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Background: Auscultation is a critical diagnostic feature of lung diseases, but it is

subjective and challenging to measure accurately. To overcome these

limitations, artificial intelligence models have been developed.

Methods: In this prospective study, we aimed to compare respiratory sound

feature extraction methods to develop an optimal machine learning model for

detecting wheezing in children. Pediatric pulmonologists recorded and verified

103 instances of wheezing and 184 other respiratory sounds in 76 children.

Various methods were used for sound feature extraction, and dimensions

were reduced using t-distributed Stochastic Neighbor Embedding (t-SNE). The

performance of models in wheezing detection was evaluated using a kernel

support vector machine (SVM).

Results: The duration of recordings in the wheezing and non-wheezing groups

were 89.36± 39.51 ms and 63.09± 27.79 ms, respectively. The Mel-spectrogram,

Mel-frequency Cepstral Coefficient (MFCC), and spectral contrast achieved the

best expression of respiratory sounds and showed good performance in cluster

classification. The SVM model using spectral contrast exhibited the best

performance, with an accuracy, precision, recall, and F-1 score of 0.897, 0.800,

0.952, and 0.869, respectively.

Conclusion: Mel-spectrograms, MFCC, and spectral contrast are effective for

characterizing respiratory sounds in children. A machine learning model using

spectral contrast demonstrated high detection performance, indicating its

potential utility in ensuring accurate diagnosis of pediatric respiratory diseases.
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Introduction

Wheezing is defined as the rapid movement of air through narrowed airways caused by

bronchial asthma, allergic reactions, or respiratory infections (1). Wheezing is

characterized by sinusoidal oscillations of 100–1,000 Hz and can occur during both

inhalation and exhalation. Wheezing is an important symptom in the diagnosis of

various diseases. For example, in asthma and chronic obstructive pulmonary disease,

wheezing can be heard in any part of the chest due to airway narrowing in the anterior

lung fields. However, local bronchial obstruction due to foreign bodies, mucus, or

narrowing due to tumors may cause wheezing predominantly in specific areas (2).
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In general practice, lung diseases are diagnosed by clinicians

following an examination of the patient’s chief complaint,

medical history, physical examination, and auscultatory findings.

Distinguishing between wheezing and non-wheezing during

auscultatory examination, which is key in the diagnosis of many

lung diseases, requires years of training and experience, and is

open to individual subjectivity. This makes objective assessment

difficult. Furthermore, in high risk patients requiring isolation,

direct physical examination is limited, which limits auscultatory

assessment (3–5).

To overcome these limitations, researchers have used artificial

intelligence (AI) to distinguish between normal and abnormal

auscultatory sounds, with some studies indicating better

performance than human doctors (6, 7). In particular, the

International Conference on Biomedical and Health Informatics

open dataset has been extensively studied for auscultatory sound

classification (8–10). In these studies, preprocessing methods

were used to extract audio features for AI training. These

features included the Mel-spectrogram, log-Mel-spectrogram, and

Mel-frequency cepstral coefficient (MFCC), which are known to

represent audio data (11, 12).

This study was conducted to determine the most effective tool

for the extraction of features from wheezing sounds. Feature

extraction was performed using various sound classification tools.

To observe the differences in performance, we used a kernel

support vector machine (SVM), a type of machine learning

model, to classify wheezing (13). In addition, we compared the

dimensionality of different features extracted from audio data by

t-stochastic neighbor embedding (t-SNE) by reducing and

visualizing them, and analyzed which features could be used to

learn and represent breathing sound data well (14). The overall

aim of this project was to determine the existing techniques that

are effective in distinguishing between breathing sounds.

Methods

Study design and data collection

We conducted a prospective study of pediatric patients who

visited the pediatric department of a university hospital in Korea

between August 2019 and January 2020. All records were

obtained from patients who voluntarily agreed to have their

breath sounds recorded. All breath sounds were recorded in

children visiting the outpatient department by a pediatric

respiratory specialist using an electronic stethoscope (Jabes, GST

Technology, Seoul, Korea).

The recorded auscultatory sounds were categorized as wheezing

or non-wheezing according to the pediatric physician’s diagnosis.

Two auscultation cycles were recorded for each patient, with one in

the anterior lung fields and the other in the posterior lung fields.

Two breath sound recordings were obtained during each cycle,

resulting in a total of four recordings per participant. This

standardized approach ensured consistent data collection across all

participants. To validate the classification, two board-certified

pediatric respiratory specialists independently reviewed all recorded

breath sounds under blinded conditions. Their evaluations were

based on standard clinical auscultation criteria for wheezing.

A recording was flagged and included in the final dataset only if

both reviewers independently agreed with the original classification.

This conservative inclusion criterion was applied to ensure the

reliability and consistency of the labeled data. Data on sex, age, and

auscultation site were also collected.

Feature extraction

In this study, the following feature extraction methods were

used to extract 48 kH breath sound data:

(1) Mel-spectrogram: This is a popular feature extraction method

which is used to analyze data with frequency characteristics

that change over time. A Mel-spectrogram is output after

the audio data have been subjected to a Fast Fourier

Transform and passed through a Mel filter bank.

(2) Log Mel-spectrogram: This method takes the logarithm of the

Mel-spectrogram and converts it to a frequency similar to that

heard by humans.

(3) MFCC: This feature extraction method performs a Discrete

Cosine Transform (DCT) operation on a Mel-spectrogram.

It is primarily used for human speech data, and requires less

computation than the Mel-spectrogram (15).

(4) MFCC-delta: This is a method of stacking the MFCC and

deltas (first differences) and delta-deltas (second differences)

for the MFCC around the frequency axis, representing noisy

data (16).

(5) Chroma Short-Time Fourier Transform (STFT): This is a

feature for the representation of a 12 tone scale, often used

in the analysis of music data (17).

(6) Chroma Constant-Q Transform (CQT): This application uses

CQT instead of SFTF in the chroma. It considers the

geometric split between different frequency bands and

contains additional high-frequency information (18).

(7) Spectral contrast: This method is based on differences in spectral

contrast, where higher frequencies are contrasted with lower

frequencies to create a more pronounced difference (19).

(8) Tonnetz: This method incorporates the tonnet theory

discovered by Euler and is effective in uncovering hidden

relationships and patterns (20).

Mel-spectrogram, MFCC, and spectral contrast features were

extracted using commonly adopted default parameters provided

by standard audio processing libraries. For example, MFCCs were

computed using 13 coefficients derived from the log-Mel

spectrogram. These parameter settings, commonly adopted in

respiratory sound analysis, were chosen to ensure consistent and

reliable feature extraction across recordings.

Evaluation of the AI algorithm

The kernel SVM was used to classify wheezing and non-

wheezing sounds for each feature obtained from the breath
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sound data (Figure 1). To compare the distribution of features,

t-SNE was used solely for visualization purposes by reducing the

dimensionality to a two-dimensional coordinate space.

An SVM is a supervised learning algorithm that aims to classify

two categories by finding the optimal decision boundary between

them. Kernel SVM was chosen based on its proven performance

in small- to medium-sized datasets and its successful application

in prior respiratory sound classification studies. Kernel SVMs

apply a kernel trick to SVMs that allows them to classify

multidimensional data linearly (14). Both linear and radial basis

function (RBF) kernels were tested across feature types. Kernel

selection was based on validation performance, with RBF applied

to MFCC and chroma-based features, and linear kernels retained

for others such as Mel-spectrogram and spectral contrast.

Additionally, the hyperparameter search ranges used in the grid

search were selected based on standard practices commonly

adopted in prior respiratory sound classification studies. In the

present study, we performed 5-fold cross-validation and grid

search on the training data (80% of the total data) to explore the

optimal hyperparameters of the kernel SVM for training and

compared the final results with the test data (20% of the total

data) (Tables 1, 2).

t-SNE is a machine learning algorithm designed to reduce the

dimensionality of high-dimensional data to facilitate the

visualization of vectors. It computes probability values for each

dimension based on the SNE framework to effectively preserve

the pairwise distances between vectors during the dimension

reduction process. Specifically, it quantifies the likelihood that

data points are chosen as neighbors in the original high-

dimensional setting.

Similarly, the dimension reduced post-analysis, t-SNE defines

the probability that pairs of data points are selected as neighbors

in the lower-dimensional space.

To ensure symmetry in these relationships, t-SNE modifies the

probabilities to consider the mutual probability of each pair

equally. This symmetry, maintained in both directions between

two points, ensures that the relationships are consistent. This

approach helps in maintaining the local structure of the data

during the dimensionality reduction process.

We defined Kullback-Leibler divergence (KL) divergence as a

cost function that measures the similarity of corresponding

distributions. This divergence quantifies how one probability

distribution diverges from a second, expected probability

distribution (21).

The training process uses gradient descent to minimize the cost

function and enhance the model’s accuracy in distinguishing

data distributions.

In short, t-SNE learns the equivalent Euclidean distance for

both pre- and post-decreasing dimensionality, albeit with

fewer dimensions.

The dimensionality was reduced to a two-dimensional

coordinate plane for the values of each feature on the x- and

y-axes, and wheezing and non-wheezing participants were

visualized in two separate classes (Figure 2). This study was

conducted using Python software version 3.6.5 (Python Software

Foundation, 9450 SW Gemini Dr., ECM# 90772, Beaverton, OR

97008, USA) and the Librosa package was used for each feature

FIGURE 1

Flowchart showing the use of t-SNE to visualize lung sounds. MFCC, mel-frequency cepstral coefficient; STFT, short-time fourier transform; CQT,

constant-Q transform; t-SNE, t-stochastic neighbor embedding.

TABLE 1 Selected hyperparameters with grid search.

Feature Type Kernel Gamma

Mel-spectrogram Linear 0.1 1,000

Log Mel-spectrogram Linear 0.1 1,000

MFCC RBF 0.1 100

MFCC-Delta RBF 0.1 1,000

Chroma STFT RBF 1 0.1

Chroma CQT RBF 1,000 0.01

Spectral contrast Linear 0.1 1,000

Tonnetz Linear 0.1 1,000

MFCC, mel-frequency Cepstral Coefficient; STFT, short-time fourier transform; CQT,

constant-Q transform; RBF, radial basis function.
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extraction. The scikit-learn package was used to model t-SNE and

SVM.

Statistical analysis

Statistical analysis was conducted using the data extracted for

each feature, utilizing accuracy, area under the curve (AUC),

precision, recall, and F1-scores.

Ethics statement

This study was approved by the Institutional Review Board (IRB)

of the Catholic University of Korea (IRB approval no.

PC19OESI0045). Written informed consent was obtained from at

least one legal guardian for all participants. For children 7 years of

age and older, assent of child was also obtained. All methods were

performed in accordance with relevant guidelines and regulations.

Results

A total of 76 patients were included in the study, and 103

wheeze sounds and 184 non-wheeze sounds were collected.

Based on these data, the characteristics of the auscultatory

sounds were summarized according to sex, age, and duration of

breath sounds (Table 3). The median age of the patients with

wheezing was 4 years (2–8 years), while that in those without

wheezing was 3 years (1–5 years). We found that the duration

times of the wheezing participants were 89.36 ± 39.51 ms and

those of the non-wheezing participants were 63.09 ± 27.79 ms.

The kernel SVM was used to classify wheezing and non-wheezing

sounds for each feature obtained from the breath sound data

TABLE 2 Performance of the different models in discriminating other respiratory sounds from wheezing use kernel support vector machine.

Feature Accuracy AUC Precision Recall F1-score

Mel-spectrogram 0.862 0.871 0.760 0.905 0.826

Log Mel-spectrogram 0.845 0.868 0.714 0.952 0.816

MFCC 0.863 0.882 0.741 0.952 0.833

MFCC-Delta 0.810 0.799 0.727 0.761 0.744

Chroma STFT 0.724 0.722 0.600 0.714 0.652

Chroma CQT 0.689 0.654 0.579 0.524 0.550

Spectral contrast 0.897 0.909 0.800 0.952 0.869

Tonnetz 0.672 0.651 0.545 0.571 0.558

MFCC, mel-frequency cepstral coefficient; STFT, short-time fourier transform; CQT, constant-Q transform.

FIGURE 2

The structure of a kernel support vector machine model. MFCC, mel-frequency cepstral coefficient; STFT, short-time fourier transform; CQT,

constant-Q transform.
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(Figure 2). The audio data were extracted using the Mel-spectrogram,

log-Mel-spectrogram, MFCC, MFCC-delta, chroma STFT, chroma

CQT, spectral contrast, and tonnet feature extraction methods. To

determine the best-performing SVM, the size of each region was

determined based on the kernel and gamma values using a grid

search. This type distinguishes this area into two types of lines: a

linear type for linear separation and a Radial Basis Function as a

curve that follows a normal distribution shape to divide each area.

These are summarized based on the hyperparameter tuning results

for each model (Table 1).

In the statistical analysis, the AUC and F1-scores are metrics

that can be indicative of data imbalance and were found to be

effective in this study. The Mel-spectrogram, MFCC, and spectral

contrast proved to be the most suitable for classifying breath

sounds, demonstrating the clearest clustering in distinguishing

between wheezing and non-wheezing sounds.

In particular, spectral contrast achieved an AUC of 0.909 and

an F1-score of 0.869, indicating the highest classification

performance (Table 2).

Discussion

In this study, we investigated whether any of the existing machine

learning techniques can effectively distinguish between lung disease

patients with and without wheezing by recognizing specific

diagnostic patterns from breathing data. A total of 76 patients were

included, and 103 wheeze sounds and 184 non-wheeze sounds

were analyzed. This class distribution resulted from the diagnostic

classification process, as each participant contributed the same

number of recordings. Given the relatively mild class imbalance, we

did not apply resampling or class-weighting. Instead, model

performance was assessed using F1-score, recall, and AUC, which

are well-suited to imbalanced classification scenarios. Based on the

breathing voice data, the Mel-spectrogram, MFCC and spectral

contrast were found to be the most suitable for classifying

breathing sounds and distinguishing between wheezing and non-

wheezing sounds with clear clustering. Among the various

techniques analyzed, spectral contrast demonstrated the most

effective classification performance in distinguishing wheezing in

children. This suggests that machine learning models using spectral

contrast may be used to accurately diagnose respiratory diseases in

children. By systematically comparing these methods, our work

provides a useful foundation for future efforts to optimize machine

learning models for pediatric wheeze classification.

Meanwhile, differentiation between wheezing and non-wheezing

requires extensive medical expertise, impeding objective evaluations

and restricting the use of auscultatory assessments in isolated, high

risk populations. To address these issues, researchers have turned

to deep learning methods to differentiate between normal and

abnormal auscultatory sounds. Recently, several techniques have

been proposed to improve the identification of lung sounds using

deep learning. Efforts have been made to categorize breath noise

by applying traditional deep learning neural networks (CNNs) (22,

23). In a recent study, a CNN model was used to distinguish

wheezing sounds (5). Further, machine learning has been used to

classify abnormal respiratory sounds into subclasses. Different

architectures were shown to effectively differentiate between

wheeze, rhonchi, and crackles. However, the authors opted for

CNNs over SVMs for the connection between the feature extractor

and classifier as CNNs were found to yield superior results in both

image classification and traditional classification tasks. The

researchers opted for a CNN as the classifier and utilized

InceptionV3, DenseNet201, ResNet50, ResNet101, VGG16, and

VGG19 as feature extractors. The study’s findings revealed that

VGG16 yielded the most favorable results by achieving an AUC of

0.93 and accuracy of 86.5%, validating its competence in

identifying anomalous lung sounds and classifying crackles,

wheezes, and rhonchi (24).

Previous studies have analyzed feature extractors and classifiers

for integrating breath sounds into machine learning with a focus

on determining the most effective models. However, which

method is superior for distinguishing wheezing sounds remains

unknown. Numerous techniques are currently available to extract

features from breath sounds; however, none have been identified as

being particularly effective in distinguishing wheezing. The raw

audio data functionally represents the pitch as sound pressure over

time. In recent deep learning and machine learning methods,

features are extracted from raw data rather than from raw audio

data. Feature extraction techniques enable frequency representation

by decomposing the time data into frequency components using a

Fast Fourier Transform. This conversion process reveals which

frequencies are strong or weak in the audio signal and how deep

learning or machine learning can better learn from audio data.

Furthermore, there are several techniques for extracting features

from audio, and the manner in which these features are extracted

is critical for accurately representing audio. These features have a

horizontal (time) axis, vertical (frequency) axis, and one channel,

creating an image-like data structure.

We found that the spectral contrast performed best as a feature

extractor for wheezing. This performance remains meaningful even

when compared to studies using external datasets. For instance, a

recent ICBHI-based study reported an F1-score of 0.69 and recall

of 74% using a MobileNet-based multi-task learning model (25).

Despite differences in datasets and model complexity, our SVM-

based approach achieved comparable or superior results

(F1-score: 0.869; recall: 95.2%), suggesting the potential utility of

spectral contrast features in interpretable and efficient models for

pediatric wheeze detection. Furthermore, we did not limit

ourselves to the extraction and classification of low-frequency

wheezing sound data. Instead, we employed t-SNE to reduce

TABLE 3 Characteristics of respiratory sounds collected in the study.

Variable Wheezing Others P value

(n = 103) (n= 184)

Demographic data of the included patients

Male sex, n (%) 67 (65.0) 113 (61.4) 0.541

Age (years) 4 (2–8) 3 (1–5) <0.001

Duration of sound (ms) 89.36 ± 39.51 63.09 ± 27.79 <0.001

Continuous variables are expressed as mean ± standard deviation or median (interquartile

range).
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dimensionality and trained machine learning models using this

approach. As previously noted, this study differs from others in

that the data were classified using t-SNE based on multiple

features and then reduced to a two-dimensional coordinate

plane, allowing for the visualization of wheezing and non-

wheezing. However, this study had some limitations. It was

conducted on a single-center basis, and the limited sample size

during the collection of low data made assessment of accuracy

challenging. For these reasons, we were restricted to evaluating

the effectiveness of the hyperparameters solely using the AUC

and F1-score metrics. Moreover, because we trained the machine

learning model to differentiate only between wheezing and non-

wheezing respiratory sounds, it remains unclear whether spectral

contrast provides a similarly outstanding performance when

distinguishing other respiratory sound types. Validating large-

scale prospective studies is essential for future research, although

utilizing spectral contrast may improve the performance of AI in

distinguishing respiratory sound characteristics. Building on our

findings, future studies could incorporate diverse and

independent datasets, such as the ICBHI wheezing dataset or

HF_Lungs dataset, to further evaluate the model’s performance

and strengthen its robustness across varied clinical conditions

and populations. Additionally, while we prioritized machine

learning models for their interpretability and computational

efficiency, comparing our approach with state-of-the-art deep

learning methods, such as ResNet18 or Audio Spectrogram

Transformers, could provide further understanding of model

optimization strategies.

Conclusion

Accurate diagnosis of wheezing in children is essential, as

wheezing is a key clinical sign of respiratory diseases such as

asthma. This study confirmed that the Mel-spectrogram, MFCC,

and spectral contrast exhibited the best performance in

characterizing respiratory sounds. Overall, we found that

machine learning trained on spectral contrast demonstrated

superior performance in detecting wheezing sounds compared to

other feature extraction methods in pediatric cases. These

findings suggest that high-performance machine learning models

utilizing spectral contrast may support more accurate analysis of

pediatric respiratory sounds and contribute to improved

precision in detecting abnormal breathing patterns.
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