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Introduction: Gyrification is the intricate process through which the mammalian
cerebral cortex develops its characteristic pattern of sulci and gyri. Monitoring
gyrification provides valuable insights into brain development and identifies
potential abnormalities at an early stage. This study analyzes the cortical
structure in neurotypical and pathological (spina bifida) fetuses using various
shape descriptors to shed light on the gyrification process during pregnancy.
Methods: We compare morphometric properties encoded by commonly used
scalar point-wise curvature-based signatures—such as mean curvature (H),
Gaussian curvature (K), shape index (SI), and curvedness (C)—with
multidimensional point-wise shape signatures, including spectral geometry
processing methods like the Heat Kernel Signature (HKS) and Wave Kernel
Signature (WKS), as well as the Signature of Histograms of Orientations
(SHOT), which combines histogram and signature techniques. These latter
signatures originate from computer graphics techniques and are rarely applied
in the medical field. We propose a novel technique to derive a global
descriptor from a given point-wise signature, obtaining GHKS, GWKS, and
GSHOT. The extracted signatures are then evaluated using Support Vector
Regression (SVR)-based algorithms to predict fetal gestational age (GA).
Results: GSHOT better encodes the GA to other global multidimensional point-
wise shape signatures (GHKS, GWKS) and commonly used scalar point-wise
curvature-based signatures (C, H, K, SI, FI), achieving a prediction R2 of 0.89
and a mean absolute error of 6 days in neurotypical fetuses, and a R2 of 0.64
and a mean absolute error of 10 days in pathological fetuses.
Conclusion: GSHOT provides researchers with an advanced tool to capture
more nuanced aspects of fetal brain development and, specifically, of the
gyrification process.
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Abbreviations

MRI, magnetic resonance imaging; GA, gestational age; HKS, Heat Kernel Signature; WKS, Wave Kernel
Signature; SHOT, Signature of Histograms of OrienTations; H, mean curvature; K, Gaussian curvature;
SI, shape index; FI, folding index; C, curvedness; SVR, Support Vector Regression; T2w, T2-weighted;
PCA, Principal Component Analysis.
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1 Introduction

Magnetic resonance imaging (MRI) has become a pivotal tool

for the study of brain morphology and understanding structural

alterations associated with various pathological conditions.

Various geometric quantities can be exploited to summarize the

morphometric information, providing valuable insights into

population-based studies, contributing to our understanding of

brain-related disorders, and paving the way for more

personalized approaches to diagnosis and treatment. Advanced

shape analysis techniques allow us to explore new dimensions of

brain morphology beyond traditional measures (e.g., brain

volumes and surface areas). Some of these techniques utilize

spectral (1) and local extrinsic geometric (2) properties to gain

deeper insights into brain shape characteristics. Spectral shape

analysis techniques involve analyzing the shape of an object

based on its spectral properties, and this is typically

accomplished by encoding the shape through a differential

operator and computing its eigendecomposition. On the other

hand, local geometric properties focus on analyzing the shape at

a more localized and detailed level, typically involving specific

quantities such as curvature, surface normals, or deformations at

specific points or regions of the shape. In this fashion, shapes

can be compared by measuring similarities between these

features. Thus, the efficacy of shape descriptors can be assessed

in terms of discriminativeness and robustness against shape

variations due to noise or deformations (3).

In this work, we analyze the fetal brain cortical structure using

different shape descriptors to enhance our comprehension of the

fetal brain gyrification process, i.e., the formation of gyri and

sulci. The gyrification process plays a crucial role in brain

development, contributing significantly to overall growth,

organization, and functionality. Just like fetal ultrasound provides

an estimate of gestational age (GA) by measuring basic

morphometric features (such as skull size or femur length), tools

linking brain morphological MR images to the central nervous

system development can be a valuable resource for monitoring

pregnancy and detecting fetal diseases in their initial stages.

Here, we estimate the fetus GA in weeks, comparing the cortical

structure morphometric properties encoded with the commonly

used scalar point-wise curvature-based descriptors to those

derived via multidimensional point-wise shape signatures which

are widely used in computer graphics analysis. We examine

several scalar point-wise signatures based on curvature: mean

curvature (H), which measures extrinsic curvature or folding;

Gaussian curvature (K), which measures intrinsic curvature or

distortion; shape index (SI) and folding index (FI), indicators of

shape and folding patterns (4). Moreover, we consider the

curvedness (C), a signature incorporating information from both

H and K, a valuable measure of the gyrification process (5, 6).

On the other hand, we examine three different multidimensional

point-wise shape signatures that are rarely applied in the medical

field: the Heat Kernel Signature [HKS, (7)], the Wave Kernel

Signature [WKS, (8)], and the Signature of Histograms of

OrienTations [SHOT, (2)]. HKS is derived from the heat

equation, a partial differential equation that describes the heat
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diffusion across the surface over time. Similarly, WKS is derived

from the solution of another partial differential equation, the

wave equation, which describes the evolution of waves across the

surface over time. SHOT is computed by dividing the

neighborhood around each point into multiple cells and

calculating histograms of relative orientations of the normals in

each cell. These histograms are then concatenated to obtain the

final signature, which results in a compact representation of the

local geometric properties of the shape. In the last years, several

studies have been proposed to analyze fetal brain gyrification by

extracting cortical surface morphometric properties. In this

context, scalar point-wise curvature-based measures are the gold

standard for assessment of neurodevelopment (5, 6, 9–14). Other

novel techniques based on sulcal pattern analysis can be

employed to observe geometric and topological patterning of

early sulcal folds, including 3D positions, sulcal basin surface

area, and depth (4, 15–17).

Furthermore, we define a novel procedure to extract a global

encoding framework from these multidimensional point-wise

shape signatures, leading to their global version. We namely refer

to the global descriptors produced through our pipeline as

Global plus the name of the input pointwise descriptor we use,

Global Heat Kernel Signature (GHKS), Global Wave Kernel

Signature (GWKS), and Global Signature of Histograms of

OrienTations (GSHOT). The global descriptor has several

excellent advantages such as it allows for shape comparisons

using minimal shape preprocessing, it is robust to noise since it

implicitly employs surface smoothing by neglecting higher

frequencies of the shape, and finally, it encodes isometric

invariance properties of the shape, which are crucial to deal with

shape deformations.

We tested our descriptors in the context of the fetal brain

gyrification process. A linear Support Vector Regression (SVR)-

based approach (18) was employed to predict the fetus GA from

the cortical structure morphometric properties encoded by

descriptors. Experiments on a public dataset of 80 fetuses (n = 31

neurotypical and n = 49 pathological (19), and two public atlases

of 18 and 16 fetuses (20, 21) showed promising prediction results

in distinguishing the fetal brain gyrification process.
2 Methods

The proposed approach comprises five main steps: data

gathering, cortical structure reconstruction, computation of shape

descriptors, and GA prediction.
2.1 Data

We included data from different sources in this study. In

particular, we used two publicly available fetal brain atlases

(20, 21) and one publicly available fetal brain dataset (19). For

each source, we used all the provided data without assessing the

quality of the fetal brain high-resolution reconstruction and

tissue segmentation. A brain atlas is a digital representation of
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TABLE 1 Summary of the publicly available fetal brain MRI atlases and dataset used in our study.

Data MRI contrast Tissue
labels

GA range Cohort Public link

CRL atlas T2w 124 21–38 weeks 18 http://crl.med.harvard.edu/research/fetal_brain_atlas

dHCP fetal atlas T2w 19 21–36 weeks 16 https://gin.g-node.org/kcl_cdb/fetal_brain_mri_atlas

FeTA dataset T2w 7 20–35 weeks 80 (31 neurotypical 49 pathological) https://www.synapse.org/#!Synapse:syn25649159/wiki/
610007
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the human brain population, which highlights common structural

features and provides a reference point for researchers and

clinicians to compare and analyze specific brain regions. On the

other hand, a brain dataset refers to a collection of brain images

of real fetuses, thus characterized by unique variations.

The fetal brain atlas introduced by Gholipour et al. (20)

(hereafter, “CRL atlas”) is defined at the GA range of 21–38

weeks. It consists of an age-specific T2-weighted (T2w) template

and label images of 124 brain tissues, including gray matter

(GM) and white matter (WM). The fetal brain atlas introduced

by Uus et al. (21) (hereafter, “dHCP fetal atlas”) is defined at

21–36 weeks. It includes age-specific T2w templates and 19 brain

tissue labels, separate for each hemisphere.

On the other hand, the fetal brain dataset introduced initially

by Payette et al. (22) and later updated (19) (hereafter, “FeTA

dataset”) consists of MRI-reconstructed images of 80 fetuses (n =

49 pathological and n = 31 neurotypical) defined in the GA range

of 20–35 weeks. Each subject was released with a T2w template

brain reconstruction (reconstructed with either NiftyMIC1,

MIALSRTK2, or Simple IRTK3) with the corresponding seven

brain tissue label images. Pathological subjects included fetuses

with spina bifida either before or after fetal spinal lesion repair

surgery, as these were the only publicly available pathological

datasets (23). A summary of the available cohort of fetuses is

reported in Table 1.
2.2 Cortical structure reconstruction

Our study focused on the cortical structure of the fetal brain,

which is defined as the external layer of the parenchymal tissue

and will become the cortical GM in the mature brain (Figure 1).

During embryonic development, the brain is surrounded by a

thin layer (darker than other tissues in the T2w images) called

the cortical plate (CP). In the beginning, the CP is a flat and

smoothed structure; as the brain grows and enlarges, it thickens

and differentiates into different cortical layers. Visually, this

results in folds, or gyri, and grooves, or sulci, that give the brain

its characteristic wrinkled appearance. By the end of fetal
1https://github.com/gift-surg/NiftyMIC
2https://github.com/Medical-Image-Analysis-Laboratory/

mialsuperresolutiontoolkit
3https://gitlab.com/mariadeprez/irtk-simple
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development, the differentiated CP becomes the outermost layer

of the brain, known as the cortical GM.

The CP folding process can be monitored using its boundary

surfaces, i.e., the external and internal surfaces. The external

surface separates the parenchyma from the cerebrospinal fluid.

On the other hand, the inner surface divides the CP and the

WM structure. We decided to focus on the inner cortical surface

since the interface between WM and cortex is more stable and

less prone to segmentation errors due to partial volume effects

than the cortex-cerebrospinal fluid interface (15).

For each data set, we generated the inner cortical volume by

merging the already validated tissue segmentation labels, which

encompass the WM to the inner structures of the brain. Although

the different datasets were generated using different segmentation

protocols (19–21), they all include the inner cortical surface as

boundary between structures, enabling consistent identification in

each dataset used. Consequently, the volume obtained for each fetus

was binarized and underwent manual refinement to remove any

erroneous segmented components (i.e., voxel connected to the main

WM mask by a single vertex). Subsequently, we extracted

(MATLAB isosurface function) a triangular mesh representing the

boundary of the binary image, i.e., the inner surface of the CP.

Furthermore, we employed Freesurfer (surfer.nmr.mgh.harvard.edu)

to geometrically smooth the resulting mesh, removing noise and

minor geometric alterations. Figure 2 shows an example of the fetal

brain’s inner cortical surfaces across different gestational weeks.
2.3 Shape descriptors

To capture the most informative intrinsic geometric properties

of the inner cortical surface shape, we computed both scalar point-

wise curvature-based signatures (C, H, K, SI, FI) and

multidimensional point-wise shape signatures (HKS,

WKS, SHOT).

Scalar point-wise curvature-based signatures are computed for

each vertex of the surface mesh using the FreeSurfer function

mris_curvature_stats (10). Subsequently, we derived a global

description of the derived signature by computing the frequency

over a 100 bins discretization (MATLAB histcounts function),

and we normalized the derived distribution for the number of

associated vertices, which is an intrinsic characteristic of each

fetus (24).

Multidimensional point-wise shape signatures are computed

accordingly. In detail, the HKS and WKS descriptors are

implemented with an in-house MATLAB code. Here, we used k
frontiersin.org
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FIGURE 1

Examples of brain images and corresponding cortical plate segmentations in various atlases (20, 21) and datasets (19) for a 28-week gestational age
fetus. Structural anatomical (grayscale) and cortical plate segmentation (blue) overlaid. From left to right, the fetal brains are displayed in three different
orientations - sagittal, coronal, and axial.
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= 100 eigenvalues and scaled the temporal domain logarithmically

in n = 10 time values, as suggested by Sun et al. (7). On the other

hand, the SHOT descriptor is implemented in Pyshot, a Python

library publicly available on GitHub (https://github.com/

uhlmanngroup/pyshot). As for the point-wise curvature-based

signatures, we derived a global description from HKS, WKS, and

SHOT features, computing their distribution on a 100 bins

discretization, and we normalized the derived distribution for the

number of associated vertices. Finally, we concatenated the

obtained distributions for each time point to derive its global

signature similar to what was proposed in (3). A schematic

example of the proposed global HKS is presented in Figure 3.

This schema is adopted for each multidimensional signature

investigated to obtain its global version.

To aid in the data visualization of the signatures extracted by

each descriptor, we performed a Principal Component Analysis

(PCA). We derived a 2D scatter plot representing each

descriptor’s first and second principal components. These
Frontiers in Pediatrics 04
components contain the most relevant variations shown in the

dataset, proving its capability to encode the changes in shape.
2.4 Gestational age prediction

We implemented a ML experiment to investigate whether and

which derived signatures include the information associated with

CP development, and if they can be used to predict a subject’s GA.

We used a SVR algorithm to predict the GA in weeks for each

image sample from the features extracted with the shape descriptor

from the inner cortical surface mesh. SVR is one of the most

powerful supervised machine learning approaches used for

regression tasks (25), which aims to find a hyperplane

maximizing the margin while minimizing errors in a high-

dimensional feature space. It is an extension of the support

vector machine classification algorithm but it predicts continuous

output values instead of class labels. In the present study, only
frontiersin.org
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FIGURE 2

Inner cortical surface of the fetal brain from 28 to 38 gestational weeks. The surfaces depicted in the figure are generated from the previously quoted
Gholipour et al. (20) atlas.

FIGURE 3

An example of a global descriptor construction for the HKS signature (GHKS). (a) Each point of the inner cortical shape of the brain is colored
according to the heat kernel (HK) value at time ti. (b) These values are then gathered into histograms for each scale ti. (c) The histograms are
concatenated, leading to the global signature. The brain’s surfaces shown in the figure are generated from a 33-week fetus of the previously
quoted Gholipour et al. (20) atlas.
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linear kernels were employed since nonlinear methods may require

sample sizes that are too large to generalize well (26). Furthermore,

we decided to use the z-score method to normalize the data,

estimating the mean and the standard deviation on the training

set and applying them to normalize the test set. We trained each

SVR model on the signatures extracted from the atlases (20, 21)
Frontiers in Pediatrics 05
and tested it on the signatures extracted from the FeTA

dataset (19). We evaluated the goodness-of-fit of the SVR models

by measuring the mean absolute error (MAE), the root mean

square error (RMSE), which is more sensitive to outliers than

MAE, and the coefficient of determination (R2), which denotes

the amount of variation in potential new observations. The
frontiersin.org
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concordance between predicted and true GA was determined

using Lin’s concordance correlation coefficient, with strength

of agreement assessed by McBride’s criteria as follows: poor,

<0.90; moderate, 0.90–0.95; substantial, 0.95–0.99; almost

perfect >0.99 (27, 28).
3 Results

The proposed GA prediction method was employed for the

characterization of the fetal brain gyrification process occuring

during pregnancy. A dataset of 114 images (n = 31 neurotypical

and n = 49 pathological from public dataset, and n = 34

neurotypical from online available atlases) has been evaluated.

After the surface construction, the scalar point-wise curvature-

based signatures (C, H, K, SI, FI) and the global multidimensional

point-wise shape signatures (GHKS, GWKS, and GSHOT) were

computed and normalized by the z-score technique. The GA

prediction procedure is employed as described in Section 2.4.

Notably, each linear-based kernel SVR algorithm was trained on

the shape signatures extracted from the inner cortical surface of

fetuses included in atlases (20, 21) and tested on the fetuses

included in the public dataset (19), differentiating between

neurotypical and pathological fetuses. Table 2 shows the

performance of the individual SVR models in predicting GA for

neurotypical fetuses. GSHOT outperforms other shape descriptors,

both the scalar point-wise curvature-based signatures and the

global multidimensional point-wise shape signatures, achieving a

prediction R2 of 0.89 and a corresponding MAE of 6.3 days. FI is

the best scalar point-wise curvature-based descriptor, achieving

prediction performance comparable to GSHOT. Notably, it

achieved a prediction R2 of 0.75 and a MAE of 9.9 days.

According to Lin’s concordance correlation coefficient, the
TABLE 2 Gestational age prediction in neurotypical fetuses, expressed in we

Performance metric [weeks] Scalar point-wise cur
signature

C H K
RMSE 2.81 4.81 4.11

MAE 2.40 4.32 3.52

R2 0.36 −0.86 −0.36

The goodness-of-fit of the individual linear-SVR models is evaluated by measuring the mean abs

(R2). The scalar point-wise curvature-based signatures (C, H, K, SI, FI) and the global multidim

The best-performing metrics are shown in bold.

TABLE 3 Gestational age prediction in pathological (spina bifida) fetuses, exp

Performance metric [weeks] Scalar point-wise cur
signature

C H K
RMSE 2.96 8.50 6.25

MAE 2.62 8.10 5.75

R2 0.10 −6.46 −3.03

The goodness-of-fit of the individual linear-SVR models is evaluated by measuring the mean abs

(R2). The scalar point-wise curvature-based signatures (C, H, K, SI, FI) and the global multidim

The best-performing metrics are shown in bold.
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GSHOT model demonstrated substantial agreement between

descriptor-based GA predictions and GA ground truths (ρc = 0.95,

95% CI = 0.89–0.97), whereas the FI model showed poor

agreement (ρc = 0.84, 95% CI = 0.72–0.91).

Table 3 shows the GA prediction performance of the

considered individual SVR models tested on the pathological

subset of the FeTA dataset. The results highlight a larger

prediction error compared to the neurotypical subset of the

FeTA dataset. Similarly, GSHOT outperforms other descriptors,

achieving a prediction R2 of 0.64 and a corresponding MAE of

10.1 days. However, the agreement between predictions and

ground truths for this model was poor based on Lin’s

concordance correlation coefficient (ρc = 0.80, 95%CI = 0.70–0.87).

In Figure 4, the GA prediction obtained with the best global

multidimensional point-wise shape signature (GSHOT) and with

the best scalar point-wise curvature-based signature (FI) is

visualized in the true vs. predicted response plot (top row), and

the prediction model is evaluated using the residual plot (bottom

row). All the GSHOT points are close to the diagonal line,

suggesting an excellent estimation of the SVR model. Moreover,

the points of FI are more dispersed than those of GSHOT. Finally,

the residuals obtained in the GA prediction from the pathological

population are much larger than those obtained from the

neurotypical population. An exhaustive visualization of the results

obtained from each descriptor is reported in the Supplementary

Figures S1, S2, which shows larger prediction errors and a similar

trend for both neurotypical and pathological populations.

PCA analysis shows that shape descriptors codify the largest

part of the relevant information about the inner surface of the

CP in the first few components. Among all the shape descriptors,

GSHOT and FI provide the best performances. Their combined

first two components explain 98.8% of the variability in the

FeTA neurotypical fetuses and more than 95% in the FeTA
eks.

vature-based
s

Global multidimensional point-
wise shape signatures

SI FI GHKS GWKS GSHOT
3.87 1.76 2.04 2.36 1.18

3.53 1.41 1.63 1.65 0.91

−0.20 0.75 0.67 0.55 0.89

olute error (MAE), the root mean square error (RMSE), and the coefficient of determination

ensional point-wise shape signatures (GHKS, GWKS, GSHOT) are compared.

ressed in weeks.

vature-based
s

Global multidimensional point-
wise shape signatures

SI FI GHKS GWKS GSHOT
6.04 3.27 3.31 3.53 1.87

5.55 2.47 2.84 2.71 1.44

−2.77 −0.10 −0.13 −0.28 0.64

olute error (MAE), the root mean square error (RMSE), and the coefficient of determination

ensional point-wise shape signatures (GHKS, GWKS, GSHOT) are compared.
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FIGURE 4

A visualization of the results in GA prediction using GSHOT and FI. The figure displays the true vs. predicted response plots at the top and the residual
plots at the bottom. Black points represent neurotypical fetuses, while pathological (spina bifida) fetuses are described by blue stars. The FeTA dataset
was used for GA prediction (19).
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pathological fetuses (Supplementary Table S1). Figure 5 shows that

GSHOT provides a clear graphical representation of the fetal

evolution. The different GA samples are distributed in a distinct

“U” shape, with an increase from right to left on the first

component (x-axis). The GA ranges behave symmetrically on the

second component (y-axis), growing downwards on the negative

axis values and upwards on the positive axis values. This

geometric behavior interpretation cannot be inferred from FI

results as it revealed lower discretization ability.

The other descriptors have a graphical representation worse

than FI (see Supplementary Figure S3).
4 Discussion

Gyrification in the human fetus occurs from the 10th gestational

week and continues hierarchically almost up until the last weeks of

pregnancy (29). During gyrification, the smooth surface of the

fetal brain develops folds and wrinkles, increasing the surface area

of the cerebral cortex. This folding is essential for accommodating

the large number of cortical neurons and connections within the

limited space of the skull. However, disruptions or abnormalities
Frontiers in Pediatrics 07
during this process can lead to cortical malformations such as

lissencephaly [smooth brain, (30)], or polymicrogyria [excessive

folding, (31)]. These malformations are associated with various

neurological disorders and cognitive impairments. Therefore,

understanding its construction mechanism is crucial for studying

brain development, function, and disorders (32).

Here, we introduced novel multidimensional point-wise shape

signatures (HKS, WKS, SHOT) to analyze the inner cortical surface

development in the fetal brain by an innovative procedure. These

signatures are a well-established method in computer graphics to

analyze the geometry of an object based on its spectral

properties. However, they have rarely been applied in the medical

field due to the intricate nature of medical data, the heavy

workload and professional expertise required, and the need for

thorough validation and approval processes to comply with

regulatory standards (3, 33). We compared the shape properties

of the brain’s cortical structure extracted from multidimensional

point-wise shape signatures with those obtained from scalar

point-wise curvature-based signatures (C, H, K, SI, FI). The

results obtained from the GA prediction through shape

properties indicate that GSHOT is the most reliable shape

descriptor. GSHOT accurately captures the morphological
frontiersin.org
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FIGURE 5

GSHOT and FI first and second principal components. Neurotypical fetuses are represented by points, while pathological (spina bifida) fetuses are
represented by stars. The colorbar displays the color code used for the fetus GA ranges. These results are derived from Payette et al. (19) dataset.
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changes during fetal neurodevelopment, with an estimated error of

less than a week, outperforming all other descriptors investigated.

Figure 4 shows that this error remains consistent during

gestation. Furthermore, Figure 5 highlights that the first principal

component explains a large portion (93.2%) of all variability,

proving its capability to encode changes in morphological shape.

Consequently, this principal component alone can be considered

the best representative summary of the fetal gyrification process.

The GA prediction in pathological subjects (i.e., fetuses with

spina bifida) tends to be overestimated, particularly in the earlier

gestational weeks where the fetuses have not yet undergone

spinal lesion repair surgery. Therefore, the lack of cerebrospinal

fluid circulation can lead to abnormal pressure dynamics in the

brain. This, in turn, may result in more pronounced or abnormal

cortical folding. The difference between the predicted GA and

the actual GA can serve as an indicator of pathology, making it

easier to understand compared to the output of geometric

analysis. This approach is similar to clinical practices in

ultrasound, where each biometric measurement of the fetal brain

is compared to the physiological range associated with the

specified GA to identify any discrepancies. We can state that the

implemented linear-SVR method is reliable, independently of

fetal brain reconstruction method used (NiftyMIC, MIALSRTK,

or Simple IRTK) thanks to the inclusion of all reconstruction

typologies in the dataset used for training.

This study presents some limitations. First, other measures

related to cortical folding, such as the gyrification index (34) and

sulcal depth, can be studied. Furthermore, given cortical folding

alterations associated with several pathologies (e.g.,

ventriculomegaly), cortical thickness is another measure worth

investigating, considering partial volume effects. Second, other

regression models (e.g., relevance vector regression RVR and

Gaussian process regression GPR) can be tested by applying

different kernel functions (e.g., polynomial, radial basis) to

achieve the highest prediction performances. Third, we identified

a larger prediction error in the pathological subset of the FeTA

dataset used as test set. Unfortunately, we were not able to
Frontiers in Pediatrics 08
establish if this was caused by the clinical condition or by a

model error. On the other hand, spina bifida is characterized by

several malformative aspects both in the neonatal and in fetal

central nervous system, encompassing not only altered

gyrifications, but also altered brain and infratentorial structures

size, and corpus callosum hypoplasia or partial dysgenesis

(35–37). It is therefore reasonable to assume that the

implemented shape descriptors highlighted a different

developmental pattern in the gyrification process, leading to an

error in the estimated GA that can be used as an indicator of

pathology. Future works will investigate the brain’s structure

surface development across its different regions by using GSHOT

to uncover new insight into the neurodevelopment process.

Moreover, the quality of the T2w brain reconstructions and

relative tissue label maps were not investigated as it is out of the

scope of this study and has been previously addressed (19–21).
5 Conclusion

In this work, global multidimensional point-wise shape

signatures (GHKS, GWKS, and GSHOT) are exploited to improve

the prediction of GA in neurotypical and pathological fetuses.

GSHOT outperforms other global multidimensional point-wise

signatures and scalar point-wise curvature-based signatures (C, H,

K, SI, FI), providing researchers with a more sophisticated tool to

capture more nuanced aspects of shapes. This approach enhances

the accuracy and effectiveness of shape analysis tasks such as

classification, segmentation, or matching, potentially leading to

new methods for early detection of fetal diseases. In addition, a

novel exploration of the fetal brain based on this approach can

potentially uncover new insight into the structures development

of the brain.

Finally, this innovative procedure for extracting

multidimensional global descriptors from a given point-wise

signature can also be applied in different scenarios of shape

analysis within computer graphics.
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