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Strategies for the prevention of
bronchopulmonary dysplasia
Gianluca Dini*, Sara Ceccarelli and Federica Celi

Neonatal Intensive Care Unit, Santa Maria Hospital, Terni, Italy
Bronchopulmonary dysplasia (BPD) is a common morbidity affecting preterm
infants and is associated with substantial long-term disabilities. The
pathogenesis of BPD is multifactorial, and the clinical phenotype is variable.
Extensive research has improved the current understanding of the factors
contributing to BPD pathogenesis. However, effectively preventing and
managing BPD remains a challenge. This review aims to provide an overview
of the current evidence regarding the prevention of BPD in preterm infants,
offering practical insights for clinicians.
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Introduction

Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several

prenatal and/or postnatal factors interfere with lower respiratory tract development,

leading to a severe, lifelong disease (1). BPD was first described by Northway et al. (2)

based on radiographic and histological evidence of pulmonary disease.

BPD used to be a significant concern for all preterm infants requiring prolonged

invasive mechanical ventilation. However, with the widespread adoption of antenatal

corticosteroids, surfactant therapy, and gentle ventilation strategies, BPD has become

rare among preterm infants with birth weights greater than 1,500 g (3). Despite these

advancements, recent data suggest that BPD rates have not improved and may even be

increasing among extremely preterm infants (4). In this review, we summarize the

available evidence for the different pharmacological agents currently in use to prevent

BPD, primarily focusing on findings from randomized controlled trials (RCTs). Table 1

provides a summary of strategies commonly used for the prevention of BPD.
Definitions of BPD across the ages

BPD was first described in moderately preterm infants during a time when

supplemental oxygen was the primary treatment for severe respiratory distress

syndrome (RDS) and mortality rates exceeded 50%. Since then, the definition of BPD

has evolved (Figure 1), largely due to the improved survival rates of extremely preterm

infants and the development of new support modalities.

The original definition of BPD was published by Northway in 1967. Affected infants

were born during the late saccular or alveolar stages of lung development and were

exposed to high oxygen concentrations and high peak airway pressures during

mechanical ventilation (2, 5). Northway described four stages of BPD based on clinical,

radiographic, and histopathological findings (6). Preterm infants with BPD initially

presented with acute respiratory distress syndrome, which evolved into a chronic disease
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TABLE 1 Summary of interventions for the prevention of BPD.

Intervention Comments
Oxygen saturation targets Maintain oxygen saturation 90%–95%

Ventilatory strategy Avoid endotracheal tube ventilation, encourage non-invasive support strategies (NIPPV, SNIPPV,
nCPAP).
Lung protective strategies: Consider volume-targeted ventilation—TV 4–6 ml/kg

Surfactant Exogenous surfactant therapy given within the first 30–60 min after birth is effective in the
prevention and treatment of RDS and reduces the need for mechanical ventilation and oxygen
supplementation (risk factors for BPD).
INSURE/LISA should be used for surfactant administration in spontaneously breathing infants.

Antenatal corticosteroids
• IM Dexamethasone (6 mg q12 h × 4 doses)
• IM Betamethasone (12 mg q24 h × 2 doses)

No evidence regarding improved BPD outcomes but improves survival.
A single course of corticosteroids is recommended for pregnant women between 24 0/7 weeks and
33 6/7 weeks of gestation who are at risk of preterm delivery within 7 days, including for those
with ruptured membranes and multiple gestations.

Postnatal corticosteroids
○ Early (<8 days):

▪ Hydrocortisone: (IV 0.5 mg/kg/dose q12 h × 7 days followed by
q24 h × 3 days)

○ Late (>7 days):
▪ Dexamethasone: (IV/PO: 0.075 mg/kg q12 h × 3 days, 0.05 mg/kg
q12 h × 3 days, 0.025 mg/kg q12 h × 2 days, and 0.01 mg/kg q12 h ×
2 days)

We suggest using systemic glucocorticoids selectively in EPT infants (GA < 28 weeks) who remain
ventilator-dependent at a postnatal age of two to four weeks and in whom attempts to wean from
the ventilator have failed and/or who require oxygen supplementation >50 percent.
In this setting, we administer low-dose dexamethasone according to the protocol used in DART
(Dexamethasone: A Randomized Trial).
Parents/caregivers should be informed of the risks and benefits and should participate in
decision-making.

Caffeine citrate
(loading dose: 10–20 mg/kg maintenance dose: 5 mg/kg/day)

Early caffeine administration (as soon as possible after birth) is recommended for all infants ≤30
weeks gestation, to be continued until PMA 34–36 weeks.

Vitamin A (IM 5,000 IU/dose 3 times per week for 4 weeks) May be used for prophylaxis in centers with a high baseline incidence of BPD.

Nutrition Breast milk is the preferred source of nutrition for preterm infants as it offers several advantages
over formula, including the prevention of BPD.

Macrolide antibiotics
• Azithromycin
• Clarithromycin
• Erythromycin

May be used in research setting only.

BDP, bronchopulmonary dysplasia; EPT, extremely preterm; GA, gestational age; IM, intramuscular; INSURE, intubation-surfactant-extubation; IV, intravenous; LISA, less

invasive surfactant administration; nCPAP, nasal continuous positive airway pressure; NIPPV, Nasal intermittent positive pressure ventilation; PMA, postmenstrual age;

PO, orally; TV, tidal volume.
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after day 28 of life. Chest radiograph findings correlated with

histopathological changes, showing an initial acute inflammatory

stage followed by chronic inflammation resulting in fibrosis.

The 2001 National Heart, Lung, and Blood Institute (NHLBI)

workshop definition took the important step of including a BPD

severity scale (7), and infants with severe BPD were subsequently

found to have higher mortality and rates of adverse outcomes

after discharge than those with mild or moderate disease (8).

However, the definition of severe BPD was overly broad, and

combined infants receiving 31% oxygen by low flow nasal

cannula with infants on high ventilator settings and receiving

drugs for pulmonary hypertension. This issue was partly

addressed by the NHLBI 2018 revision, which reserved grade 3

BPD for infants receiving positive pressure or nasal cannula flow

>3 L/min in addition to oxygen (9).

Most recently, Jensen et al. analyzed 18 prespecified BPD

definitions based on the respiratory support level and

supplemental oxygen at 36 weeks postmenstrual age (PMA) to

determine which definition best correlated with early childhood

morbidity. The study demonstrated that a grading system based

on respiratory support, regardless of oxygen level, best predicted

late death or serious respiratory morbidity at 18–26 months

corrected age (10). The Jensen definition classifies BPD severity in

infants at 36 weeks PMA into grade 1 for those requiring 2 L/min

nasal cannula or less, grade 2 for those requiring more than

2 L/min nasal cannula or other forms of non-invasive ventilation
Frontiers in Pediatrics 02
support, and grade 3 for those requiring invasive mechanical

ventilation (10).

Several limitations remain with the revised definition (11).

Firstly, the decision for respiratory support still lies with the

clinician. These decisions are often based on subjective

assessments of the infant’s work of breathing, frequency of

apnea/bradycardic events, ability to take adequate oral feeds or

maintenance of an optimal growth trajectory. At 36 weeks’ PMA,

preterm infants may still exhibit immature respiratory control,

manifesting as periodic breathing or apneic events. The use of

diuretics (12) and bronchodilators (13), which can influence the

need for respiratory support, varies markedly between centers

(14) and may affect the reporting of BPD. Additionally, the

revised definition does not differentiate infants with BPD-

associated pulmonary hypertension (BPD-PH).
Epidemiology

Prevalence
Premature birth (<37 weeks gestational age) is common and

affects 6%–14% of pregnancies, depending on the country

(15, 16). Premature infants are generally classified based on

gestational age [extremely preterm infants or extremely low

gestational age newborns (ELGANs) are <28 weeks gestation;

very preterm infants are 28 to <32 weeks gestation, moderate
frontiersin.org
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FIGURE 1

Definitions of BPD over time. BPD, bronchopulmonary dysplasia; CPAP, continuous positive airway pressure; DOL, day of life; FiO2, fraction of inspired
oxygen; GA, gestational age; IMV, invasive mechanical ventilation; LPM, liters per minute; NC, nasal cannula; NIPPV, nasal intermittent positive pressure
ventilation; PMA, postmenstrual age; RA, room air.
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preterm infants are 32 to <34 weeks and late preterm infants are 34

to <37 weeks] or birth weight (ELBW infants are <1,000 g, very-

low-birth-weight (VLBW) infants are <1,500 g, and low-birth-

weight (LBW) infants are <2,500 g). BPD incidence increases as

gestational age and weight at birth decreases. BPD remains the

most common complication associated with prematurity and is

increasing in prevalence, most likely due to the increased survival

of ELGANs (17, 18). Data from major cohort studies (such as

ELGAN, Canadian Neonatal Network, Korean Neonatal

Network, Vermont–Oxford Network, and Swiss Neonatal

Network, as well as studies in China, Taiwan, and India)

demonstrate a BPD prevalence of 11%–50%, a wide range that is

due to differences in gestational age or birth weight criteria for a

BPD diagnosis (19–25).

Risk factors
The strongest risk factors for BPD are prematurity and low

birth weight (26–29). Nearly 80% of infants born at 22–24 weeks

of gestation are diagnosed with BPD (30), while only 20% of

those born at 28 weeks develop the condition. Among infants

with BPD, 95% are VLBW (31). Other perinatal risk factors

include intrauterine growth restriction (IUGR) (21), male sex

(21, 29), and, inconsistently, chorioamnionitis (32), race or

ethnicity (21, 27, 29), and maternal smoking (33, 34). Genetic

factors may also contribute to BPD development, as suggested by
Frontiers in Pediatrics 03
twin studies (35, 36), and research is ongoing to identify specific

genetic markers associated with BPD (37, 38).
Evaluation

The evaluation of BPD involves assessing blood gases, chest x-

rays, and the nutritional status of the patient (39). An arterial blood

gas analysis may reveal hypoxia, hypercarbia, or acidosis. Patients

with BPD are monitored with continuous pulse oximetry to

maintain adequate oxygen saturation levels. Many centers also

use transcutaneous carbon dioxide monitoring to assess the

infant’s ventilation.

Among imaging modalities, plain chest radiography and

computed tomography scanning remain the most extensively

studied in BPD (40). Chest radiographic features of established

BPD include interstitial thickening, focal or generalized

hyperexpansion, and atelectasis (Figure 2) (41). High-resolution

CT scans can reveal abnormalities not easily seen with routine

chest radiography. Although computed tomography findings

were more specific for BPD than those of plain radiographs

(42, 43), the considerable exposure to radiation, increased cost of

the procedure, and need for either patient cooperation or deep

sedation have limited the use of computed tomography. The

European Respiratory Society (ERS) guidelines recommend
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FIGURE 2

Chest radiograph of an infant with bronchopulmonary dysplasia.
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follow-up imaging with ionizing radiation only in the most severely

affected patients (44).

In contrast, ultrasound does not require exposure to ionizing

radiation and can be performed at the patient’s bedside. An

ultrasound scoring system involving the evaluation of three

different areas of the lung with a semi-quantitative score has

shown some potential for predicting moderate to severe BPD (45).

Infants with moderate or severe BPD should be screened for

pulmonary hypertension (PH) at 36 weeks PMA using an

echocardiogram (46, 47). Some centers choose to screen all

patients with BPD for PH due to the high morbidity and

mortality associated with this condition. There are known

limitations in the sensitivity and specificity of echocardiography

to identify PH, and cardiac catheterization is recommended

when there are uncertain findings, concerns for inadequate

response to pulmonary vasodilators, or more precise measures of

pulmonary pressures and vasoreactivity are needed (48).
TABLE 2 Summary of randomized, controlled trial data on the effects
bronchopulmonary dysplasia.

Intervention Outcome Tria

Respiratory support strategies
nCPAP vs. MV (55) Death or BPD 4/2

sNIPPV vs. nCPAP after extubation (56) BPD 3/

Volume-targeted vs. pressure limited MV (57) BPD among survivors 9/

HFOV vs. pressure-limited MV (58) BPD among survivors 17/2

Death or BPD 17/3

Surfactant administration
LISA vs. INSURE (59) BPD 13/1

BPD, bronchopulmonary dysplasia; HFOV, high-frequency oscillatory ventilation; INSU

MV, mechanical ventilation; N, total number of infants evaluated for the outcome;

intermittent positive pressure ventilation.
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Lung protective ventilation strategies

Successful transition to postnatal breathing requires the

clearance of fetal lung fluid and adequate lung aeration.

However, several factors in very preterm infants can hinder this

process, including high chest wall compliance, weak respiratory

muscles, incomplete surfactant production, and underexpression

of transepithelial sodium channels (49–51). As a result, many

very preterm infants require positive airway pressure and

supplemental oxygen shortly after birth to maintain physiological

stability. While invasive mechanical ventilation can be life-saving

in these cases, it also poses a risk of lung injury. Animal studies

have demonstrated a clear connection between baro- and

volutrauma induced by mechanical ventilation and pathological

changes in the lung resembling BPD (52, 53). Additionally,

observational studies have suggested a link between invasive

mechanical ventilation and an increased risk of BPD (26, 54). To

mitigate lung injury and prevent BPD, researchers have

investigated various noninvasive and gentler invasive ventilation

strategies. Salient data from randomized controlled trials on the

effects of various respiratory support strategies for prevention are

summarized in Table 2.
Noninvasive positive airway pressure
One strategy to prevent ventilator-induced lung injury is to

avoid mechanical ventilation altogether. Three large RCTs

have compared early noninvasive continuous positive airway

pressure (CPAP) with immediate intubation and surfactant

administration. Despite variations in design elements, including

the gestational ages of enrolled infants and initial CPAP settings

(ranging from 5 to 8 cm H2O), each study demonstrated a

nonsignificant reduction in the rate of death or BPD at 36 weeks’

PMA among infants initially treated with CPAP (60–62). Meta-

analyses of the available trial data, some of which also included

smaller RCTs, demonstrated a small but statistically significant

reduction in the risk for death or BPD with CPAP therapy

(Table 2). Although one large trial reported higher rates of

pneumothorax in CPAP-treated infants, meta-analyses did not

show an increased risk for pneumothorax or other adverse events
of various respiratory support strategies for preventing death and/or

ls/N Outcome rates Relative risk (95% CI)

Intervention Control

,782 40% 43% 0.90 (0.83–0.98)

181 28% 43% 0.64 (0.44–0.95)

620 23% 35% 0.68 (0.53–0.87)

,786 30% 35% 0.86 (0.78–0.96)

,329 41% 45% 0.90 (0.84–0.97)

,758 10% 17% 0.65 (0.51–0.82)

RE, intubation-surfactant-extubation; LISA, less invasive surfactant administration;

nCPAP, nasal continuous positive airway pressure; sNIPPV, synchronized nasal
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with early CPAP (55, 63, 64). Consequently, the American

Academy of Pediatrics Committee on Fetus and Newborn

recommends early use of CPAP with subsequent selective

surfactant administration in extremely preterm infants as an

evidence-based strategy to reduce the risk of death or BPD (65).

Heated and humidified high-flow nasal cannula (HFNC),

typically administered with flow rates higher than 1 to 2 L/min,

has gained popularity as an alternative to nCPAP. HFNC offers

potential advantages such as reduced nasal trauma, simpler

device setup, and greater facilitation of oral feeding and skin-to-

skin care (66). However, recent trial data suggest that HFNC and

nasal CPAP may not be equivalent therapies. Treatment failure is

more common among very preterm infants who receive HFNC

compared with nasal CPAP as a primary support modality.

While HFNC may be an acceptable alternative to nasal CPAP for

post-extubation support among infants born at 28 weeks of

gestation or more, routine use in less mature infants is not

recommended (67).

Nasal intermittent positive pressure ventilation (NIPPV) is a

form of non-invasive ventilation that delivers a baseline

distending pressure similar to CPAP but with the addition of

superimposed peak inspiratory pressures at intervals (68). NIPPV

may be synchronized (SNIPPV) or non-synchronized to the

infant’s breathing efforts. A Cochrane analysis of ten studies

including 1,061 infants comparing early NIPPV and early CPAP

use determined that even though infants randomized to early

NIPPV had reduced risk of requiring intubation (RR 0.78 CI

0.64–0.94) and respiratory failure (RR 0.65 CI 0.51–0.82), there

was no reduction in the risk of BPD among infants who received

NIPPV (69). Another meta-analysis of the use of NIPPV vs.

CPAP in preterm infants after extubation found a reduction in

BPD associated with synchronized NIPPV (RR 0.64, 95% CI

0.44–0.95) on subgroup analysis, but in the overall cohort no

difference was found in the rates of BPD between the two groups

(RR 0.94, 95% CI 0.80–1.10) (56).

Mechanical ventilation
Mechanical ventilation remains an essential tool in the care of

critically sick and very preterm infants, despite improvements in

perinatal care including increased use of antenatal steroids and

non-invasive respiratory support. Studies from CPAP trials suggest

that as many as 65% of spontaneously breathing extremely

preterm infants may still require intubation and mechanical

ventilation despite early CPAP therapy (55). In such cases, or

when invasive respiratory support is needed soon after birth,

clinicians must carefully choose a mode of mechanical ventilation.

Time-cycled pressure-limited ventilation (PLV) has been

traditionally used for newborn infants. This form of ventilation

uses a designated volume of gas with a preset peak inspiratory

pressure (PIP), over a defined time cycle. Both overexpansion

(volutrauma) and under expansion/collapse (atelectrauma) have

been previously reported during the use of PLV (70–72). It has

also been reported that tidal volume (VT), rather than inflation

pressure, is the main determinant of ventilator-induced lung

injury (VILI) (73). In volume-targeted ventilation (VTV),

automatic adjustments are made to the peak positive pressure
Frontiers in Pediatrics 05
and the duration of the ventilator cycle to maintain a target VT.

VTV mode has been proposed as a means to reduce VILI caused

by ventilation with excessive or insufficient VT during

conventional pressure-controlled ventilation. A 2017 Cochrane

review provided moderate-quality evidence supporting the use of

volume-targeted ventilation over pressure-limited ventilation to

reduce the composite outcome of death or BPD, length of

mechanical ventilation, and rates of severe intraventricular

hemorrhage (57).

High-frequency oscillatory ventilation (HFOV) is another

ventilation strategy that may help mitigate lung injury. A 2015

Cochrane review evaluating HFOV as a primary mode of

invasive respiratory support found a small reduction in the risk

for death or BPD, as well as BPD alone, among infants treated

with HFOV compared to pressure-limited conventional

ventilation (58). However, pulmonary air leaks, such as

pneumothorax or pulmonary interstitial emphysema, were more

common in infants treated with HFOV (58).

Surfactant administration
Endogenous pulmonary surfactant plays a crucial role in

reducing surface tension at the air/liquid interface within the

alveoli, thereby enhancing lung deflation stability (74). In

extremely preterm infants, surfactant deficiency is a central

aspect of the pathophysiology of neonatal respiratory distress

syndrome (RDS) (75). Several older RCTs demonstrated that

administration of exogenous surfactant, compared with

mechanical ventilation alone, reduces rates of death or the need

for supplemental oxygen 28 days after birth (the conventional

definition of BPD at that time) (76–78).

To optimize the potential advantages of early surfactant

administration without the harmful effects of prolonged invasive

mechanical ventilation, Victorin et al. introduced the technique

known as intubation, surfactant administration during brief

mechanical ventilation, followed by extubation (INSURE) (79).

Initial RCTs suggested that INSURE reduces the need for

supplemental oxygen at 28 days of age. However, meta-analyses

incorporating more recent trials have indicated that compared to

CPAP, INSURE does not decrease the risk of death or BPD (RR

0.88, 95% CI 0.76–1.02) (80, 81).

Several techniques have been developed to administer

surfactant avoiding traditional endotracheal intubation (82).

Among these strategies, surfactant instillation via a thin catheter,

commonly known as less invasive surfactant administration

(LISA) has been extensively studied. Four RCTs conducted in

extremely preterm infants compared LISA with endotracheal tube

administration of surfactant (three trials vs. INSURE, one trial

vs. continued mechanical ventilation after surfactant therapy),

while one trial compared LISA with CPAP therapy alone

(83–86). A recent meta-analysis (59) showed that LISA vs.

INSURE reduced the risk for BPD (RR 0.65, 95% CI 0.51–0.82)

and the rate of mortality (RR 0.76, 95% CI 0.58–1.00).

Oxygen saturation targets
Exposure to supraphysiological oxygen has been associated

with BPD, making the definition of optimal oxygen saturation
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targets a critical area of study. Infants born at less than 30 weeks

gestation randomized to a high-saturation target (95%–98%) have

a significantly higher risk of needing supplemental oxygen at 36

weeks compared to those randomized to a target of 92%–94%

[odds ratio (OR) 1.40, 95% CI 1.15–1.70] (87). An individual

patient meta-analysis of the five RCTs of the Neonatal Oxygen

Prospective Meta-Analysis (NeOProM) Collaboration examined

restricted (85%–89%) vs. liberal (91%–95%) oxygen saturation

targets in infants less than 28 weeks gestation. The analysis

found no significant difference in the composite outcome of

death or major neurodevelopmental outcomes, or severe visual

problems at 18–24 months between the two groups (RR 1.04,

95% CI 0.98–1.09) (88). Significantly fewer infants in the

restricted oxygen saturation target group received supplemental

oxygen at 36 weeks PMA (RR 0.81, 95% CI 0.74–0.90), but there

was also an increase in the risk of death (RR 1.17, 95% CI 1.04–

1.31) and necrotizing enterocolitis (NEC) (RR 1.33, 95% CI

1.10–1.61) in this group (89). While further studies are needed to

make definitive conclusions, some authors suggest maintaining

oxygen saturation targets between 88% and 92%, with a higher

alarm limit of 96% (90).
Pharmacologic therapies

Despite the physiological and observational evidence linking

invasive mechanical ventilation to the development of BPD, the

beneficial effects of the respiratory support strategies described

above are modest. Longitudinal data also suggest that the

increased use of noninvasive respiratory support over time has

not been accompanied by substantial improvements in BPD rates

among surviving extremely preterm infants (91). Given the

limited benefit of gentle ventilation techniques, pharmacologic

therapies are becoming an essential component in ongoing

efforts to reduce BPD rates (92). Drug therapies demonstrated in

randomized controlled trials to reduce BPD are summarized

below and in Table 3.
TABLE 3 Summary of randomized, controlled trial data on the effects of vario

Medication Outcome Trials

Non-corticosteroids
Azithromycin (93) BPD among survivors 3/31

Caffeine (94) BPD among survivors 1/1,9

Vitamin A (IM) (95) BPD among survivors 4/88

Corticosteroids
Dexamethasone (<7 days of life) (96) BPD among survivors 17/2,

Death or BPD 17/2,

Dexamethasone (≥7 days of life) (97) BPD among survivors 12/5

Death or BPD 12/5

Hydrocortisone (<7 days of life) (96) BPD among survivors 9/1,3

Death or BPD 9/1,3

Budesonide (inhaled) (98) BPD among survivors 1/36

Budesonide + Surfactant (intratracheal) (99) BPD 2/38

Death or BPD 2/38

BPD, bronchopulmonary dysplasia; CI, confidence interval; IM, intramuscular; N, total
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Noncorticosteroid agents
Azithromycin
Azithromycin is a macrolide antibiotic that possesses both

antimicrobial and anti-inflammatory properties (100, 101),

making it a potentially attractive option for preventing BPD. In

very preterm infants, Ureaplasma infection is linked to BPD

development (102–104). Additionally, lung and systemic

inflammation contribute to BPD pathophysiology (105, 106).

Three small trials assessed azithromycin’s efficacy in preventing

BPD (93). A meta-analysis of these studies revealed a reduction

in the risk for BPD and BPD/death among infants treated with

azithromycin, irrespective of known Ureaplasma colonization or

infection. However, the quality of evidence was low (93, 107).

Furthermore, trials evaluating other macrolides have not shown

benefits for preventing BPD (107, 108). Larger trials are

necessary to establish the safety and efficacy of prophylactic

azithromycin before recommending this therapy.
Caffeine
Caffeine is a central nervous system (CNS) stimulant of the

methylxanthine class that primarily acts by inhibiting the

adenosine receptors A1 and A2A in the brain (109, 110). In

addition, caffeine improves diaphragmatic contractility and

prevents diaphragmatic fatigue by increasing intracellular Ca2+

and responsiveness of the central and peripheral chemoreceptors

to CO2, resulting in increased minute ventilation (111).

The Caffeine for Apnea of Prematurity (CAP) trial was a

pivotal study in the field of neonatology (94). This multicenter

RCT investigated the long-term impacts of caffeine

administration, initiated before ten days of age (median: 3 days),

on infants <1,500 g. The trial examined a combined outcome of

death and neurodevelopmental progress at 18–21 months of

corrected age. The findings confirmed the safety of prolonged

caffeine use in premature infants and demonstrated a significant

reduction in the incidence of BPD with early caffeine

administration (p < 0.001). By preventing apnea of prematurity,
us medications for preventing death and/or bronchopulmonary dysplasia.

/N Outcome rates Relative risk (95% CI)

Intervention Control

0 50% 60% 0.83 (0.71–0.97)

17 36% 47% 0.78 (0.70–0.86)

6 43% 50% 0.85 (0.74–0.98)

791 26% 36% 0.72 (0.63–0.82)

791 42% 48% 0.88 (0.81–0.95)

53 50% 66% 0.76 (0.66–0.87)

53 59% 78% 0.75 (0.67–0.84)

76 35% 38% 0.92 (0.81–1.06)

76 51% 56% 0.90 (0.82–0.99)

9 28% 38% 0.74 (0.60–0.91)

1 25% 44% 0.57 (0.43–0.76)

1 39% 65% 0.60 (0.49–0.74)

number of infants evaluated for the outcome.
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caffeine reduces the need for intubation and promotes early,

successful extubation of ventilated infants, thereby reducing

mechanical ventilation-associated lung injury, a critical factor in

the development of BPD. Additionally, the CAP trial revealed

that only 33.8% of infants treated with caffeine required medical

or surgical closure of patent ductus arteriosus (PDA), compared

to 50.7% in the placebo group (p < 0.001). Follow-up data

collected through age 11 years indicated sustained, long-term

improvement in motor function with caffeine therapy (112).

The benefits of caffeine in BPD prevention also depend on the

timing of initiation of therapy. Since the CAP trial, the definition of

early caffeine administration has evolved and is now defined as

caffeine administration before three days of age. A retrospective

study found that initiating caffeine treatment within the first

three days of life was significantly associated with lower rates of

BPD and the combined outcome of death or BPD compared to

late caffeine administration (≥3 days) (113). Several RCTs and

meta-analyses have confirmed this finding (114–117). The

National Institute for Health and Care Excellence (NICE)

recommends routine caffeine use for all premature infants ≤30
weeks’ GA soon after birth (118).

Vitamin A
Vitamin A plays a crucial role in the growth and maturation of

epithelial cells lining the respiratory tract (119, 120). Previous

studies have indicated that preterm infants who develop BPD tend

to have lower plasma vitamin A levels (121–123). Subsequent large-

scale trials, such as a multicenter trial published in 1999, found that

intramuscular injections of vitamin A during the first 4 weeks of

age reduced rates of death or BPD and BPD alone among surviving

extremely low-birthweight infants (124). Meta-analyses of these trial

data have confirmed a small benefit for reducing BPD among

survivors (95). However, recent observational studies have raised

questions about the effectiveness of vitamin A in the current era,

with some studies showing similar rates of BPD among infants who

received vitamin A and untreated controls (125, 126). Ongoing

research, including randomized controlled trials investigating enteral

vitamin A, may help resolve these conflicting findings. However,

until more definitive results are available, intramuscular vitamin A

administration, if commercially available, remains a recommended

evidence-based strategy to prevent BPD in extremely preterm infants.
Corticosteroids
The potent anti-inflammatory properties of corticosteroids

make them a logical therapeutic agent for BPD prevention.

Dexamethasone (systemic)
Dexamethasone has been extensively studied for preventing BPD,

with trials categorizing its use into early initiation within the first

8 days of age and late initiation thereafter. A recent Cochrane

review highlighted that early dexamethasone therapy reduces

BPD risk but elevates the risks for gastrointestinal perforation,

hypertrophic cardiomyopathy, cerebral palsy (CP), and major

neurosensory disability (96). Due to these adverse effects, early

dexamethasone for BPD prevention is not recommended.
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The risks and benefits of “late” dexamethasone are not as well-

defined. Meta-analysis of available trial data indicates that initiating

dexamethasone after the first week of age reduces the risk of BPD

but is associated with short-term side effects like hyperglycemia,

glycosuria, and hypertension (96). Unlike early use, recent meta-

analyses have not shown clear evidence of increased risk of CP

among surviving infants treated with late dexamethasone (96).

However, long-term outcome evaluations in follow-up studies

lacked adequate power, and the high rates of open-label

dexamethasone use in these studies may obscure actual treatment

effects (97, 127).

If a clinician opts to administer dexamethasone, they must then

determine the dose and treatment duration. While there is a

general consensus favoring the use of low, tapering doses

administered for short periods (typically 1–2 weeks at most),

there is limited robust data to guide these specific choices (128).

One dosing regimen used in the discontinued Dexamethasone:

A Randomized Trial (DART) study involved administering

0.89 mg/kg over 10 days (129). In this trial involving 70 very

preterm infants receiving invasive mechanical ventilation,

dexamethasone significantly improved rates of successful

extubation (60% in the dexamethasone group vs. 12% in the

placebo group) without evidence of long-term harm (129, 130).

However, the risk for BPD was not significantly reduced in

the dexamethasone-treated infants (odds ratio 0.58, 95% CI

0.13–2.66) (129).

Hydrocortisone (systemic)
Randomized trials of hydrocortisone involving human infants are

limited. The PREMILOC trial, the largest among them,

compared a 10-day course of low-dose hydrocortisone initiated

within the first 24 h after birth with placebo in infants born at

less than 28 weeks’ gestation (131). Hydrocortisone significantly

improved BPD-free survival at 36 weeks’ PMA (60% vs. 51%;

p = 0.04) (131). However, a subgroup analysis revealed a nearly

twofold increase in the risk of late-onset sepsis among infants

born at 24–25 weeks’ gestation treated with early hydrocortisone

(131). Furthermore, hydrocortisone did not improve

neurodevelopmental outcomes at 2 years despite reducing the

incidence of death or BPD (132). Meta-analysis of all available

trials initiating hydrocortisone in the first week of age indicated a

reduction in the composite outcome of death or BPD with

hydrocortisone therapy but no benefit for BPD among survivors

(96). Gastrointestinal perforation was more common in the

hydrocortisone-treated infants (96).

The STOP-BPD trial was a double-blinded RCT in which 372

infants <30 weeks and/or 1,250 g birthweight were randomly

assigned to receive systemic hydrocortisone (72.5 mg/kg over 22

days) or a placebo. Infants were enrolled if they were dependent

on mechanical ventilation (MV) in the 2nd week of life. There

was no significant difference in the BPD incidence at 36 weeks’

PMA or the composite outcome of death or BPD at

36 weeks’ PMA with hydrocortisone use. However, death at

36 weeks’ PMA was higher in the placebo group. Despite an

initial decrease in extubation failure with hydrocortisone, this

difference was not seen 21 days after starting the treatment (133).
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Budesonide (inhaled)
Inhaled corticosteroids offer the potential benefit of reducing

inflammation in the lung without the adverse effects associated with

systemic corticosteroids administration. Research has investigated

the efficacy of four different inhaled steroids (budesonide,

beclomethasone, fluticasone, and flunisolide) in preventing BPD

through RCTs (134, 135). A meta-analysis of all trial data,

incorporating all four steroids, revealed a reduced risk of BPD among

surviving infants as well as the composite outcome of death or BPD

in infants treated with inhaled corticosteroids (134). However, these

favorable results are primarily driven by the NEUROSIS trial, which

found that inhaled budesonide decreased BPD rates among survivors

(98, 136). It’s important to note that this benefit was accompanied by

higher mortality among infants treated with budesonide, with similar

rates of neurodevelopmental impairment observed between the two

study groups (136). Although the cause of the increased mortality in

the budesonide group remains unidentified, this concerning finding

outweighs the observed benefit for BPD.

Two RCTs evaluated the usefulness of intratracheal budesonide

combined with surfactant relative to surfactant therapy alone among

very low birth weight infants with severe RDS (99). The combined

therapy reduced the risk of death or BPD. Follow-up performed up

to 3 years of age found no difference in motor or cognitive function

between the groups (99). This promising finding awaits

confirmation in larger trials before widespread use is recommended.
Nutritional strategies

The ability to maintain lung growth and repair is dependent on

adequate postnatal nutrition. A retrospective cohort study revealed

that both lower energy intake during the first four weeks of life and

increased fluid intake were significantly associated with BPD (137).

Breast milk is well known for its protective effect against NEC,

and has also been studied for its role in preventing BPD (138–140).

In a multicenter cohort study of 1,587 preterm infants who received

an exclusively human breast milk-based diet, the incidence of BPD

was significantly lower compared to infants who received either

preterm formula or maternal breast milk with bovine fortifier

(56.3% vs. 47.7%, p = 0.0015) (140). A pooled meta-analysis of eight

observational studies showed a BPD protective effect of donor

human milk compared to formula when used as a supplement to

the mother’s own milk (RR 0.78, 95% CI 0.67–0.90) (140).

However, a meta-analysis of three RCTs found no statistically

significant difference in BPD between infants receiving donor

human milk compared to preterm formula when the mother’s own

milk was unavailable (RR 0.89, 95% CI 0.60–1.32) (139).
Unproven interventions

Certainly, while many medications and care strategies hold

promise for preventing BPD, several have ultimately been found

ineffective in reducing its risk through RCTs. Although delving into

each of these therapies is beyond the scope of this article, it’s worth

mentioning a few of the more commonly considered strategies.
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Antenatal corticosteroids
In 1972, Liggins et al. demonstrated that antenatal corticosteroids

(ACS) promote lung maturation and prevent RDS in preterm infants

(141). Approximately two decades later, the National Institute of

Health (NIH) consensus panel recommended the use of ACS for all

impending preterm births between 24 and 34 weeks of gestation

(142). ACS promote lung maturation through several mechanisms.

They induce the differentiation of alveolar epithelial cells into type II

pneumocytes and increase the expression of surfactant proteins (SP)-

A and SP-B, which enhances overall surfactant production.

Additionally, ACS improve pulmonary blood flow by activating

endothelial nitric oxide synthase and increase the activity of epithelial

sodium channels, thereby improving respiratory function (143–146).

The American College of Obstetrics and Gynecology (ACOG)

recommends specific regimens for ACS administration. For

pregnant women between 24 0/7 and 33 6/7 weeks of gestation

at risk of delivery within seven days, the recommended regimen

is either two doses of intramuscular (IM) betamethasone or four

doses of IM dexamethasone (147). In cases of pregnancies

between 23 0/7 and 23 6/7 weeks of gestation, ACS should be

administered if resuscitation is desired. Additionally, for women

between 34 0/7 and 36 6/7 weeks of gestation who are at risk of

preterm delivery within seven days and have not previously

received ACS, administration is also recommended (147). Despite

a clear improvement in mortality and RDS, the 2020 Cochrane

review comparing ACS with placebo noted no significant

difference in the incidence of BPD between the two groups (148).
Treatment of a patent ductus arteriosus
Observational data strongly suggest a link between the presence

of a PDA and the development of BPD in preterm infants (149, 150).

However, despite this association, no medication specifically

targeting ductal closure (indomethacin, ibuprofen, or acetaminophen)

administered either prophylactically or after identifying a

“hemodynamically significant” PDA, has been shown to reduce the

risk of BPD (151–155). Surgical ligation is effective in achieving

closure of the PDA but may increase the risk for BPD and long-term

neurodevelopmental impairment (156, 157). Given the lack of

conclusive evidence surrounding PDA closure to prevent BPD and

the adverse effects of all available management strategies, there is an

increasing trend towards a more conservative approach of “watchful

waiting” across centers (158).
Fluid restriction and diuretics
Excessive fluid intake in extremely low-birthweight infants can

lead to complications such as pulmonary edema, necessitating

greater respiratory support and potentially contributing to the

development of BPD. Observational data have suggested that

infants receiving higher fluid intake, particularly those with less

weight loss in the first 1–2 weeks of life, are at an increased risk

of developing BPD (150). However, studies comparing restrictive

fluid administration with more liberal approaches have not

consistently shown clear benefits in reducing the incidence of BPD

(159). While restrictive fluid strategies may help mitigate the risk

of pulmonary edema, their impact on BPD risk remains uncertain.
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Diuretics are sometimes used to manage pulmonary edema in

preterm infants, offering short-term improvement in respiratory

mechanics. However, there is a lack of data indicating that

regular diuretic use reduces the risk of developing BPD (160).

Inhaled nitric oxide
Inhaled nitric oxide (iNO) is a potent pulmonary vasodilator

and an effective treatment for persistent pulmonary hypertension

in near-term and full-term newborns (161). Despite these benefits,

iNO does not prevent BPD when used as an early routine strategy

or as a rescue therapy in very preterm infants (162, 163).

A Cochrane review examining the efficacy of iNO in preterm

infants included seventeen RCTs (163). The review found no

significant difference in the overall incidence of death and/or BPD

at 36 weeks’ PMA between preterm infants who received routine

iNO and those in the control group (163–167). Furthermore, the

recently published NEWNO trial, a large RCT involving 451

preterm infants less than 30 weeks’ GA and less than 1,250 grams

birth weight, receiving mechanical ventilation between postnatal

days 5 and 14, showed no significant differences in BPD at 36

weeks’ PMA or in neurodevelopmental and respiratory outcomes

at 18–24 months between the treatment and placebo groups (168).

Data from studies published to date are not sufficient to

recommend the routine use of iNO for the prevention of BPD.

Bronchodilators
Data on the use of bronchodilators are limited. In a systematic

review, only one randomized trial had usable outcome data. In this

trial of 173 preterm infants (gestational age less than 31 weeks),

salbutamol did not reduce the risk of BPD at 28 days when compared

to no intervention/placebo (RR 1.03, 95% CI 0.78–1.37) (169).
Experimental drugs

Stem cell therapy
Mesenchymal stromal cell (MSC) therapy is a relatively new

treatment that may prove to be an essential weapon in the

prevention of BPD. Multiple preclinical studies have demonstrated

the promising reparative potential of stem/progenitor cells in

promoting lung growth and preventing lung injury (170). In

animal models, various types of progenitor cells have shown

protective effects against neonatal lung injuries induced by factors

such as lipopolysaccharide and hyperoxia (171). Importantly,

these cell-based therapies primarily exert their effects through

paracrine mechanisms rather than direct integration into the

repaired tissue (172). Stem cells can modulate innate and adaptive

immune responses, reduce inflammation, enhance injury repair,

and exert anti-apoptotic effects by secreting paracrine factors (173).

A phase I dose-escalation study conducted in 2014 investigated

the safety and feasibility of a single intratracheal transplantation

of allogeneic human umbilical cord blood (hUCB)-derived

mesenchymal stem cells in extremely low birth weight infants

(ELBWI) at high risk for BPD (174). The study reported a decrease

in the severity of BPD in the transplanted group compared to the

control group, with no adverse outcomes observed. While this
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study suggested that hUCB-MSC therapy is safe and feasible in

preterm infants, further research is necessary to fully elucidate the

safety profile and efficacy of stem cell therapy or their conditioned

medium before they can be utilized in clinical settings.

Erythropoietin (EPO)
Recombinant human erythropoietin (rhEPO) treatment has

shown promise in neonatal rats exposed to hyperoxia, where it

upregulated epidermal growth factor-line domain 7 and was

associated with decreased alveolar simplification, improved

angiogenesis, and decreased fibrosis (175, 176). However, in preterm

lambs, EPO administration increased alveolar inflammation and

exacerbated ventilator-associated lung injury (177). In a multi-center

prospective cohort study involving 867 neonates born before 28

weeks of GA, those with higher blood EPO concentrations on day 14

of life had a higher incidence of moderate but not severe BPD (178).

While retrospective studies have suggested a potential benefit of

erythropoietin in reducing BPD in preterm infants, a meta-analysis

of 17 RCTs found no difference in the incidence of BPD between

infants receiving EPO and those receiving placebo (179–181).

The PENUT trial (Preterm Erythropoietin Neuroprotection trial)

also showed no reduction in the incidence of BPD after high-

dose EPO supplementation (182). Importantly, EPO use did not

increase the incidence of retinopathy of prematurity (ROP),

sepsis, or NEC (181, 182). Combining EPO with mesenchymal

stem cells has shown potential in attenuating lung injury by

promoting angiogenesis and decreasing fibrosis in murine

hyperoxia-induced lung injury models (183, 184). However, this

combination therapy has not yet been studied in humans.

Recombinant human Clara cell 10 protein
(rhCC10)

Clara Cell 10 Protein (CC10) is a 10-kilodalton protein secreted

by non-ciliated bronchiolar epithelial cells (club cells) and is one of

the most abundant proteins within the fluid lining the lung

epithelium (185). CC10 has extensive anti-inflammatory

properties and has been shown to be significantly lower in

tracheal aspirates of premature infants who subsequently died or

developed BPD (186, 187). Animal studies have demonstrated

that the administration of recombinant human CC10 (rhCC10)

upregulates SP and vascular endothelial growth factor (VEGF)

expression while improving respiratory mechanics (188, 189). A

pilot trial conducted in 22 VLBW infants demonstrated that

intratracheal administration of rhCC10 was well-tolerated and

had significant anti-inflammatory effects in the lung (190).

In another multicenter RCT consisting of 88 infants 24 0/7

to 29 0/7 weeks’ GA, a single dose of intratracheal rhCC10

(1.5 mg/kg or 5 mg/kg) was found to be ineffective in changing

long-term respiratory outcomes at 12 months of age (191).

Superoxyde dismutase (SOD)
Superoxide dismutases (SODs) are antioxidant enzymes that

are reduced in various animal models of BPD (192, 193). Studies

have shown that increased expression of extracellular SOD in

transgenic mice preserved pulmonary angiogenesis following

exposure to hyperoxia (194). Initial findings by Rosenfeld et al.
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suggested a decrease in both radiologic and clinical features of BPD

after the subcutaneous administration of multiple doses of bovine

SOD to infants with severe RDS (195). However, a randomized

controlled trial by Davis et al. did not find a difference in the

rate of death or BPD at 28 days or 36 weeks of PMA in infants

receiving recombinant human CuZn-SOD (rh-CuZn-SOD)

compared to placebo. Notably, infants treated with rhCuZn-SOD

experienced fewer episodes of wheezing, required asthma

medications less frequently, and had lower hospitalization rates

before one year of corrected age (196). A recent study found no

correlation between extracellular SOD in serum and the risk of

BPD in infants born at less than 32 weeks’ gestational age (197).

While SODs may hold promise for improving the long-term

pulmonary outcomes of infants with BPD, further research is

needed to determine their efficacy, safety, and optimal dosing

before they can be implemented in clinical practice.

Inositol
Inositol is a nutrient that promotes the production of

phosphatidylcholine and phosphatidylinositol, and preterm infants

with a premature decline in myoinositol have a more severe course

of RDS (198). Multiple RCTs have been conducted to evaluate the

efficacy of inositol supplementation in preventing RDS and BPD.

While no acute adverse effects were reported with the use of inositol,

a recent Cochrane review concluded that inositol supplementation

did not decrease the rates of BPD, death, or the composite outcome

of BPD or death in preterm infants. Based on these findings, the

review recommended against further clinical trials in neonates

regarding the use of inositol for this purpose (199, 200).

Docosahexaenoic acid (DHA)
DHA is a long-chain polyunsaturated fatty acid known for its

anti-inflammatory and antioxidant properties (201). In the DINO

trial, which involved over 600 infants born before 33 weeks of

GA, Manley et al. observed a reduced incidence of BPD in male

infants and those weighing less than 1.25 kg whose mothers

consumed tuna oil capsules containing a high amount of DHA.

However, no significant difference was observed in female infants

or those weighing more than 1.25 kg (202). However, the N3RO

trial, which included over a thousand infants born before 29

weeks’ GA, reported a higher rate of BPD at 36 weeks of PMA

and of BPD or death before 36 weeks’ PMA in infants receiving

enteral DHA supplementation at a dose of 60 mg/kg/day (203).

Similarly, the MOBYDIck trial, which involved mothers

delivering infants at less than 29 weeks’ GA, found no significant

improvement in BPD-free survival rates in infants whose

mothers received DHA capsules (204). Due to insufficient data

and conflicting results, DHA should only be used in research

settings. Larger clinical studies are necessary to determine the

appropriate dose and assess the efficacy of DHA in preventing

BPD in extremely preterm infants.

Other potential treatments
Various potential targets including growth factors, anti-

inflammatory agents, and antioxidants are currently being
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evaluated for the prevention of BPD in extremely premature

infants. In a phase II RCT that included infants with a

gestational age of 23 weeks and 0 days to 27 weeks and 6 days,

Ley et al. demonstrated a significant decrease in the incidence of

severe BPD following treatment with recombinant human

insulin-like growth factor 1 (rhIGF-1) complexed with

recombinant human insulin-like growth factor-binding protein 3

(rhIGFBP3) (205). Additionally, other factors showing promise in

the pre-clinical phase include growth factors such as hypoxia-

inducible factor 1-alpha (HIF-1α) and vascular endothelial

growth factor (VEGF), anti-inflammatory agents like interleukin-

1 receptor antagonist (ILR1A), and various long non-coding and

micro RNAs (lncRNA and miRNA) (206–210).
Conclusions

BPD requires comprehensive strategies for prevention

throughout the neonatal period. Initial respiratory management

of very preterm infants should prioritize noninvasive support like

nasal CPAP, reserving endotracheal intubation and surfactant

administration for those who fail noninvasive support or do not

demonstrate spontaneous respiratory effort after resuscitation.

Utilizing a volume-targeted ventilation approach for those

requiring mechanical ventilation may reduce the risk of BPD.

Caffeine and vitamin A are supported by strong evidence for

BPD prevention. Dexamethasone may be considered in high-risk

cases initiated after the first week, although its risks should be

carefully weighed. Hydrocortisone is an alternative with benefits

but potential adverse effects. Newer experimental therapies

appear to be promising for BPD prevention in extremely preterm

infants; however, further research is necessary before their safety

and efficacy in clinical practice can be established.
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