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Thermal equilibrium as a
predictor of growth efficiency in
preterm infants
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Draegerwerk AG & Co. KGaA, Luebeck, Germany
Introduction: Providing adequate nutrition to preterm infants to achieve
postnatal growth similar to intrauterine growth remains challenging due to the
unpredictability of individual determinants.
Material and methods: We used a calculation program for infant incubators to
compare the estimated heat balance with the caloric intake and growth rate in
Very Low Birth Weight Infants (VLBWI).
Results and discussion: A group of 32 VLBWI was studied over a period of 14–28
days. An interrelationship between thermal equilibrium and growth rate was
observed, with standardized incubator settings being unable to avoid periods
of negative thermal balance and concomitantly poor growth rate.
Conclusion: Determining personalized incubator settings by means of a
calculation program could help improve nutrition and growth in preterm infants.
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Introduction

One of the goals of nutritional practices for preterm infants is to provide an adequate

energy supply to achieve growth rates like those of fetuses in utero (1–4). Basically, growth

occurs when caloric intake exceeds energy expenditure. However, determining the energy

expenditure in very low birth weight infants (VLBWI) remains challenging, given the

technical obstacles to the use of direct or indirect calorimetry during incubator care (5–7).

The environment to which preterm infants are exposed after birth differs considerably

from the maternal uterus, particularly in terms of heat exchange (7–10). After birth, there

is an increase in basal metabolic rate within one to two days in term babies and two to

three weeks in VLBWI (10–12), adapting endogenous heat production to their large

surface-to-volume ratio. In addition, ambient temperature fluctuations are increasingly

compensated by the onset of thermogenesis in brown adipose tissue (9, 10).

The postnatal changes are reflected in the incubator settings which, starting from high

air temperature and relative humidity, can be gradually lowered. The more the preterm baby

contributes to its thermal stability, the less the ambient values need to be kept high. In this

respect, an intensive care incubator behaves like a (compensatory) “calorimeter”.

This study attempted to utilize a calculation program for incubator settings to

determine the thermal equilibrium of preterm infants as a potential predictor of

growth efficiency.
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Material and methods

Study design and subjects

This was a prospective observational study at the tertiary

perinatal center of the University Medical Center Hamburg-

Eppendorf over a 12-month period (May 2019–2020). Inclusion

criteria were preterm neonates with a birth weight < 1,800 g and

a gestational age < 33 weeks, who were admitted to the Neonatal

Intensive Care Unit (NICU) and treated in an incubator (Caleo®,

Draeger, Luebeck, Germany) for at least 14 days. Patients with

chromosomal aberrations, congenital malformations, small for

gestational age (birth weight < 3rd percentile), and with surgical

interventions were excluded from the study. Neonates were

eligible for enrollment if parental consent was obtained.

Parenteral nutrition with glucose was started immediately after

birth. Electrolytes, amino acids, and lipids were added within the

first three days of life. Enteral nutrition with increasing amounts

of breast milk or preterm formula was also initiated within the

first three days of life. The incubator settings were selected by

the nursing staff in accordance with the ward’s internal practices

(Table 1) to keep the preterm infants’ rectal temperature in the

normothermic range (36.5–37.5°C).

Relevant clinical patient data, daily energy intake, and the

incubator settings chosen by the caregivers were extracted from

the digital patient data management system (ICM®, Draeger,

Luebeck, Germany) on days 1, 2, 3, 4, 5, 6, 7, 10, 14, 18, 22, and

28 of life. The thermal equilibrium was assessed using the

HeatBalance® program (Draeger Medical Germany, Luebeck,

Germany) (13, 14), originally developed to simulate appropriate

incubator settings based on physical algorithms. As the

calculation was carried out retrospectively and without feedback

to the nursing staff, any influence on the caregivers’ actual

settings could be ruled out.

The HeatBalance® program accounted for the following

parameters: the baby’s heat production (Qneonate, W), the (negative

or positive) heat fluxes due to convection (Qconv, W), radiation

(Qrad, W), evaporation (Qevap, W), respiration (Qresp, W), and

phototherapy (Qpt, W), as well as the resulting water loss (ml/kg/h).

Heat production was estimated based on the baby’s body weight,
TABLE 1 Unit-specific incubator settings for temperature and humidity that

Birth weight Day of life/temperature settings
<1,000 g 1 37°C +

2–3 Skin mode
4–7 Skin mode
8− Skin mode

<1,500 g 1 36–34°C
2–3 35–33°C
4–7 34–33°C
8− 33–32°C

<2,000 g 1 34–33°C
2–3 33°C
4–7 33–32°C
8− 32°C
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corrected gestational age, and activity level based on data from the

literature (8, 13, 14). Total heat loss (Qtotal, W) was defined as the

sum of all heat fluxes (Qtotal = Qconv + Qrad + Qevap + Qresp + Qpt). The

heat balance was the difference between heat production and total

heat loss (Qhb =Qneonate—Qtotal). Required independent variables for

the program’s algorithms included weight (g), gestational age

(weeks), postnatal age (days), room temperature (°C), incubator air

temperature (°C), incubator relative humidity (%), ventilation

(yes/no), phototherapy (yes/no), and clothing (yes/no) (Figure 1).

For reasons of comparability with clinical habits, values expressed

in watts by the HeatBalance® program were later transformed into

calories per unit of time (1 W= 860 cal/h).

The study protocol was approved by the ethics committee of

the local Medical Chamber of Hamburg (2020-10105-BO-ff).
Statistics

Statistical analyses were performed using SPPS Ver. 27 (IBM,

NY, USA) and SigmaPlot Ver. 14 (Systat Software, Inc., CA,

USA). Data on neonatal demographics were expressed as median

and range for continuous variables. Mean values and standard

deviations (SD) of caloric intake, absolute and specific weight

gain, heat production, and heat balance were plotted against the

newborn’s postnatal age.
Results

Demographic data and body weight

The eligible study population consisted of 32 preterm neonates

with a median (range) gestational age and birth weight of 29.1

(25.6–32.9) weeks and 1,213 (720–1,795) g, respectively. Nine

consecutive measurements (days 1–14) were carried out in twelve

patients, and twelve data points (days 1–28) were recorded in 20

patients. Incubator settings were made according to our

institutional regimen, with humidities between 50% and 75% for

one week, depending on gestational age, followed by a 5%

reduction per week. Temperature settings started between 34 and
were used for the preterm infants in this study.

Gestational age Week of life/humidity settings
<28 weeks 1 75%

2− Reduction by
5% per week

28–<30 weeks 1 65%–60%
2− Reduction by

5% per week

30–<33 weeks 1 50%
2− 50%
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FIGURE 1

Screen view example of the HeatBalance® program. Heat
production, heat losses, and heat balance are displayed after entry
of patient and incubator data.
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37°C depending on birth weight and were regulated by servo (skin

control) mode (Table 1).

Body weight initially dropped to a mean (SD) minimum of

−7.5 (±6.2)% on day four, followed by a rise to 38.3 (±7.7)%

above birth weight on day 28 (Figure 2a).
FIGURE 2

Percentage body weight (a), nutritional caloric intake and estimated
heat production (b), specific growth rate (c), and net heat balance (d)
in 32 VLBWI. Growth sets in as soon as an energy excess (caloric
intake minus heat production) of around 50 kcal/kg/d is achieved/
exceeded. Overall, the specific growth rate parallels the net heat
balance, with a negative heat balance being accompanied by a
temporary retardation in growth rate.
Caloric intake and heat production

Consistent with our institutional nutritional regimen, daily

caloric intake per weight increased steadily up to a maximum

mean of 137 (±9) kcal/kg/d on day 28 of life. The mean heat

production estimate was 37.5 (±8.2) kcal/kg/d directly after birth

and increased to 61.5 (±9.2) kcal/kg/d on day 28. The mean

difference between caloric intake and heat production (energy

excess) increased from −7.8 (±9.8) kcal/kg/d on the first day of

life to 73.0 (±16.4) kcal/kg/d on day 28. The increase in body

weight started once the caloric intake exceeded the heat

production rate by roughly 50 kcal/kg/d (Figure 2b).
Growth rate and heat balance

The growth rate varied to a maximum of 25.7 (±16.6) g/kg/d.

The heat balance started at −25.3 (±17.8) kcal/kg/d after birth

and reached a temporary steady state by day 10. However, within

the following 8 days, it dropped again to a minimum of −9.3
(±11.2) kcal/kg/d, stabilizing at −4.2 (±10.6) kcal/kg/d from day

22 onwards. The variations in growth rate appeared to run

parallel to the fluctuations in heat balance (Figures 2c,d).
Discussion

It has long been known that thermal care affects the mortality

and morbidity of newborn infants (8). Appropriate incubator
Frontiers in Pediatrics 03
settings are usually selected empirically using textbook

recommendations or in-house standard operating procedures

(cf. Table 1) (10, 15). However, reaching the target body

temperature (mostly ±37°C) does not prevent preterm babies

from expending extra energy to compensate for a residual

thermal imbalance. In fact, by using a simulation program for

incubator settings, a partly negative heat balance of VLBWI on

our NICU was detected, which appeared to affect growth rate

apart from caloric intake.

The 7.5% initial weight loss in the first week of life mainly

reflects the disruption of nutrient supply and the shift in body

water content related to preterm birth (16). However, even

slightly suboptimal incubator conditions (not recognizable by the

preterm infants’ rectal temperatures) may lead to avoidable water

loss and additional heat production (beyond the basal rate

estimated by the calculation program).

The final weight gain of approximately 20 g/kg/d, meeting

international guidelines (1–4), was achieved in the fourth week of
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life when the caloric intake (135 kcal/kg/d) exceeded the estimated

heat production rate by roughly 75 kcal/kg/d. Therefore, infants

required a caloric intake of approximately 6–7 (corresponding to

an energy excess of 3–4) kcal per gram weight gain. This is

slightly higher than older data on the energetic cost of growth in

preterm infants, who were less immature and grew more slowly

at the time (17, 18).

The variations in specific weight gain, paralleling the—albeit

slight—thermal imbalances occurring in the second and third

weeks of life, reveal that there is still room for improvement in

the thermal care of VLBWI. Similar to recent nutritional

concepts promoting optimization of daily caloric intake based on

individual growth trajectories (19, 20), individual adjustment of

incubator settings using a calculation program could optimize the

growth efficiency of preterm neonates.

This study has some limitations. First, the caloric intake was

estimated based on tables showing the average energy content of

breast milk and infant formula. However, as the caloric density

of breast milk can vary widely, the actual individual intake may

differ considerably from the one assumed. Second, the

parameters used in the HeatBalance® program are also based on

stored table values (8, 13, 14). This is particularly true for the

heat production (resting metabolic rate) which, if measured

directly, would allow a more accurate determination of the

babies’ caloric needs. Third, this retrospective chart evaluation

only provides indirect evidence for the potential benefit of

personalized vs. table-based incubator settings and needs to be

confirmed by a prospective study.

In conclusion, however, the present data suggest that a more

individual adjustment of thermal environmental conditions could

be an effective and comparatively simple way of further

optimizing growth efficiency in preterm infants.
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