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Infancy, childhood, and adolescence involve changing body proportions,

muscular strength, and the complex processes of skeletal growth, contributing

to a unique subset of biomechanical considerations when vertebral fractures

result from falls from height, motor vehicle accidents, nonaccidental injuries,

and sport and manual labour. In this review, the biomechanics of compression

fractures, burst fractures, seatbelt syndrome, nonaccidental trauma, defects of

the vertebral endplate, and ring apophysis fractures are all detailed regarding

their manifestation in the pediatric spine. Interactions between pediatric

diseases, the intervertebral disc, and the spine’s facet joints are also briefly

discussed, lending additional context toward the unique etiologies of pediatric

vertebral fracture. The present narrative review seeks to provide a detailed

overview of the key relationships responsible for the unique biomechanical

considerations governing vertebral and endplate fracture, in the

pediatric population.

KEYWORDS

vertebral fracture, endplate fracture, ring apophysis fracture, pediatric spine fracture,
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1 Introduction

In the human lifespan, significant growth of the spine occurs throughout the periods

of infancy and adolescence, where both the anatomy and the material properties of the

spine undergo considerable changes. Vertebral fracture represents a significant

orthopedic injury at any age, but the distinct characteristics of the growing spine result

in several important and unique biomechanical considerations with regard to the

etiology of pediatric vertebral fracture injuries.

The purpose of the present paper was to perform a narrative literature review of

relevant biomechanical research pertaining to how development of the spine during

infancy/early childhood, and growth of the spine during adolescence, contribute to the

heterogeneity of the vertebral fracture process across these age ranges.
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2 Methods

Narrative literature review methods identified relevant peer-

reviewed research papers through extensive keyword searches on

Google Scholar, Pubmed (Medline), and Wilfrid Laurier

University’s library search engine. The abstracts for articles

possessing key words in their titles relevant to the present topic

were reviewed. Abstracts discussing pediatric vertebral body

(including vertebral endplate) fracture biomechanics, or pediatric

vertebral body (including vertebral endplate) fracture patterns,

were selected for incorporation in the present review. Notably,

several other topics (contributions of pediatric disease states, the

biomechanical contributions of the intervertebral disc and facet

joints) are also included. This review does not provide a

comprehensive overview of the former topics listed, but instead

uses them to contextualize discussion of the biomechanics of

vertebral body fractures. For this review, “pediatric” refers to all

life stages before skeletal maturity.

2.1 Keywords

The following search terms were used to define bony fractures

of the spine:

Vertebra(e,l) fracture; Spine fracture; Endplate fracture; Ring

apophysis fracture/avulsion/growth plate/separation/limbus fracture/

slipped vertebral epiphysis; Biomechanics; Fracture Mechanics.

Articles with a focus on biomechanics in the infant and/or

child and/or youth and/or adolescent and/or juvenile spine were

included in the review.

3 Vertebral fractures in the infant/child
spine

3.1 Morphological factors that contribute to
vertebral fracture

The infant spine possesses upwards of 130 active growth plates

(1), and is only approximately 30% ossified during infancy (2).

During infancy, childhood, and adolescence, the vertebral body

grows axially through endochondral ossification, similar to long

bones (3, 4). Axial growth occurs via unidirectional expansion of

the superior and inferior growth plates outward from the

vertebral centrum, while radial expansion results from the

apophyseal growth plates encircling the vertebral body (3, 4).

Two primary growth centers, the neurocentral synchondroses,

contribute to the development of the vertebral arch, from which

the facet joints also arise (i.e., from the vertebral pedicles) (3, 4).

The endochondral growth plates lie beneath the cartilaginous

vertebral endplates (EPs), which vary in thickness across the

vertebral body (5, 6). The EP is thinnest at the center, facilitating

nutrient exchange with the nucleus pulposus (NP), while the

annulus fibrosus (AF) integrates with the EP toward its mid-

point and periphery (5–10). Additionally, the articular cartilage

of the facet joints minimizes friction and protects the underlying

bone (3, 4). Last, vertebrae possess a cranial-caudal heterogeneity

regarding cortical bone density, and the trabeculae underlying

the vertebral EP. Multiple investigations have demonstrated a

greater porosity/reduced density in the cortical bone of the

cranial vertebral EP vs. the cortical bone of the caudal vertebral

EP in the same vertebral body, and also reduced trabecular

density and thickness in the cranial vs. caudal regions underlying

the vertebral EPs (11–13).

During growth, the vertebral body undergoes significant

morphological changes. In newborns, vertebral bodies appear

convex (14), but by the second year, the endplates (EPs) are

typically described as square or flat in the sagittal plane (14). In

adults, both cranial and caudal EPs become concave, curving

inward toward the centrum of the vertebra (14–18). These age-

related changes in EP geometry reflect the substantial structural

adaptations occurring from infancy through young adulthood,

with increasing concavity persisting into adulthood (14–17, 19).

The transition from flat EPs in pre-ambulatory infants to

concave but unfused EPs in ambulating adolescents and young

adults may indicate a period of EP-mediated vertebral

body weakness.

An experiment by Amonoo-Kuofi et al. (15) analyzed lateral

radiographs of the lumbar spine in a cohort of 615 patients

(310 females, 305 males) ranging from 10 to 64 years in age

and found a positive relationship between age and increased

vertebral body concavity described as a greater convexity (index

of wedging) of the IVD. However, the greater EP concavity that

accompanies aging does not occur linearly, and Amonoo-Kuofi

et al. (15) describe the process as alternating between periods of

“overgrowth” and “thinning” throughout the lifespan. A finite

element model constructed by Meijer et al. (20) modelled the

changes in vertebral dimensions that accompany the period of

adolescent growth in the human spine. Their finite element

model demonstrated that biomechanically, deeper EP

concavities resulted in increased mechanical stiffness in a

spinal segment.

Similarly, during their in vitro experiment, Dudli et al. (21)

reported that under high-rate impact loading, specimens with

deeper vertebral EP concavities required more mechanical work

and achieved a higher overall load before failure. The experiment

conducted by Dudli et al. (21) employed in vitro rabbit motion

segments as their vertebral fracture model, so further work must

be conducted to confirm such a relationship in the skeletally

immature human spine. However, due to the significant changes

in vertebral EP concavity that occur with growth, the specific

mechanical considerations leading to vertebral and EP fracture

seem to be significantly impacted by these alterations in vertebral

body and EP geometry (20).

Compression fractures are the most commonly observed

vertebral fracture pattern in pediatric medicine (22–26),

occurring in both healthy and pathological conditions (27). In

their cohort of 165 patients (ages ranging from 10 months to 17

years), 78% of fractures were diagnosed as “compaction” (i.e.,

compression) fractures by Compagnon et al. (23), with only 8%

of fractures diagnosed as burst fractures, 2% as Chance fractures,
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1.21% as odontoid fractures, and the remaining 20% categorized as

“other” lesions (23). The affected spinal level varies with skeletal

maturity. Cervical spine fractures are more common in younger

children, while lumbar spine fractures occur more frequently in

older children and adolescents (28–32). This pattern may be

influenced by injury mechanisms, changing body proportions,

musculoskeletal development, and increased athletic involvement

in older age groups.

3.2 Impact of disease on vertebral fracture

Various diseases also influence vertebral fractures in pediatric

population. Taylor et al. (27) conducted a retrospective review of

181 patients diagnosed with vertebral fractures before age 18,

excluding fractures caused by trauma. Among these atraumatic

cases, 15% had primary osteoporosis (7% idiopathic, 7%

osteogenesis imperfecta, 2% other connective tissue disorders),

while 65% had secondary osteoporosis, primarily due to

immunosuppressant treatment (46%), acute lymphoblastic

leukemia (10%), malabsorption (7%), or immobility (2%).

In a cross-sectional study conducted by Halton et al. (30), 186

pediatric patients (age range 1–17 years) were examined at

approximately the time of their initiation of chemotherapy for

acute lymphoblastic leukemia, for bone densitometric and

morphometric variables; these variables were then compared

against normative age and sex-matched data, originating from

the CDC’s National Center for Health Statistics database.

Halton et al. (30) compared Z scores for chronological age as

well as “bone age” (this variable served as an approximation of

skeletal maturity) between their patient cohort and normative

data from the database. Interestingly, Halton et al. (30) reported

that their patient cohort had a greater mean height compared

to the control data. But, despite leukemia patients having a

greater average height, Halton et al. (30) reported significantly

reduced bone mineral density Z scores for this population.

Among this population, Halton et al. (30) reported fractures

affecting 16% of patients. Even more interestingly, when

comparing within the cohort of pediatric leukemia patients,

Halton et al. (30) reported that the pediatric patients diagnosed

with a vertebral fracture also had lumbar spine bone mineral

density Z scores 1.0 standard deviations below the Z scores of

pediatric leukemia patients unaffected by vertebral fracture.

Unsurprisingly, 55% of vertebral fracture patients suffered from

back pain, while only 20% of the pediatric leukemia patients

without vertebral fracture suffered from back pain. Halton et al.

(30) reported that, for every standard deviation reduction in

lumbar bone mineral density, vertebral fracture risk increased

by 80%, and furthermore, that lower Z scores for lumbar bone

mineral density were associated with more severe (i.e., greater

reductions in vertebral body height) vertebral body

fractures overall.

As a solitary variable, bone mineral density is inadequate to

fully predict the mechanical competency of the human skeleton,

and this remains true for pediatric patients at-risk of vertebral

fragility fractures resulting from either primary or secondary

osteoporosis (33–35). For this reason, the presence of an

atraumatic vertebral body compression fracture in a pediatric

spine—or a history of atraumatic/low energy fractures at other

skeletal sites—regardless of the patient’s quantified bone

mineral density Z score, should serve as a positive diagnostic

sign of the presence of pediatric osteoporosis (35), where

diagnosis of a vertebral body fracture should prompt further

investigation into the underlying cause of the atraumatic

vertebral fracture observed.

Radiographically, distinguishing normal pediatric vertebral

growth from injuries, pathological conditions, or abuse-related

trauma can be challenging, especially when the injury

mechanism is unclear. Jaremko et al. (36) provide an excellent

review distinguishing between growth-related radiographic

abnormalities, and fracture patterns associated with trauma and

disease in the pediatric spine. Given the complexities of a

growing spine and the potential for underlying conditions to

contribute to the pathomechanics of injury, clinicians must be

familiar with common normal radiographic variants of the

pediatric spine, to accurately differentiate these from

true injuries.

In addition to vertebral and EP morphological changes, in the

infant spine, the IVDs are also uniquely morphologic and at their

most hydrated due to a high concentration of hydrophilic

proteoglycans in the NP (37–40). This high degree of water

retention results in a more viscous NP response under axial loading,

influencing both EP and vertebral fracture mechanics (41–43).

3.3 Biomechanics of vertebral fracture in
the infant spine

3.3.1 Etiology of burst fractures

Viscoelasticity refers to the phenomenon where increasing

velocities of loading increase the mechanical stiffness of a

material; bone itself exhibits this mechanical property (44). In

infancy, the spine exhibits its most viscous response due to high

levels of tissue hydration. This viscoelastic interaction between

highly hydrated tissues and the rapid application of mechanical

forces drives the burst fracture etiology.

Etiologically, burst fractures result when the rapid application

of axial compression to a vertebra generates a shift in the stress-

strain curve (Figure 1, Image 1) resulting in the development of

supraphysiological forces beyond the mechanical competency of

the vertebral body. Under circumstances of rapid loading, the

vertebra has very little time to disperse the applied energy. This

results in a rapid accumulation of mechanical energy far beyond

the mechanical competency of the vertebral body, such that

catastrophic fracture ensues. Furthermore, the mechanical

toughening responses of bone itself have been shown to

significantly diminish when bone is loaded at greater velocities

(45–47). The toughening mechanisms of bone are a product of

the geometry of bone tissue, and its material properties (45–48),

both of which are subject to age-related variations over the

course of the human lifespan (49–51). Velocity, geometry,

material properties, and fracture orientation (Mode I, II, III, or
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mixed-modes) of loaded bone tissue will all interact with the

process of fracture (45–53), altering the predominant processes

of failure, depending upon the balance of micromechanical

factors involved in the loading event (52, 53).

IVD hydration also significantly contributes to the burst

fracture etiology. The deformation characteristics of the NP are

significantly influenced by the rate at which it is loaded (54), and

this in-turn will interact with the forces exerted by the NP onto

the vertebral EP. Specifically, compression of an IVD’s NP

between adjacent vertebrae increases the hydrostatic pressure in

the NP, and the more rapidly this occurs, the stiffer the NP’s

response will be (54, 55). As such, this massive amount of

accumulated energy will be released by the vertebral body in a

very short period of time, by the creation and propagation of

multiple fracture planes. The reduced ability for cortical and

cancellous bone to arrest propagating fractures at high velocity

results in a significantly greater potential for fracture propagation

than when velocities are slow (45–47). The result is a

comminuted or “burst” fracture pattern, capable of projecting

shards of bone into the spinal canal, (Figure 1, Image 2). In vitro

biomechanical investigations using human cadaveric tissue

(56–63), in vitro animal models (64–68), and finite element

investigations of the burst fracture process (64, 69), consistently

report greater vertebral body comminution, and greater degrees

of canal encroachment by bone fragments during higher

velocities of loading. Experiments investigating the burst fracture

process tended to apply the greatest magnitudes of kinetic energy

to spinal segments under the fastest conditions of loading

(56–69). Therefore, the combination of both the overall

magnitude of kinetic energy applied to the spine, along with the

velocity of its application, appear to drive the burst-fracture

etiology towards more severe states of vertebral body comminution.

FIGURE 1

Schematic illustrating the leftward shift of bone’s stress-strain curve, stemming from increased velocities of loading. Schematic illustrating axial view of

the different morphology between an intact vertebral body, a simple vertebral body fracture, and a burst fracture.
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Another contributing mechanism to burst fracture etiology

appears to be posture. In vitro research has noted that burst

fractures tend to manifest at the apex of a spinal curve loaded in

rapid axial compression. Specifically, three and five segment motion

segments, (both human cadaveric and animal models) are

consistently reported to be placed into some degree of anterior

flexion, resulting in consistent reports of the central, apical vertebra

being the most commonly injured (56, 57, 60, 61, 63, 66).

Translating this towards the etiology of human injury, it would

be anticipated that the segment located at the apex of the spinal

curve during the rapid loading resulting from a head-first or

sacrum-first fall, would be the site of greatest vulnerability to

failure via the burst fracture mechanism. The spine possesses

natural kyphotic and lordotic curves and can also achieve

significant curvature through changes in sagittal posture. As

such, the apical vertebrae in a spine will depend on the posture

of the spine at the time it is loaded, and can change depending

upon the state of extension, flexion, or combination of these

curves in the rapidly loaded spine.

Conversely, in a cross-sectional study examining 152 patients

and a total of 169 burst fractures, Bensch et al. (70) reported that

burst fractures most commonly occurred at the thoracolumbar

junction and between T5 and T8 in both males and females.

These authors proposed that the high incidence of

thoracolumbar and cervicothoracic burst fractures coincided with

the most mobile spinal region, while the common finding of

burst fractures in the T5–T8 spine region, coincided with

fractures in the most rigid spinal region (70); these findings

illustrate the disparity in mechanical circumstances throughout

different regions of the spine, all of which can result in a burst

fracture manifesting in the vertebral body.

Another significant biomechanical consideration is the

thoracolumbar junction. The ribcage’s articulation with the spine

ceases at the T12 level (71), and the transition from the rigid

thoracic curve to the flexible lumbar curve may predispose the

thoracolumbar vertebra to a unique combination of mechanical

forces. The anterior concavity of the thoracic kyphosis typically

transitions to the posterior concavity of the lumbar lordosis

proximal to the thoracolumbar junction. The meeting of these

two oppositely orientated curves subjects the transition vertebra

(e) to significant bending forces in conjunction with longitudinal

compression resulting in mechanical vulnerability to vertebral

fracture in this region. This observation is consistent with the

propensity for burst fractures to occur in the thoracolumbar

junction in vivo in equal distribution in both sexes, by a variety

of mechanisms of injury including motor vehicle collisions

(MVCs; including automobiles and motor bikes), falls from

height, and sporting incidents (70).

Ultimately, the micro-mechanics of the burst fracture entity

entail the rapid accumulation of mechanical energy, far beyond

the mechanical strength of the vertebral body. When the spine is

loaded in axial compression, the trabecular network of the

vertebral body is predominantly loaded along the longitudinal

axis of the spine. As such, the longitudinally oriented pillars of

the trabecular system will be most in-line with the primary

direction of loading while the perpendicular transverse pillars

experience flexural and shear forces. Not surprisingly,

transversely oriented trabeculae are prone to failure by

mechanisms of shear and flexure (72), while longitudinal pillars

are more prone to failure via buckling (72). The vertebral

trabecular architecture is a system of interdependent supports, so

compromise of any individual trabecula can alter the mechanical

dispersal of load in neighbouring trabeculae, potentially further

compounding the mechanics of injury.

During burst fracture, the rapid loading results in a nearly

incompressible NP (54). As a result of this incompressibility,

further axial loading causes the concaved cartilaginous EP to

bend around the incompressible NP, such that the accumulated

flexural forces in the bending EP result in failure (73, 74). Burst

fracture is not a mutually exclusive process between trabecular

collapse and EP failure, but rather a combination of these two

phenomena; Jackman et al. (73) illustrated the interconnectivity

between flexure of the EP, and the mechanical contribution of

the trabecular bone beneath the vertebral EP, towards resisting

the intrusion of the bending EP into the vertebral body (73).

Following burst fracture, intrusion of one or more bony pieces

into the spinal canal can generate neuropathic signs and symptoms.

The neuropathic signs and symptoms generated by burst fracture

will correlate to the level of injury in the spine, and the severity

of spinal cord injury. Importantly, Wilcox et al. (64)

demonstrated that the site of vertebral fragments during

radiography does not adequately represent the maximum

intrusion achieved by vertebral fragments during the burst

fracture event. Therefore, burst fracture generated neuropathies

cannot be fully represented by the degree of canal encroachment

visualized upon admission at the hospital, recommending that a

more comprehensive neurological investigation should be

undertaken, if burst fracture is visualized in an admitted patient.

3.3.2 Rapid flexion and distraction injuries (lap belt

injuries, “chance fractures”, endplate avulsions,
and “shaken baby” syndrome)

Due to the high magnitude of forces involved in MVCs, and

the restraint of motor vehicle occupants via seatbelts, MVCs

create a specific set of conditions where lab belt injuries, and

Chance fractures can manifest in the spine.

During a head-on collision, a vehicle decelerates at an

exceptionally rapid rate, and seatbelts will lock to secure

passengers in their seats. If a vehicle is stationary and is struck

from behind by a rapidly moving vehicle, the resulting

acceleration of passengers can be arrested by seatbelts as well. By

both mechanisms, the momentum of passengers’ bodies will

interact with the restraint of the seat belt across their lap and

obliquely across their torso. Issues arise when seat belts are

improperly worn by passengers, or when children of inadequate

height sit in adult passenger seats. There is also a high

correlation between abdominal hematoma and/or lesions of

internal organs, accompanying severe flexion and distraction

injuries in the spine (75–77). As such, abdominal wall or

intraabdominal organ hematoma may be useful clinical

indications that the spine should also be investigated for trauma.
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Lap belt injuries occur when a single point of anchorage is

applied to stop the occupant’s ejection from their seat, namely

the lap belt (75–78). The sudden locking of the lap belt will halt

the body’s anterior translation from the seat at this single point

of anchorage, and without the assistance of the torso-restraint,

the upper body will translate anteriorly away from the back of

the seat. As such, the anteriorly directed momentum of the

upper body against a locked lap belt will act like a fulcrum

around which the torso will rotate (75–78); (schematic in

Figure 2, Image 1, i). The location of this fulcrum can vary, as a

seatbelt is situated lower down on a passenger of adult stature

than if a child of inadequate height sits in the same seat.

Anterior translation and flexion of the passengers’ torso can

result in significant, and complex combinations of flexion,

compression, and distraction forces acting on the vertebral body,

(Figure 2, Image 1, ii) (75–79). Lap belt injuries carry no specific

morphological appearance, named instead for the mechanism of

injury by which they occur.

An improperly secured child using only the lap-belt can result

in lap-belt injury, due to flexion and translation of the torso. If the

torso is secured with both lap and torso belts, forward flexion and

translation can only occur at the level of the head and neck, such

that pediatric cervical seat belt syndrome can ensue (78). Trauma

to the upper cervical levels in the form of fracture and/or

fracture/subluxations is more common in younger children/

infants, with cervical seatbelt syndrome more often manifesting

as injury to the lower cervical levels, in older children/

adolescents (80).

FIGURE 2

(Image 1) schematic illustrating the “fulcrum” effect of the seatbelt on a motor vehicle passenger’s torso, and the complex combination of

biomechanical forces acting on a motor vehicle passenger’s spine. (Image 2) Schematic illustrating the direction of Chance fracture propagation

from the posterior-to-anterior direction.
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When significant acceleration-related forces occur rapidly

about the cervical region of the spine, these injuries are

sometimes colloquially known as “whiplash” injuries, except the

term whiplash may be an oversimplification of two different

etiologies of injury. Specifically, whiplash is best defined as

predominantly a soft-tissue injury which is largely undiagnosable

through imaging, especially in its milder to moderate

manifestations (81–86). In addition, the predominant mechanism

resulting in whiplash injury stems from the sudden and

unexpected acceleration of a parked vehicle, due to a rear-impact

collision (81–86). In their simulated whiplash experiment,

Panjabi et al. (86) demonstrated the complex spinal kinematics

of the whiplash etiology, and how it varied temporally over the

course of the injury. Specifically, initial extension of the lower

cervical spine gave way to a complex “S” shaped pattern during

the second stage of the injury (at approximately the 50–75 ms

stage), which Panjabi et al. (86) posited to be responsible for

many of the symptoms generated through this mechanism.

Under its current definition, whiplash injuries are most

appropriately described as a sudden forward acceleration, causing

soft-tissue injury (muscles, ligaments, and/or facet capsule strains

or impingement), but without the magnitude of energy required

to produce vertebral fracture (81–86). It seems likely that flexion/

distraction fractures can arise in the cervical spine through

similar kinematic patterns to the flexion, distraction, and

compression that occur during the mid-to-end stages of whiplash

injuries. However, in order for vertebral fracture to arise,

considerably greater magnitudes of mechanical energy must be

involved in the injury event, than those that tend to generate soft

tissue injury alone.

Ultimately, rapid flexion disproportionately loads the anterior

vertebral body in compression, unloading the facet joints and

posterior vertebral body, as the body’s centre of mass rotates and

translates anteriorly. Akin to burst fractures, rapid flexion-

mediated overload can cause vertebral trabeculae to collapse and/

or vertebral EP failure, while considerable distraction forces can

accrue in the facet joint capsules, posterior longitudinal ligament,

and posterior IVD.

While lap-belt and whiplash mechanisms can generate a variety

of injuries in the spinal column, Chance fractures (Figure 2, Image

2) and EP avulsions represent two specific morphological entities,

both of which appear possible via the flexion-distraction

mechanism. Chance fractures occur when flexion and distraction

forces exceed the strength of the pedicles and vertebral body (24,

87–90). Flexion will elongate the posterior ligamentous structures

of the spine, including the facet joint capsules, which imposes

considerable tensile strain upon these structures (87). When the

combination of flexion plus distraction forces intersects at the

mid-height of the vertebral body, these oppositely orientated

vectors of force impose an exceptionally high degree of

mechanical demand on these regions. Forces in excess of the

facet joint and vertebral body strength will manifest as a Chance

fracture; a fracture that splits the pars interarticularis and

propagates in a transverse direction, horizontally bisecting the

vertebral body in the posterior-to-anterior direction (87);

(schematic in Figure 2, Image 2). Mechanistically, a multicentre

retrospective review of pediatric Chance fractures conducted by

Arkader et al. (91) noted that 34/35 fractures in their pediatric

cohort occurred due to MVC, and 1/35 originated from a

“sledding” accident. This retrospective report clearly illustrates

the close association between the evolution of Chance fracture in

the pediatric spine, originating from a patient’s involvement in

an MVC, and this relationship is seemingly exacerbated by

improper use of seatbelts in pediatric passengers (90).

In addition to Chance fractures, the tensile forces achieved

during rapid flexion and distraction of the spine can also

manifest as an avulsion of the cartilaginous EP from the cortical

bone of the underlying vertebral body (89), which prompted de

Gauzy et al. (89) to propose avulsion-type “physeal” injuries as

2/3 of the morphological patterns that their Chance fracture

classification system associates with flexion-distraction injuries of

the pediatric spine. Fibers of both the NP and especially the AF

insert themselves into the cartilaginous EP through an extensive

branching of their embedded lengths, thereby achieving a highly

effective anchorage within the cartilaginous EP (6, 8). Conversely,

the articulation between the cartilaginous EP and vertebral body

is considerably weaker than the integration achieved at the AF-

EP interface. Experimentally, Berg-Johansen et al. (9)

demonstrated that uniaxial tensile testing of human cadaveric

inner IVD-EP-vertebrae extracts, resulted in failure at the EP-

vertebra interface in 71% of their mechanical tests. Similarly,

surgical (92) and postmortem (10) investigations of the human

spine report that IVD failure at the EP-IVD interface was more

commonly observed, even than tearing of the AF (87), and that

increased grades of IVD degeneration carry a significantly greater

probability of EP irregularity than non-degenerated IVDs, with

the interface between the EP and vertebral bone being especially

susceptible to disruption (10). Consistent observation

(experimentally, surgically, and postmortem) of disruption and

avulsion at the point of the articulation between the vertebra’s

cortical bone and the cartilaginous EP recommends that the

vertebra-EP interface represents the mechanical weak link of the

IVD-EP-vertebral body complex, when significant tensile/

distraction forces are applied (9, 10, 92).

One additional mechanism pertinent to flexion-related injuries

of the pediatric spine is child abuse. Skeletal fracture resulting from

nonaccidental trauma in the pediatric has an estimated incidence of

1.54%, reported in the retrospective review of cases conducted by

Zhao et al. (93) However, the true incidence of nonaccidental

trauma in the pediatric population is difficult to ascertain, due to

the significant social and legal ramifications surrounding such

incidents. And so, while falls and MVCs are responsible for most

pediatric fractures, Hobbs et al. (94) made an important observation

when stating; “Most accidental fractures in infants and toddlers

result from falls, although fractures are uncommon in falls of under

a metre;” an important factor when assessing the proposed

mechanism of injury responsible for pediatric fracture.

Numerous reports have demonstrated that young children/

infants (i.e., <24–36 months of age), are significantly more likely

to present with a skeletal fracture due to child abuse (including

fractures of the spine), than older children (i.e., 10 + years of age)

(93–103), recommending that future investigations related to the
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detection of nonaccidental musculoskeletal trauma in children

should be tailored to specifically target this younger age group

for further investigation.

No injury is pathognomonic in the identification of

nonaccidental trauma in children, though importantly, multiple

retrospective investigations (either case studies or larger cohorts

of patients) attest to the moderate level of correlation between

pediatric spine fractures, and nonaccidental injury (96, 104, 105).

This pathognomy is bolstered when a child is still too young

to walk, when there are multiple other signs of abuse (ranging

from rib fractures to metaphyseal avulsions to ecchymosis to old

and healing fractures, seemingly of different ages), and when

there is a lack of sufficient history attributable to the magnitude

of energy, required to generate a fracture (95, 99, 106–108). It

must always be remembered when investigating nonaccidental

trauma, that all fractures of the spine, unless there is an

underlying pathophysiological condition responsible for weakness

of the vertebrae [i.e., osteogenesis imperfecta, leukemia,

immunosuppressant treatment (27), rickets, Menke’s disease

(109, 110)], represent a significant magnitude of energy involved

in the abusive event.

Biomechanically, the significantly larger head to body

proportion of infants, along with their significantly reduced

muscle mass to body mass ratio, represent significant and

contributive factors to the etiology of “shaken baby syndrome.”

Etiologically, the biomechanics of “shaken baby syndrome” are

typically represented as a rapid, forward-backward acceleration of

an infant’s torso, predominantly in the sagittal plane (101, 106,

108). Owing to the unique anatomic proportions of infants, the

rapid shaking associated with such an event can generate

significant and complex combinations of flexion, compression,

extension, and distraction forces throughout the infant spine

(101, 106–108). Anatomically, another uniqueness of the infant

spine are the relatively horizontally oriented facet joints,

especially throughout the cervical region (101, 106, 108). This

horizontal orientation recommends that an infant’s facet joints

have a significantly reduced capacity to withstand horizontally

orientated shear forces when such forces are imposed across the

intervertebral space (101, 106, 108). “Shaken baby syndrome”

therefore represents a complex kinematic event where the

diminished capacity for the horizontally oriented facet joints to

resist shear forces, paired with the large body proportions and

small muscle mass of infants, suggests that other aspects of the

spine’s osteoligamentous anatomy are largely responsible for

withstanding the forces imparted by the shaking event.

Fractures of the cervical spine due to abusive shaking of an

infant are thought to manifest due to the interaction of the rapid

acceleration forces imparted by the shaking event, with the

significant inertia of an infant’s large head, an infant’s

underdeveloped cervical musculature, and the infant’s horizontally

oriented facet joints; numerous case series have reported spine

fractures and fracture-dislocations in infant patients, resulting from

whiplash-like shaking events (98, 101, 106–108, 111–113).

The location and morphology of fracture most likely to

manifest during abusive shaking, is a product of the specific

forces imparted during the time of the event, though several

consistent attributes have been noted with regards to these

fractures. Younger children are more likely to suffer cervical

spine injuries from an abusive shaking event than older children

(101, 112, 113); in their review of the literature, Kemp et al.

(101) made a distinction in injury patterns between “young”

infants and “older” infants where younger infants (with a median

age of 5 months) were more-often observed to suffer from

injuries to the cervical spine region, while “older” infants (with a

median age of 13.5 months) had a greater propensity for

fractures to manifest in their thoracic and lumbar regions.

Therefore, as children age and their head-torso proportions

gradually transition toward that of an adult, this difference in

body proportions seems to reduce the cervical spine’s likelihood

of being involved in an abuse-related shaking event (101, 112).

However, akin to the rapid forward-backward translation

generated between an infant’s head and torso across their cervical

region, shaken baby syndrome also seems capable of manifesting

as a thoracolumbar fracture of the spine. Kinematically, during

shaking the mismatch in the inertias between accelerations of the

infant’s torso and pelvis, can result in a large propagation of

mechanical forces in the axial direction, generating complex

combinations of flexion, extension, tension, compression, and

shear throughout the lumbar spine, all at a rapid velocity. In fact,

a retrospective analysis performed by Jauregui et al. (98) reported

the thoracolumbar region to have the highest abuse-related

incidence of injury.

Perhaps the discrepancy in injury patterns reported in “young”

infants vs. “older” infants is a product of an infant’s developmental

stage in relation to walking. Like the rest of the weightbearing

components of the human skeletal system, an infant first

learning to walk represents a significant mechanical stimulus,

which encourages skeletal adaptation and remodeling. Prior to

ambulation, the sagittal curvatures, the spine’s state of

calcification, and muscular development of the infant, is

considerably different than post-ambulation. Therefore, Kemp

et al.’s (101) differentiation between “younger” and “older”

infants may represent an important biomechanical distinction in

the musculoskeletal status of an ambulatory vs. non-ambulatory

infant’s spine. Numerous studies cite ambulation as a critical

factor contributing to the injuries most likely to occur in the

bones of the lower limbs (96, 102, 105), and though it remains

to be demonstrated, it is not unreasonable to assume that the

adaptive changes that occur in the pediatric skeleton in response

to walking, may also underlie some of the differences in injury

patterns of the pediatric spine, observed pre and post ambulation.

Compression fractures, growth plate (apophyseal) fractures/

avulsions, and facet fracture/dislocations in the cervical, lumbar,

and thoracolumbar regions of the spine, have all been associated

through retrospective analysis, with “shaken baby syndrome,”

(95, 98, 101, 103, 106–108, 111–113) where the rapid forward-

backward acceleration of the torso and pelvis was proposed to

enact complex patterns of flexion, extension, compression, shear,

and longitudinal tension, across the cervical, lumbar, and

thoracolumbar regions of the spine. However, somewhat

counterintuitive to the proposed biomechanics above, the

retrospective investigation conducted by Kleinman et al. (114),
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reported that 22/25 of the pediatric vertebral fractures they

observed were compression fractures of the vertebral body, with

one “Hangman’s” fracture located at C2, and two sacral fractures

in one child. Notably, Kleinman et al. (114) reported zero

posterior element fractures and/or posterior element dislocations.

As stated by Levin et al. (111), “The injury (thoracolumbar

fracture with listhesis) is not produced by flexion alone. Rather,

it is due to a combination of an axial load, flexion, and rotation.”

Figure 2, Image 2ii, illustrates how rapid anterior-posterior

translation can create regions of compression (on the concave

side of the bending spine) and tension (on the convex side of the

bending spine).

Despite significant heterogeneity in abuse-related injury

fracture patterns of the pediatric spine, some commonalities do

exist in the injury patterns recorded, and the physical mechanism

most-likely for their manifestation. “Shaken baby syndrome,”

especially when it results in injury to an infant’s spine, is best

described as a series of rapid back-and-forth translations, with

the potential to impose complex kinematic patterns of loading.

The forces imparted on the vertebrae, facet joints, and

intervertebral discs of the spine may involve rapid intervals of

flexion, extension, compression, shear, and tension, generating

complex combinations of forces throughout the shaken patient’s

spine [i.e., the “S” shaped kinematics identified by Panjabi et al.

(86) during simulated rear-end MVCs investigating cervical

“whiplash”]. Depending on the precise character of the

mechanical forces imparted, the vertebral body, cartilaginous EP,

facet joints, longitudinal ligaments, and even the spinal cord in

isolation, may be injured during the abusive event.

“Shaken baby syndrome” is a difficult biomechanical

mechanism to investigate. As it pertains to pediatric injuries of

the vertebral body, the anatomical site most-likely to fracture

during “shaken baby syndrome” likely relates to an infant’s

relative body proportions, the maturity of the spinal column at

the time of the event, the capacity for the patient to ambulate,

and the specific combination of forces imparted on the spine by

the incident. While all cases of child abuse are terribly

unfortunate, clinicians and researchers must be familiar with the

clinical and morphological presentation of such injuries, in order

that the cause of such an injury not be overlooked; failure to

appropriately identify abuse-related fractures, has potentially

catastrophic and lifelong consequences for the patient involved

(27, 94, 98, 107, 114–116).

4 Vertebral fractures in the adolescent
spine

4.1 Contributing factors to the vertebral
fracture process

The vertebrae of the human skeleton grow in both diameter

and length through a coordinated expansion of over 130 active

growth plates (1). The vertebral body lacks the true epiphyses of

normal long bones due to the cartilaginous EPs articulating with

the IVD at a vertebra’s cranial and caudal aspects. However,

longitudinal growth is still a product of coordinated

endochondral ossification of the vertebral bone beneath these

cartilaginous EPs (3, 4, 117, 118).

The vertebral apophyses represent an interesting structure, as

each vertebral body possesses two apophyseal rings (one superior

and one inferior), each of which wrap circumferentially around

the vertebral body. While endochondral ossification of the

vertebral body is responsible for longitudinal growth,

appositional growth of the ring apophyses increases vertebral

body diameter (117–119). Skeletal maturity is defined as fusion

of the growth apophyses with the vertebral body, such that these

regions fully ossify, and become indistinguishable from the bone

in their vicinity (117–119). Prior to ossification, increases in

vertebral body length and diameter are still possible, but once

ossification has occurred, vertebrae will have reached their adult

dimensions (117–119). Longitudinal growth of vertebral bodies is

generally complete between 11 and 16 years of age in females

and 12–16 years in males (1). Similarly, Costa et al. (120)

reported that ossification of the spine’s ring apophyses occurs

between 7 and 15 years of age in females and 9–15 years in

males, with fusion following (13–19 years of age for females; 14–

19 years in males). However, chronological age and skeletal

maturity are not synonymous, and unfused ring apophyses have

been documented radiographically in patients up to 25 years of

age (121).

The biomechanics of vertebral fracture in the adolescent spine

seem to correlate with the interaction of biomechanical forces with

the “weak link” of the unfused apophyses. Due to being surrounded

by a considerably stiffer bony matrix, the relatively softer cartilage

of the unfused apophyses create significant stress concentrations,

marking these as the sites of greatest vulnerability to fracture, in

the skeletally immature vertebral body.

In a study by Karlsson et al. (122), compression of 16 human

cadaveric motion segments (mean age of 16.3 years) at a rate of

5 mm/min resulted in rupture of the cartilaginous EP in 9 of the

16 specimens and separation of the EP from the vertebra in 12

of the 16 specimens, highlighting the vulnerability of the

cartilaginous EP in this age group. Similarly, a series of case

reports on pediatric flexion-distraction injuries found that these

injuries manifest as “physeal” injuries (damage to the unfused

apophyseal growth plates) rather than IVD injuries; these

observations concur with hypotheses that the cartilaginous

growth plates are structurally weaker than the healthy IVD (123).

Another important feature of the adolescent spine is the state

of hydration of its NP. During axial compression, the NP’s

ability to increase its hydrostatic pressure is critically linked to

supporting the AF against buckling and internal collapse, as

demonstrated by nuclectomy experiments of motion segments

(124). As such, the process of vertebral fracture as it relates to

the human spine is also highly correlated with the load-sharing

mechanisms within the IVD. The reduced stiffness of the

unfused apophyseal cartilage appears to represent a critical

component regarding the mechanism of fracture that will be

generated in the adolescent spine.

Adolescents can incur similar vertebral fracture injuries to

infants/children during falls from height and MVCs, but unlike
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infants and young children, activities of daily living, engagement in

sporting activities (especially elite-level sport), and occupational

exposures also contribute to the generation of vertebral fractures

in the adolescent age group. Burst fractures, and Chance and

cartilaginous EP avulsion-fractures can be generated in the

adolescent spine during falls from height or MVCs, with similar

biomechanical processes to the infant spine, except that

adolescents possess a head-torso ratio and muscle mass-body

mass ratio more comparable to adults. Fractures generated by

acute, and repetitive mechanical insults will be outlined in the

following sections.

4.2 Biomechanics of vertebral fracture in
the adolescent spine

4.2.1 Unfused apophyseal seams, accumulated

hydrostatic pressure in the nucleus pulposus, and
endplate concavity

In the adolescent spine, the biomechanics of vertebral fracture

appear to be critically linked to the pressurization response of a

hydrated NP, in conjunction with the unfused cartilaginous

seams of the apophyses. During axial loading when the vertebral

bodies translate towards one another, the central NP is

compressed. In adolescence the NP of the IVD is abundantly

populated with proteoglycans, making this region quite hydrated

(39–42). Compression increases the hydrostatic pressure of the

NP resulting in a viscoelastic stiffening effect.

In a series of in vitro experiments using porcine cervical models

to represent the human adolescent spine, EP fractures were

produced with rapid-rate pressurization of the NP (125–128).

Similarly, a finite element model of the human spine constructed

by Fields et al. (74) reported that the Poisson’s ratio achieved by

the NP of the loaded IVD directly related to the location and

magnitude of tensile strain generated in the proximal EPs. In

addition, Farrell and Riches (54) report the Poisson’s ratio of the

NP to be strain-rate dependent, further illustrating its viscoelastic

mechanical response.

Therefore, under scenarios of rapid axial compression,

viscoelastic stiffening will result in a relatively incompressible NP.

Because of this, the compressed vertebral bodies bend around the

incompressible NP causing increased flexural stress across the

EPs of the vertebrae. In the adolescent spine, the unfused

cartilaginous seams of the vertebral apophyses represent a

significant stress concentrator, thereby creating a weak point.

Experiments employing axial compression/impact to adolescent

animal models of the spine (129–137) report the unfused

cartilaginous apophyses as the site most vulnerable to fracture; a

trend that was consistent across multiple loading paradigms

including slow velocity compression (135, 137), dynamic

compression (134), as well as rapid intradiscal pressurization

(125–128). Additionally, even when motion segments were held

under flexion or extension and then compressed, the vertebra’s

unfused apophyses remained the most susceptible region to

injury in motion segments (131).

Small, sub-critical fractures can also be generated in the

adolescent spine due to the pressurization-related response of the

NP. Schmorl’s nodes can be conceptualized as miniature EP

fractures where focalized perforations of the cartilaginous EP occur

due to an excessive accumulation of hydrostatic pressure.

Importantly, Schmorl’s nodes only impact a very small cross-

section of the vertebral body, appearing on MRI as “vertical

herniations” where a small “node” of the NP intrudes into a

focalized pocket of the cartilaginous EP. Until recently, Schmorl’s

nodes have been considered of “benign” character, and only an

incidental finding during radiography and MRI. However, a

growing body of human and animal-model research attests to the

relationship between interruptions to the structure/function of the

cartilaginous EP and degeneration of the IVD (138–141); this

relationship has been further suggested to be dose-dependent

(141). As a result, the biomechanics of the hydrated, adolescent

NP may represent a critical factor toward the initial development

of conditions favourable to degeneration of the IVD. One

additional note is that, while degeneration of the IVD has a

strong, positive association with chronological age, increasing

concern about the relationship between IVD and EP health during

adolescence may be warranted because, although adolescent

humans present with a low frequency of IVD degeneration, the

weak point represented by the cartilaginous seams of the unfused

vertebral apophyses, may represent a significant vulnerability

toward EP injury during this period of the human lifespan.

While the apophyseal seam represents a mechanical

vulnerability for all spines prior to skeletal maturity, the

curvature of the vertebral EPs varies substantially during the

years of skeletal growth, which also has a significant impact on

EP fracture mechanics. In an in vitro experiment, rabbit motion

segments from the T10/T11-L5/6 levels were exposed to rapid

loading (1.95 m/s) resulting in EP fractures in 15 of the 16

specimens. The authors noted higher failure loads in specimens

with larger and deeper EP curvatures (21). Furthermore,

retrospective investigation of human patients treated for NP

herniation reported that EPs rated as “flat” or “irregular” were

between 3.3 and 4.3 times more likely to correlate with

symptoms of pain, than EPs rated as “concave.” (142) Last,

radiographic investigation of human tissue removed during

surgery (142) reported that vertebral EP morphology appears to

be directly related to the degeneration status of the adjacent IVD

(142, 143). As such, both human and animal research suggest

that deeper EP concavity may represent a protective effect

against EP fracture/deformity.

Overall, maturity of the vertebral apophyses, the viscoelastic

properties of the adjacent NP, and the concave morphology of an

EP, appear to represent variables that significantly contribute to

the biomechanics of vertebral body fracture in the adolescent spine.

4.3 Repetitive sport-related extension

4.3.1 Ring apophysis fracture (RAF)
The vertebral apophyses begin to calcify at a mean age of 11

years (119, 120), while complete ossification is not complete until
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a mean of 18 years, with reports of unfused vertebral apophyses

persisting to the age of 25 (121). Therefore, the unfused vertebral

apophyses represent a significant point of vulnerability in the

adolescent vertebral body, where either acute overload or

repetitive microtrauma can result in vertebral fracture at this site.

Furthermore, during compression plus spine extension,

biomechanical contributions from the spine’s facet joints appear

to play a significant role in the axial compression mechanics of

the spine (144), which may have important contributions toward

the etiology of ring apophysis fractures (RAFs); this relationship

will be discussed in Section 4.4.

RAFs are not a common clinical entity, representing only 5.8%

of all surgeries associated with lumbar IVD herniation (145). Small

case series reports, and retrospective analysis of the treatment of

patients afflicted with RAFs, represent the bulk of the current

knowledge regarding this clinical entity. Adolescents are perhaps

the most well-documented cohort with regards to RAF etiology,

with multiple case series examining the potential for RAFs to

develop in the skeletally immature spine (145–149), while

additional concern surrounds the development of RAFs in elite-

level athletes during adolescence due to the high demands of

training and competition (149–153).

Numerous retrospective analyses of RAF diagnosis, and both

conservative and surgical treatments, concur that when high

physical demands are imposed upon a skeletally immature spine,

the cartilaginous seams of the apophyses represent its site of

greatest vulnerability (145, 147, 154–161). MRI, CT and plain

radiography have all visualized RAFs, with the most common

morphology appearing as a crescent-shaped fracture avulsing

from the posterior or posterolateral aspect of the vertebra’s

inferior or superior apophysis when observed in the transverse

plane (Figure 3, Image 1, i), and as a “corner fracture” in the

sagittal plane (Figure 3, Image 1, ii). In addition, researchers note

a high frequency of NP herniation in RAF patients, suggesting

that separation of the apophyses may represent an EP-

mediated mode of IVD herniation, capable of initiating Modic

changes (162), or potentially relating to subsequent IVD

degeneration (92).

FIGURE 3

Axial and sagittal schematic, and axial and sagittal images of a porcine cervical vertebra, illustrating most common ring apophysis fracture morphology.

Porcine cervical fracture photographs are reprinted with permission (132).
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Little in the way of in vitro experimentation has been done to

document RAF etiology, but an experiment performed by

Corbiere et al. (163) demonstrated that repetitive flexion of a

cervine spine model resulted in avulsion of the growth plate,

morphologically similar in appearance to RAFs documented

juvenile human spines. Similarly, an in vitro investigation

employing a porcine cervical model of the spine performed by

McMorran and Gregory (137) demonstrated that acute overload

of motion segments via axial compression consistently resulted

in EP fractures bearing a strong RAF-like morphology. In vitro

research using skeletally immature animal models in lieu of

human tissue consistently report the apophyses as the site of

greatest mechanical vulnerability (131–137), recommending that

this mechanical vulnerability persists across multiple different

mammalian spines throughout the period of vertebral

body growth.

Pediatric IVD herniation is considerably less common than

herniations affecting adult patients, with a reported incidence of

hospitalization for children and adolescents ranging from 0.1% to

0.2%, (148, 164) and an incidence of surgery related to IVD

herniation of 1.2% (25/1,750 patients) (151). Conversely, IVD

herniation affects 2%–3% of adults over the age of 35 (165).

Despite its infrequency, pediatric IVD herniation possesses a

considerably greater association with a precipitating mechanical

trauma than herniation of the adult IVD. Estimates vary, but

studies consistently report that 30%–60% of pediatric IVD

herniation patients can point to a specific mechanical insult as

being responsible for their injury (148).

The strong association between IVD herniation and RAF in

adolescents suggests that the NP is more likely to herniate

through the unfused apophysis rather than the AF’s layers. In

their case series of 24 patients with lumbar IVD herniation

who underwent µ-CT imaging, Chen et al. (149) found that

42% (10/24) also had an accompanying RAF. Similarly, in

their retrospective review of 31 patients <21 years old who

received laminotomy surgery to treat IVD herniation, Banerian

et al. (152) reported that 19% (6/31 cases) also had an

accompanying avulsion fracture of the vertebral EP (i.e., RAF).

Further, these authors reported 2 additional cases where IVD

herniation was accomplished via burst fracture of the

vertebral body.

However, this potential apophyseal-mediated mode of IVD

herniation has not been consistently demonstrated in the

literature. Ozgen et al. (150) reported that 82% (14/17) of

adolescent IVD herniation patients attributed their injury to a

specific traumatic event; however, among those who underwent

µ-CT imaging (n = 8), none exhibited an accompanying

vertebral fracture.

The strong association between trauma and IVD herniation in

the pediatric population, paired with consistent observations of the

mechanical vulnerability of the spine’s unfused vertebral

apophyses, highlights the need for further research. Future

studies should explore whether these unfused regions serve as

structural weak points that contribute to RAFs, apophysis-

mediated IVD herniation, Modic changes, and premature

degeneration of the IVD.

4.4 Contribution of the facet joints to
vertebral fracture mechanics, and the
Tokushima theory of growth plate slippage

Pure anterior shear forces (i.e., those responsible for

anterolisthesis of one vertebral body over another) are largely

resisted by the facet joints. In an experiment performed by

Raynor et al. (166), resection of more than 70% of cervical

human cadaveric spine segments’ facet joints resulted in a mean

failure load of 159.0 lbs, whereas facet joints with less than 50%

of their height resected, failed at a significantly higher mean load

of 208.0 lbs. The degree of shear-resistance is further influenced

by the orientation of the facet joints such that more coronal

orientation will increase the magnitude of anterior-posterior

shear resistance imparted by these joints (167, 168).

Extension also influences facet joint loading. Biomechanically,

during extension the space between facet joints is reduced,

thereby increasing compression (144, 169–171). A finite element

model of a lumbar motion segment constructed by Yang and

King (144) reported that with 10 mm posterior application of

axial load for non-degenerated IVDs (creating a slight posterior

extension moment), the facet joints carry a mean of 17.5% of the

axial load applied to a motion segment, and that with

degeneration of the IVDs (i.e., significant reduction of IVD

height), the axial load endured by the facet joints can rise to as

high as 25.8% (144). Compression acting through the facet joints

results in significant load transmission through the pars

interarticularis, across the pedicles, into the posterior vertebral

body (172, 173). During excessive compression plus extension of

the spine, the pars interarticularis represents the initial point of

failure in the posterior column of the spine. Initial microfractures

tend to manifest in this region, in the inferior-to-superior

direction, due to the concentration of bending and torsion forces

at the inferomedial aspect of the pars interarticularis (172, 173).

Upon failure of the pars interarticularis, compressive forces

propagate into the posterior of the vertebral body, which now

lacks mechanical support from the damaged posterior column.

As demonstrated in the Tokushima theory of growth plate

slippage (representing an etiology of injury regarding chronic

spine loading), once a lesion to the pars interarticularis occurs,

the motion segment’s kinetics are pathologically altered,

concentrating additional mechanical forces onto the vertebral

apophyses (173, 174). Due to the inherent weakness of the

apophyses’ growth cartilage compared to the cancellous and

cortical bone of the vertebral body, the concentration of

compression forces onto the unsupported posterior vertebral

body interacts with the unfused, cartilaginous seams of the

vertebra’s ring apophysis; the “weak point” of the skeletally

immature spine (131–137, 145, 147, 154–161). Failure of the pars

interarticularis from excessive compression plus extension

movements of the spine subsequently makes the unfused

vertebral apophysis more vulnerable to fracture via compressive

overload, which most commonly manifests as a RAF.

Ikata et al. (175) reported that following a pars interarticularis

lesion and subsequent RAF, anterior translation and listhesis of the

injured vertebral level was most susceptible during the stage of
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adolescent growth. A more recent investigation demonstrated that

patients in their active growth stage have the highest incidence of

anterior vertebral listhesis [80% Sairyo et al. (176)], while those

defined as being in the “late” growth stage saw anterior listhesis

in only 11% of lesions (176). Most importantly, once the

cartilaginous apophyses had fused, no patients were observed to

suffer anterior vertebral listhesis (176).

The differentiating mechanism as to whether RAF or growth-

plate-mediated anterior listhesis manifests in the adolescent spine

has not been fully elucidated, but the degree of ossification of the

apophyseal cartilage seems to interact with the type of

compression and extension forces experienced by the spine,

under both acute and chronic scenarios of loading. Therefore,

the skeletal maturity of the spine that experiences compression in

combination with extension and/or lateral bending and/or

twisting movements, is likely a significant contributing factor to

the etiology of any resulting vertebral fracture (176).

5 Conclusion

Complex, three-dimensional loads can be placed on the human

spine at any age, but the significantly different body proportions

and muscular competency of infants, a hydrated IVD, and the

presence of numerous unfused growth plates prior to skeletal

maturity, represent significant variables that contribute to the

biomechanics of pediatric spine fractures.

Vertebral fractures are a severe injury at any age with the

potential to develop multiple comorbidities and significantly

reduce a patient’s quality of life. However, the mechanical

processes underlying the injury patterns observed in the infant

and adolescent spine present with several unique mechanical

concerns not found in the spine after skeletal maturity.

5.1 Future directions

Due to the infrequency of pediatric vertebral body fractures

in regular clinical practice, and the scarcity of post-mortem

investigations available for this age group, literature on these

injuries is less extensive than the literature pertaining to

fractures in the adult and elderly spine. Several key domains of

pediatric spine injury remain relatively underexplored, such

that considerable advances to the fields of clinical and surgical

care may result from a better understanding of different facets

of the injury and disease processes, relevant to this age group.

As such, the following represent several potentially important

questions for the field of pediatric vertebral fracture research,

where an improved understanding of the underlying

biomechanical relationships has the potential to benefit both

clinical and surgical treatment options for future vertebral

fracture patients.

1) How does vertebral EP morphology (i.e., more or less

concaved) interact with a vertebral body’s vulnerability to

fracture?

2) How does the natural loss of the NP’s proteoglycans interact

with the hydrostatic and viscoelastic mechanisms relating to

vertebral and EP fracture?

3) How much weaker is the unfused apophysis than the

surrounding vertebral bone? Can future experiments begin to

quantify the magnitude of this mechanical disparity?

4) How do pediatric diseases (i.e., leukemia) interact with the

biomechanical relationships surrounding vertebral fracture?

What additional prevention and treatment considerations

would optimally benefit these patients?
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