determined outcomes

it is commonly known as supervised ML. When AI is used to

analyze data without labels or pre-determined framework/

outcome, it is considered unsupervised analysis. In Table 2, a

collection of ML models is depicted, along with a concise

explanation and their contextual applications in NEC

research.Through these models, patterns of disease in NEC that

were not readily appreciated can be discovered (97).

Apart from prematurity, formula milk feeding, African

American race (either as a social determinant of health or

genetic risk), and potentially genetic factors, risk factors that are

consistently associated with NEC remain unclear (1, 98, 99).

Recently, Mueller et al. (100) used artificial neural networks to

identify small for gestational age and use of artificial ventilation

as additional risk factors for NEC. The utilization of continuous

vital signs data has proven to be highly beneficial in diagnosing

life-threatening diseases and improving outcomes for sepsis and
h.

in NEC research Description
clinical features and patient Comprises interconnected nodes that simulate neural

processes.

elated to NEC with pixel- An effective multi-layer variant of ANN designed for
handling large datasets.

sence of NEC through A probability-based statistical approach for binary
outcomes.

ome prediction in neonatal A flow-chart-like structure that facilitates decision-
making processes.

nificant risk factors Using a combination of multiple decision trees to
improve accuracy.

neonatal patient data
teristics.

A probabilistic model that relies on Bayes’ theorem and
assumes independence.

es at risk of NEC and those A classification method that identifies the optimal
hyperplane in high-dimensional space.

ifically for NEC outcomes. An algorithm that updates neural network weights
through error feedback.
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other conditions in preterm infants (101). Vital signs data can also

be leveraged using ML techniques to accurately predict NEC.

Doheny et al. (102) analyzed the high frequency component of

heart rate variability, an indicator of baseline vagal tone, in 70

preterm infants. The authors found that decreased vagal tone was

a highly accurate predictor of NEC. ML can be used to identify

white blood cell patterns to diagnose and prognosticate NEC. In

a retrospective cohort of 246 infants, Pantalone et al. (103)

reported that the onset of NEC in more mature infants (born

after 33 weeks) was associated with lower neutrophil counts at

diagnosis compared to controls. In less mature infants, a sharp

decrease in monocytes and lymphocytes, as well as an elevation

in bands at the time of diagnosis, predicted surgical intervention.

The type of ML algorithm employed can also affect the findings

as shown by Cho et al. (104) who compared the ability of several

ML models to predict NEC. The study dataset consisted of over

10,000 very low birthweight infants and 74 variables, including

environmental factors. Logistic regression and random forest

(RF) exhibited superior performance achieving accuracy rates of

0.93, compared to artificial neural network, decision tree, naïve

Bayes, and support vector machine methods. Birth weight,

maternal age, gestational age, sepsis, male sex, and environmental

factors such as ambient temperature were highlighted as key

predictors, among others.

ML models have been used to predict intestinal perforations in

NEC patients (NEC-IP). Using a Back-propagation neural network

model, Irles et al. (105) identified that platelet counts, neutrophil

counts, intubation, birth weight and arterial blood gas parameters

can accurately predict NEC-IP. Recent ML studies have also

demonstrated its utility to differentiate SIP from NEC-IP. Models

such as random forest, ridge logistic regression model (106), and

artificial neural network (107) have shown accuracy rates higher

than 90% in differentiating these two conditions even before

surgery, which can help guide optimal management strategies.

Recent studies have also used ML models to predict need for

surgical intervention in NEC (108, 109).

Researchers have also examined stool microbiome and

metabolomic data using unsupervised ML algorithms to predict

NEC (97). Notably, Lin et al. (110) used a multiple instance

learning (MIL) architecture for predicting NEC based on stool

microbiota data. Through incorporating past data with analysis

of crucial bacterial taxa, this approach achieved timely and

precise prediction of NEC risk, with an average lead time of 8.3

days. Their RF model emphasized the importance of

Firmicutes, Proteobacteria and Enterobacteriaceae in NEC

prediction with high level of sensitivity and specificity, thus

emphasizing its potential in enabling personalized risk

assessment and disease prevention (110). Other studies

examined stool metabolomic (111) and urine peptides data

(112) to find specific patterns to predict NEC. Recent

endeavors have undertaken an unbiased assessment of distinct

patterns of acquired intestinal injuries in preterm infants. By

utilizing an unsupervised hierarchical clustering algorithm,

Gipson et al. (113) successfully identified five distinct clusters

of acquired neonatal intestinal injuries from a sample of 183

infants who experienced 210 episodes of such injuries. These
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clusters were classified as (1) low mortality, (2) immature with

high mortality, (3) mature with inflammation, (4) late injury at

full feeds, and (5) late injury with intestinal necrosis. These

studies provide encouraging data for improving the prediction,

accurate diagnosis and prognosis of NEC and other intestinal

phenotypes that mimic NEC. One limitation of current AI

studies includes limited data from single center design, smaller

cohorts, and non-uniformity of variables used for analysis. As

the accuracy and reliability of AI models rely solely on the

quality of the input provided, reliability and generalizability of

these models can be enhanced by using standardized datasets

across multiple centers. Another important limitation is the

complex and multi-factorial nature of NEC pathogenesis, which

makes capturing all relevant variables and their interactions in

an AI model challenging. AI models would also need to be

continuously updated to incorporate new insights and research

findings as our understanding of NEC evolves.
Conclusion

While our understanding of NEC has evolved over time from a

clinical/pathological description to a better understanding of

pathophysiology and NEC endotypes, only limited progress has

been made in in differentiating classical NEC from endotypes

that mimic it but have different etiologies and prognosis. We

speculate that characterizing endotypes of NEC based on

pathophysiology, clinical variables and radiological/biochemical

tests using traditional clustering methods augmented by machine

learning (ML) is important for precision approaches directed at

disease prevention and management of NEC and acquired

intestinal injury phenotypes in neonates.
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