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Objective: This study aims to evaluate and compare the performance of four
major large language models (GPT-3.5, GPT-4.0, YouChat, and Perplexity) in
answering 32 common asthma-related questions.
Materials and methods: Seventy-five clinicians from various tertiary hospitals
participated in this study. Each clinician was tasked with evaluating the
responses generated by the four large language models (LLMs) to 32 common
clinical questions related to pediatric asthma. Based on predefined criteria,
participants subjectively assessed the accuracy, correctness, completeness,
and practicality of the LLMs’ answers. The participants provided precise scores
to determine the performance of each language model in answering pediatric
asthma-related questions.
Results: GPT-4.0 performed the best across all dimensions, while YouChat
performed the worst in all dimensions. Both GPT-3.5 and GPT-4.0
outperformed the other two models, but there was no significant difference in
performance between GPT-3.5 and GPT-4.0 or between YouChat and
Perplexity.
Conclusion: GPT and other large language models can answer medical
questions with a certain degree of completeness and accuracy. However,
clinical physicians should critically assess internet information, distinguishing
between true and false data, and should not blindly accept the outputs of
these models. With advancements in key technologies, LLMs may one day
become a safe option for doctors seeking information.
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1 Introduction

Asthma is a major chronic respiratory disease worldwide,

affecting the health and quality of life of millions of people. In a

multinational, multicenter study involving 453,473 subjects, it was

found that 6.3% of children, 7.9% of adolescents, and 3.4% of

adults were diagnosed with asthma by a doctor. Moreover, in

middle-to-low-income countries, many individuals with severe

asthma symptoms were not using inhaled corticosteroids (1). In

China, 15.5% of asthma patients reported at least one emergency

room visit, and 7.2% of patients reported at least one hospitalization

due to worsening respiratory symptoms (2). Despite receiving high-

intensity treatment, most children with poorly controlled symptoms

can achieve improved asthma control when they adhere to the basic

principles of asthma management (3). Frequent and severe asthma

attacks can be fatal, and effective asthma management and

treatment require close cooperation between patients, doctors, and

caregivers. Therefore, improving the provision of accurate health

information and personalized counseling is crucial for the self-

management of asthma patients.

A survey of online health behaviors of Americans revealed that

more than one-third of Americans turn to the Internet to diagnose

health problems (4). Large Language Models (LLMs), such as GPT,

are AI tools designed to process and generate text. They have been

widely applied to various tasks and have demonstrated excellent

performance in the medical field (5). LLMs will increasingly be

used for information retrieval, automated summarization of

literature notes, answering medical questions, and even as

interactive tools in medical education (6, 7). This not only helps

patients access important disease-related information more

quickly but also supports the decision-making process of

healthcare professional (8). However, Information errors, privacy

issues, and ethical challenges and potential harm to patient care

remain significant challenges (9). Ethical issues, including data

privacy and breaches, must be addressed. In both medical and

non-medical education, students are vulnerable to

misinformation, hindering the development of critical thinking

skills. The lack of mechanisms to ensure the accuracy of LLM

outputs limits their use in clinical settings, where misinformation

can have fatal consequences (7).

In this study, we aim to evaluate and compare the performance

of four selected Large Language Models (GPT-3.5, GPT-4.0,

YouChat, and Perplexity) in answering clinical questions related

to pediatric asthma. The evaluation includes four dimensions:

accuracy, precision, completeness, and practicality, combined

with insights from professionals for a comprehensive assessment.

Our findings may provide valuable insights into the clinical

application of LLMs as medical auxiliary tools and promote

clinical decision-making.
2 Article type

This study is an Original Research Article that evaluates and

compares the performance of four major large language models
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(GPT-3.5, GPT-4.0, YouChat, and Perplexity) in answering 32

common asthma-related questions.
3 Material and methods

3.1 Model selection

Based on previous research, user volume, and training

methodologies, this study selected four models for investigation:

ChatGPT 3.5, ChatGPT 4.0, YouChat, and Perplexity. ChatGPT 3.5

and ChatGPT 4.0 were trained on predefined datasets and did not

connect to the internet after their launch. ChatGPT 4.0 utilizes a

more extensive and diverse pre-training dataset compared to

ChatGPT 3.5, along with advanced training techniques such as

more effective model optimization algorithms and smarter

parameter initialization methods. The version of YouChat used in

this study is the basic version, which extends ChatGPT 3.5 by

integrating an internet search function. Similarly, the Perplexity

version used is the basic one, functioning as an AI-powered search

engine that combines proprietary language models with real-time

web retrieval to generate responses.
3.2 Question selection and answering with
large language models

The equations should be inserted in editable format from the

equation editor. We selected 32 common asthma-related questions

from the article “One hundred key issues on Chinese Children’s

Asthma Action Plan” published in the Chinese Journal of Practical

Pediatrics to test the model (10). On the one hand, these questions

were selected after consultation with three pediatric respiratory

asthma experts and reflected the main aspects of asthma

management, such as diagnosis, treatment, prevention and follow-

up. On the other hand, the selection process was designed to cover

essential topics related to the concerns of clinicians and patients

and their families in the clinical setting. All questions were posed

and recorded in Chinese, and we translated them into English for

presentation (see Table 1). The prompt for all models was set as:

“Assume you are an expert in the field of pediatrics, and the

following questions are all related to pediatrics. Please answer the

following questions in less than 500 words.” The questions were

inputted in the exact same order and content for all models. To

ensure consistency and eliminate potential influence on clinician

ratings, we manually removed all hyperlinks, quotation marks, and

web-related formatting from all model responses. All answers were

presented in a uniform plain text format and model identities were

anonymized. This standardization ensured that assessments were

based solely on the accuracy, correctness, completeness, and utility

of the content, and not on the presence or absence of supporting

links or reference formats. To evaluate the internal stability of the

models, we created five dialogues using the same input method.

The project team members jointly assessed the stability of the five

responses, and the results were recorded on a ten-point scale, with

a minimum of 1 and a maximum of 10.
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TABLE 1 Questions used to test the performance of LLMs.

32 Questions Related to Childhood Asthma
Question 1 What is asthma?

Question 2 Is asthma hereditary?

Question 3 What are the differences and similarities between asthma in
children and adult asthma?

Question 4 What are the clinical features of asthma in children?

Question 5 How is bronchial asthma in children diagnosed?

Question 6 Can recurrent wheezing in infancy develop into asthma?

Question 7 What are the comorbid conditions of asthma?

Question 8 What impact does allergic rhinitis (AR) have on asthma?

Question 9 What are the common tests for childhood asthma?

Question 10 Can childhood asthma be cured?

Question 11 Does long-term ICS treatment affect the growth and development
of children?

Question 12 Which children with asthma are eligible for allergen specific
immune therapy (AIT)?

Question 13 Which children with asthma are eligible for biological treatments
such as monoclonal antibodies?

Question 14 Why is it important to manage asthma in children?

Question 15 Why should children with asthma have regular follow-up visits to
the hospital? How often should these visits occur?

Question 16 What are the main components of follow-up visits for children
with asthma?

Question 17 What are the early preventive measures for asthma?

Question 18 What are common allergens? Why do children with asthma need
allergen testing?

Question 19 What are dust mites? How can dust mite allergies be prevented?

Question 20 Which pet dander is likely to cause allergies?

Question 21 How can pollen allergies be managed?

Question 22 Can children with asthma receive vaccinations?

Question 23 What is the relationship between asthma attacks and upper
respiratory infections?

Question 24 Can children with asthma exercise? How should they exercise?

Question 25 Can exercise induce asthma attacks? How can exercise-induced
asthma attacks be prevented?

Question 26 What climate changes are likely to trigger asthma attacks? How
can these be prevented?

Question 27 What are the adverse effects of cigarette smoke exposure on
children with asthma? How can this be prevented?

Question 28 What factors are likely to cause acute asthma attacks during
outdoor activities or travel?

Question 29 What signs can predict an acute attack of asthma in children?

Question 30 How can the severity of an acute asthma attack in children be
assessed?

Question 31 How can severe acute asthma attacks be prevented?

Question 32 What emergency medications should be readily available at home
or nearby for children with asthma?
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3.3 Model evaluation dimensions

This study designed the questionnaire from the perspective of

doctors. The questionnaire evaluates the responses of different

models based on four dimensions: “accuracy,” “correctness,”

“completeness,” and “practicality.” “Accuracy” is defined as the

degree to which the model’s answer is relevant to the question,

reflecting the model’s ability to understand the user’s query.

“Correctness” refers to the extent to which the model’s answer

aligns with the clinical experience and guidelines of the

respondents. “Completeness” is defined as the thoroughness of

the model’s answer compared to clinical experience and
Frontiers in Pediatrics 03
guidelines. “Practicality” refers to the extent to which the model’s

answer is applicable in daily clinical practice, reflecting the

model’s ability to solve real-world problems. The results are

recorded on a ten-point scale, with “unable to answer” responses

scored as 0 and other answers scored between 1 and 10. The

definitions of the four evaluation dimensions are placed on the

first page of the questionnaire to clearly inform the respondents

and facilitate accurate evaluation.
3.4 Questionnaire design

Each questionnaire contained thirty-two questions, arranged in

the same order, with answers generated by different large language

models. Participants were instructed to provide clear and

unambiguous answers based on existing clinical guidelines. The

four model-generated answers for each question were presented

in random order, and participants were not informed which

model corresponded to each answer. To improve the quality of

questionnaire completion, we set a time limit for answering the

questions. The questionnaires were then distributed in paper

form to 75 clinicians and collected uniformly. This study was

conducted from January to May 2024.
3.5 Participant inclusion

The evaluators in this study met the following criteria: (1) Hold

a Master’s degree in medicine or higher; (2) be under 60 years of

age; (3) Have worked in the pediatric department of a

tertiary hospital.
3.6 Questionnaire quality control

We implemented quality control for the questionnaires based

on the following criteria: (1) Assigning a high score to responses

with obvious errors/deficiencies was considered one quality

control anomaly; (2) Completing the questionnaire in less than

2 h was counted as one quality control anomaly; (3) Having

three responses with clearly outlier scores was counted as one

quality control anomaly. If there were fewer than three such

scores, it was counted as three instances. A sample was deemed

to have failed quality control if it exhibited five instances of

quality control anomalies. Only samples that passed quality

control were included in the analysis.
3.7 Inter-rater reliability analysis

To assess the consistency of raters in rating different models,

we conducted an inter-rater reliability analysis using the

Intraclass Correlation Coefficient (ICC). The ICC is a widely

used metric to measure the level of agreement between raters

when rating continuous data. In this study, ICC values were

calculated for four rating aspects—accuracy, completeness,
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correctness and practicality—using different models. Higher ICC

values indicate better agreement between raters. The final results

are shown in Supplementary Figure S1, where it can be observed

that Perplexity and YouChat provided the most consistent

ratings, with ICC values ranging from 0.85–0.91 across all

aspects, indicating a high level of inter-rater agreement. In

contrast, GPT-4.0 showed the greatest variation in raters’ scores,

particularly for Correctness and Practicality.
3.8 Statistical analysis

All data analysis was conducted using R 4.3.3. To

comprehensively understand the responses of the four major

language models to asthma-related clinical questions, we

calculated the average score for each question answered by each

model and presented the results through bar charts. Next, we

calculated the average score for each model across all evaluative

dimensions per question to examine the distinct responses

provided by each model. Sankey diagrams were used to describe

the commonalities and differences in cumulative scores for the

top five and bottom five questions among the four models. To

assess differences between the models, we first determined the

average score for each question across different models and then

performed hypothesis testing using Tukey’s post hoc test. We

then used Tukey’s post hoc test to compare the performance of

the four models across various dimensions. Finally, we utilized

Tukey’s post hoc test to evaluate the significance of differences

within each model across different dimensions.
4 Results

4.1 Questionnaire distribution and recall

The research distributed a total of 75 questionnaires, all of

which were returned and passed quality control, yielding a

qualification rate of 100%.
4.2 Evaluation of LLMs’ performance

Table 1 lists all the questions included in the 32 questionnaires.

Figure 1 shows the flowchart of the study. Figure 2 shows the

responses of the large language models (LLMs) to all questions.

In the questionnaires, the median score for all questions

answered by the LLMs was 7.9, with the highest scores for
FIGURE 1

Flowchart.
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questions 26, 14, 2, 16, and 18, and the lowest scores for

questions 6, 12, 22, 13, and 4. This indicates that the LLMs

performed excellently in addressing the genetic causes,

management strategies, and prevention of childhood asthma, but

showed some weaknesses in addressing the clinical

characteristics, early diagnosis, and specific treatments (such as

allergen-specific immunotherapy and monoclonal antibody

treatments) for childhood asthma.

Figure 3 displays the scores of different models on each

question. ChatGPT 3.5 and ChatGPT 4.0 had higher median

scores, both at 8.1, while Perplexity and YouChat had lower

median scores, at 7.7 and 7.6, respectively.

Figure 4 illustrates the differences and similarities between the

top five and bottom five questions answered by the various models.

Our findings indicate that multiple models demonstrated

proficiency in answering questions 2, 14, 18, and 26, suggesting

that LLMs are more adept at addressing questions related to

genetic causes, management measures, and the prevention of

childhood asthma. The GPT 4.0 demonstrated particular

proficiency in responding to the questions with the highest

scores. However, in the case of the questions with the lowest

scores, multiple models exhibited less impressive performance on

questions 6, 12, 22, and 32. This indicates that the LLMs (even

with GPT 4.0) were less adept at answering questions pertaining

to early identification and prevention of childhood asthma,

personalized treatment, prevention, and emergency

care management.
4.3 Comparison in different dimensions of
each model

Figure 5 illustrates the average scores of different models across

all questions. GPT 3.5 and GPT 4.0 significantly outperformed

Perplexity and You Chat, exhibiting more stable and higher

scores. There was no significant difference in performance

between GPT 3.5 and GPT 4.0, with their median scores being

nearly identical. Similarly, there was no significant difference

between Perplexity and You Chat, with their median scores being

close to each other.

Figure 6 shows that the GPT-4.0 performed better on all four

assessment dimensions, although statistical analyses showed no

significant difference between the GPT-4.0 and GPT-3.5.

Conversely, YouChat had the lowest performance in all aspects,

putting it at a disadvantage compared to the other three models.
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FIGURE 2

The average score of each question for all models.
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5 Discussions

Artificial intelligence is increasingly being applied in various

medical projects, including radiological image analysis (11),

aiding diagnosis in complex cases (12), personalized treatment

(13), anesthesia depth monitoring and control (14), and drug

development and utilization (15). A study evaluated ChatGPT’s

performance on the United States Medical Licensing

Examination (USMLE), and the results showed that ChatGPT

met or nearly met the passing threshold without any specialized

training or reinforcement (16). The LLM demonstrated strong

performance in making final diagnoses across 36 clinical cases,

achieving an accuracy rate of 76.9% (17). Importantly, compared

to other decision support tools, LLMs not only incorporate more

patient-specific information to generate more targeted

recommendations but also encourage brainstorming, prompting

doctors to consider diagnoses and treatments they might

otherwise overlook. These results suggest that large language

models may have the potential to aid in medical education and

assist in clinical decision-making.

In this study, all the major language models performed well in

answering a range of clinically relevant questions, with particular

excellence in the areas of asthma causes, treatment and

prevention. This is probably because these topics are of greater

public interest and there are more sources of information

available, resulting in more training data and consequently

higher scores. For asthma diagnosis and new treatments, the
Frontiers in Pediatrics 05
LLMs showed less stable performance, indicating a need for

more recent data training in these areas.

GPT and other large language models can answer medical

questions with a certain degree of completeness and accuracy. Our

results indicate that while GPT-4.0 demonstrated the highest scores

across all dimensions, the statistical analysis revealed no significant

difference between GPT-4.0 and GPT-3.5. This suggests that both

models perform comparably in medical question answering, and the

choice between them may depend on factors beyond numerical

scores. Despite this, we still recommend GPT-4.0 due to its

qualitative advantages over GPT-3.5, including a larger database,

more advanced training data, improved model architecture, and

better integration with clinical guidelines. These factors enable GPT-

4.0 to understand and generate more accurate and effective

information. Additionally, qualitative feedback from clinicians

suggests that GPT-4.0 provides smoother and more contextually

relevant responses, making it more reliable in real-world medical

scenarios. In the top five questions (Question 5: Is asthma

hereditary? Question 8: What is the impact of allergic rhinitis (AR)

on asthma? Question 25: Can exercise induce asthma attacks? How

to prevent exercise-induced asthma attacks? Question 26: What

climate changes can trigger asthma attacks? How to prevent them?

Question 27: What adverse effects does cigarette exposure have on

children with asthma? How to prevent them?), GPT-4.0 did an

excellent job of answering questions about asthma heredity, triggers,

and preventive measures. However, GPT-4.0 showed weaker

capabilities in handling questions related to asthma management
frontiersin.org
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FIGURE 4

Sankey diagram of the questionnaire.

FIGURE 3

The average score of each question for different models.
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(vaccination) and treatment strategies (including emergency,

immunotherapy, or biologic treatments). For some new asthma

treatments, such as desensitization therapy and monoclonal antibody

therapies, future model training should emphasize updating the

database in these areas. If LLMs could be trained by reliable experts,
FIGURE 5

Comparison of average scores across all dimensions between models.

FIGURE 6

Comparison of average scores across different dimensions between model
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it could rapidly improve and transform the dissemination of medical

knowledge. Providing more and more disease information through

LLMs could help address the growing prevalence of asthma.

Although YouChat performed the worst of all models, it

significantly outperformed the other three models in answering

questions about accurately diagnosing asthma (Question 9: What

are common tests for childhood asthma?) and identifying and

managing allergens (Question 18: What are common allergens?

Why do children with asthma need allergen testing?). These

interventions are complementary and form a systematic approach to

comprehensive asthma management, demonstrating that each

model has strengths in different aspects of disease management.

However, there are several limitations to this study. First, the

sample size is relatively small (75 doctors), which may affect

the generalizability of the results. Second, there may be biases in the

questionnaire design, as the selection and phrasing of questions could

influence the models’ responses. Additionally, this study focuses

solely on pediatric asthma questions, different medical domains

might yield different results. Future research could expand the

sample size and diversity of questions to improve the generalizability

and reliability of the findings. It may also consider evaluating the

models’ performance in various medical fields (e.g., hypertension,
s.
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diabetes) to gain a comprehensive understanding of their potential

applications in medicine. Furthermore, research could explore ways

to further enhance the training data and model architecture to

improve their performance in specialized fields. Although the models

performed well in this study, in practice, LLMs may give incorrect

responses when faced with prompts that do not have a single correct

answer, and if they present these responses in a convincing manner,

users might believe their accuracy (18). Therefore, in practical use,

doctors should use LLMs as supplementary and enhanced support

rather than relying solely on their responses (19).

While our findings suggest that large languagemodels (LLMs) such

as GPT-4.0 have great potential as tools for clinical decision support, it

is important to recognize the ethical risks and challenges they pose—

particularly the risk of misinformation. For example, if an LLM

suggests the use of an outdated or contraindicated asthma

medication without considering the clinical context, this could lead

to harmful outcomes-especially if the recommendation is followed

without expert review. From an ethical perspective, the use of LLMs

also raises questions about responsibility and accountability. Unlike

human clinicians, LLMs do not have intent, awareness, or

professional responsibility, making it difficult to determine who is

liable if AI-generated content causes harm. In addition, LLMs

responses may reflect biases in their training data or generate

information that sounds accurate but not to. To mitigate these risks,

several strategies should be implemented: (1) Human oversight: All

LLM-generated content should be reviewed by qualified healthcare

professionals before being used in clinical practice. (2) Transparency

and interpretability: Developers should improve how LLMs explain

their answers and ensure that the system can flag low-confidence or

uncertain answers. (3) User training: Clinicians and other users

should be trained to understand the limitations of LLMs and to use

their results critically. (4) Ongoing monitoring: The performance of

LLMs should be regularly reviewed in real-world settings to ensure

continued safety and accuracy.

Based on the above, doctors still need to receive proper education

and continuously update their knowledge through various traditional

evidence-based educational methods. It is crucial to apply critical

thinking to the information provided by LLMs and regard it as a

supplement to their clinical knowledge and experience. Otherwise,

clinicians can be easily misled. Currently, whether in terms of data

or training, large language models do not seem capable of replacing

the unique intellectual abilities of humans. Clinicians need to be

very vigilant and apply all evaluative and critical measures to the

information provided before establishing such tools as support for

clinical decision-making. In the future, with advancements in key

technologies and the resolution of diagnostic blind spots and data

privacy issues, large language models have the potential to become

important tools for improving human healthcare.
6 Conclusion

GPT and other large language models can answer medical

questions with a certain degree of completeness and accuracy.

However, clinical physicians should critically assess internet

information, distinguishing between true and false data, and
Frontiers in Pediatrics 08
should not blindly accept the outputs of these models. With

advancements in key technologies, LLMs may one day become a

safe option for doctors seeking information.
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