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Shaping oral and intestinal
microbiota and the immune
system during the first 1,000 days
of life
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Technology, Wuhan, China, 2Department of Hematology, Huazhong University of Science and
Technology Union Shenzhen Hospital, Shenzhen, China
The first 1, 000 days of life, from the fetal stage of a woman’s pregnancy to 2
years of age after the baby is born, is a critical period for microbial
colonization of the body and development of the immune system. The
immune system and microbiota exhibit great plasticity at this stage and play a
crucial role in subsequent development and future health. Two-way
communication and interaction between immune system and microbiota is
helpful to maintain human microecological balance and immune homeostasis.
Currently, there is a growing interest in the important role of the microbiota in
the newborn, and it is believed that the absence or dysbiosis of human
commensal microbiota early in life can have lasting health consequences.
Thus, this paper summarizes research advances in the establishment of the
oral and intestinal microbiome and immune system in early life, emphasizing
the substantial impact of microbiota diversity in the prenatal and early
postnatal periods, and summarizes that maternal microbes, mode of delivery,
feeding practices, antibiotics, probiotics, and the environment shape the oral
and intestinal microbiota of infants in the first 1, 000 days of life and their
association with the immune system.
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1 Introduction

The immune system in early life does not develop in isolation, but is strongly

influenced by maternal and autoantigens, commensal bacteria, and pathogens (1). The

microbiota establishes or maintains homeostasis when the balance of immune system

tolerance to commensal, conditionally pathogenic and harmful bacteria is established

(2); microbiota regulate the function and activity of immune cells, stimulate mucosal

specificity and activate the immune system and induce the development and maturation

of immune cells and organs, with health-promoting and beneficial immunomodulatory

properties (3). Therefore, the two-way communication between immune system and

microbiota is helpful to maintain the microecological balance and immune homeostasis

of human body. Indeed, microbe-dependent modulation of the host immune system has

a limited window of opportunity, and there is no way to make up for the missed

window early in life in adulthood, which may even promote inflammation or increase
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the risk of disease progression, making it particularly important to

focus on the establishment of the microbiota and the immune

system early in life.

Streptococcus spp. are the first bacteria to colonize the infant’s

mouth and are known as “early colonizers” (4). Early

colonization affects subsequent microbial colonization due to the

occupation of binding sites, efficient use of nutrients, production

of antimicrobial agents and end products, and changes in the

environment (5). Therefore, early colonization is very important

for the development of microbiota, and may have long-term

consequences (6). Facultative anaerobic bacteria are early

colonizers in the human intestinal and are distinctly dominant in

the first few weeks of life, such as Enterobacterales, Enterococci

and Staphylococci. Subsequently, the dominant microbiota

gradually changed to anaerobic bacteria, such as C. leptum

subgroup, Bifidobacterium and B. fragilis (7). With the

introduction of solid food, intestinal microbiota are dominated

by Firmicutes and Bacteroidetes (8). Acquisition of early

colonizers may be altered by a variety of maternal and infant

factors (Figure 1), which may lead to differences in oral and

intestinal microbiota development (9, 10).
FIGURE 1

Key factors influencing early colonizers before and after birth.
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Disruption of early oral colonization may affect the progression

of oral and systemic disease in children. The oral microbiota has

shown significant correlations with systemic disorders such as

weight gain, rheumatoid arthritis (RA), and autism (11–13). In

addition, the oral cavity is the window to the gut, and the oral

microbiota affects the colonization of the gut microbiota to a

certain extent, and it has been shown that the oral microbiota

shows its relevance and possibilities as a substitute for the gut

microbiota (14). Intestinal microbiota have the ability to generate

resistance to pathogens and enhance the resistance of the

immune system through colonization of mucosa surface and

production of different antimicrobial substances, which play an

important role in maintaining normal gut physiology and health.

Thus, the oral and intestinal microbiota has a unique role in

promoting immune system development and modulating host

defence (15, 16). The aim of this review is to provide a summary

of the latest research advances in the establishment of the oral

and gut microbiome and the immune system during the first

1,000 days of life. At the same time, it is emphasized that

maternal factors, mode of delivery, breastfeeding, antibiotics, host

factors, and living environment reciprocally shape the oral and
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intestinal microbiota of infants during the first 1,000 days of life

and their association with the immune system.
2 Prenatal factors affecting the
development of the fetal microbiota
and immune system

2.1 Effects of maternal microbiota on the
fetus

For many years, scientists and doctors have believed that the

fetus grows and develops in a sterile environment. Recent

research data questioned this common understanding. New

research found that there are microbiota in meconium, placenta

and amniotic fluid, and put forward the view that uterus is not a

sterile organ (17). The most common bacteria in meconium

samples are Staphylococcus, followed by Enterobacteriaceae,

Enterococcus, Lactobacillus and Bifidobacterium (18–20).

However, Rehbinder et al. suggested that the presence of foetal

faecal microbiota was the result of DNA contamination from

laboratory reagents or acquired during labour (21). Stinson et al.

combined PacBio single-molecule real-time (SMRT) sequencing

technology with a workflow designed to reduce contamination

and showed that the foetal faecal and amniotic fluid

microbiomes were present beyond background contamination

levels (22). Meanwhile, Aagaard et al. performed the first

macrogenomic characterisation of the placental microbiome

using whole-genome birdshot sequencing and 454 pyrophosphate

sequencing, and found that the placenta contains a unique

microbiome composed of a non-pathogenic gut microbiota

dominated by Proteobacteria, and composed of non-pathogenic
FIGURE 2

Major changes in the maternal oral, intestinal and vaginal microbiota during
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intestinal microbiota of Firmicutes, Bacteroidetes and

Fusobacteria phyla. At the same time, it is proposed that

placental microorganisms are most similar to maternal oral

microorganisms and that their composition may also influence

pregnancy outcome (23). The microbiota in amniotic fluid is

similar to that in placenta, and an imbalance in its microbial

composition may lead to chorioamnionitis. Previous studies have

shown that the microbial status in amniotic fluid can be used to

predict the occurrence of premature birth (24). Preterm birth

and delivery are associated with bacterial colonization of the

amniotic cavity and fetal membranes, and the amount of

microbial DNA in amniotic fluid correlates with increased levels

of leukocytes and inflammatory mediators, suggesting that a

higher microbial load can lead to inflammation, which may be

an endocrine mechanism that triggers preterm labor (25). These

results suggest that colonization of the fetal oral cavity and

intestine by the microbiota may have occurred during pregnancy.

Vertical transfer of bacterial species between mother and baby

occurs before the baby is born, suggesting that the physiological

state of the mother can influence the microecology of the fetus.

Maternal microbiota is a key source of microbiota during initial

colonization of the fetal oral and gut microbiota. Maternal

factors that shape the fetal microbiota are mainly the maternal

oral, intestinal and vaginal microbiota (26). Interestingly, the

composition of the maternal oral, intestinal and vaginal

microbiota changes dramatically during pregnancy (Figure 2),

which may be the source of the close connection between the

maternal microbiota and the fetal and infant microbiota. The total

number of oral microbiota was higher than that of non-pregnant

bacteria at different stages of pregnancy. In the early and second

trimester of pregnancy, the abundance of Porphyromonas gingivalis

and Aggregatibacter actinomycetemcomitans increased significantly,
pregnancy.
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Candida levels were significantly higher in mid and late pregnancy,

and the abundance of Actinomyces was even more significantly

higher throughout pregnancy, changes that may be due to changes

in the overall immune status during pregnancy (27–30). From the

first trimester to the third trimester, changes in the maternal gut

microbiota are mainly manifested by increased abundance of

Actinomycetes and Proteobacteria, a significant decrease in the

levels of butyrate-producing Faecalibacterium with anti-

inflammatory activity in the third trimester, and a decrease in α-

diversity at the individual level. In addition, in the third trimester

of pregnancy, the β-diversity of the maternal microbiota increases

among individuals, reflecting the immune manifestations of

chronic inflammation (29, 31, 32). Alterations in the maternal gut

microbiota during pregnancy play a positive role in the regulation

of metabolic responses in the fetus (33). In view of the influence

of intestinal microbiota on fetal immune response, the adaptation

and regulation of maternal immune response during pregnancy is

a necessary condition for fetal tissue cells to be accepted by the

mother and avoid maternal immune rejection, while maintaining

their own immune defense mechanism to ensure the survival of

the mother and fetus (34). The vaginal microbiota also changes

significantly during pregnancy, with a decrease in overall diversity

and number of organisms in the first trimester, but an increase in

the stability of the microbiota composition, as well as an

enrichment of Lactobacillus, which leads to a decrease in vaginal

pH and an increase in secretions (35). Studies have shown that

the increase of Lactobacillus has a direct or indirect protective

effect on maintaining the stability of the vaginal microbiota during

pregnancy and preventing ascending infections (36). In addition, a

decrease in the proportion of Lactobacillus is associated with

adverse pregnancy outcomes, such as preterm birth, miscarriage,

etc (37).

The above changes in the mother’s own microbiota during

pregnancy can reach the placenta and affect the fetal microbiota

through different routes of transmission, with blood transmission

being the most direct and effective route. Scientists hypothesize

that the pathway of transmission of the microbiota from mother

to fetus is similar to the potential pathway for intrauterine

infections (38). Some of the maternal immune cells are thought
TABLE 1 Effects of maternal prenatal or perinatal antibiotic use on the infan

Country Types of
research

Sample
size

Canada Longitudinal study,
single-center

198 infants IAP for maternal vaginal delive
months (P = 0.005), whereas IA
diversity at 1 year of age (P < 0.
Enterococcus and Clostridium w

Suomi Control study, single-
center

149 infants Compared to unexposed infan
(P = 0.04) and increased abund
Clostridium genera

America Longitudinal study,
single-center

266 infants There was a significant differen
the no-antibiotic group at 6 we
statistic = −1.907, adjusted P = 0
Bifidobacterium and Blautia ad
Bacteroides, Bifidobacterium an

Spain Longitudinal study,
single-center

40 infants The establishment pattern of th
proportions of Bifidobacteriacea
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to be transporter cells for placenta-acquired microbiota (39). For

example, dendritic cells (DCs) can cross the gap between

intestinal epithelial cells and capture bacteria directly from the

intestinal lumen. However, DCs do not kill the captured

microorganisms, which can be transmitted through the dendritic

cells through the bloodstream to other sites, such as the placenta

and amniotic fluid, and through the umbilical cord to the fetus

(40). Intrauterine microbiota colonization may occur via the

ascending route through the genitourinary tracts such as the

urinary tract, cervix, and vagina, as well as the hematogenous

route through the placenta after translocation from the digestive

tracts such as the oral cavity and intestines (41). Microbiota

associated with the gastrointestinal tract such as Bacteroides and

Proteus as well as microbiota associated with the vaginal

microbiota such as Lactobacillus iners, L. crispatus, and Prevotella

amnii were found in endometrial samples, so Verstraelen et al.

concluded that the endometrium is colonized by both vaginal

and intestinal microbiota (42). In addition, transplacental passage

of these colonized microorganisms or their metabolites may

result in increased expression of microbe-associated molecular

pattern (MAMP) recognizing receptors, thymic regulatory T

(Treg) cell promotion, and the establishment of dendritic cell

(DC) networks in the gut, lung, and other tissues, as well as

accelerated transitions from TH2 to TH1, interferon-regulated

transcription factor 7 (RF7), and TH-17 (43).
2.2 Effects of antenatal antibiotic use on the
fetus

Current clinical evidence suggests that antibiotics used by

pregnant women may cross the placental barrier and reach the

fetus, directly or indirectly disrupting the oral and intestinal

microbiota of the fetus (Table 1) (48). By comparing fecal

samples from PAT (prenatal antibiotic treatment) and PAF

(prenatal antibiotic-free) preterm infants on days 7 and 14 after

birth, Zou et al. found that prenatal antibiotic exposure resulted

in a decrease in the intestinal microbiota of preterm infants in

Bacteroides spp. (PAF 9.11%, PAT 2.93%) and an increase in
t microbiota.

Microbiota changes Reference

ry was associated with decreased infant gut microbiota richness at 3
P for emergency CS was associated with increased microbiota
001), Bacteroides and Parabacteroides were underrepresented, while
ere overrepresented

(44)

ts, infants with IAP had decreased abundance of Bacteroidetes
ance of Firmicutes (P = 0.048) especially the Staphylococcus and

(45)

ce in infant microbial diversity in IAP infants compared to those in
eks (Shannon t statistic =−2.374, adjusted P = 0.02; Simpson t
.06), with a decrease in the relative abundance of Bacteroides,
justed P = 0.06), with a decrease in the relative abundance of
d Blautia

(46)

e gut microbiota of IAP infants changed, with lower relative
e and unclassified Actinobacteria (p < 0.05)

(47)
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Escherichia-Shigella (d7, PAF 27.35%, PAT 43.35%; d14, PAF

29.47%, PAT 40.36%) increases (49). A meta-analysis showed a

significant decrease in the relative abundance of Actinobacteria

and an increase in the abundance of Firmicutes and

Proteobacteria in infants whose mothers were treated with

antibiotics before or during labor and delivery, compared to

infants who were not exposed to antibiotics (50). In the current

study, Marilen et al. used a mouse pregnancy model to explore

the effects of antibiotic treatment on maternal immunity, and the

microbial intervention strategy chosen was shown to affect

offspring immunity (51). Using a mouse model, Xu et al. showed

that prenatal antibiotic exposure led to a reduction in

microbiota-derived butyrate production, which in turn enhanced

neonatal ILC2 activation by downregulating IFN1 signaling (52).

At the same time, antibiotic use in pregnant and lactating

females reduces antiviral-specific immune responses in pups,

suggesting that antibiotics cause extensive immune damage in the

offspring (53). A large number of studies have shown that

maternal antibiotic use increases the risk of obesity, otitis media,

asthma and other diseases after birth (54–56). The above results

suggest that prenatal antibiotic use can affect the baby’s oral and

intestinal microbiota, which in turn affects the development of

the baby’s immune system.
2.3 Effects of prenatal environmental
exposure on the fetus

Exposure to environmental pollutants and bacteria early in life

can affect the establishment of the fetal oral and intestinal

microbiota and the development of the immune system. Some

recent studies have shown that maternal inhalation of PM2.5

may induce oxidative stress, inflammatory responses, endocrine

disruption and epigenetic changes, thus indirectly affecting

normal fetal development (52). Inhaled PM2.5 may also

penetrate the alveolar epithelial barrier and subsequently enter

the circulation and be deposited in the placenta, where these

particles may directly damage the structure and function of the

placenta and further affect fetal growth (57). Tao et al. exposed

pregnant mice to filtered air (FA) or concentrated ambient

PM2.5 (CAP) and found that CAP exposure altered the

metabolome and disrupted metabolic pathways (e.g., amino acid,

lipid pathways) in maternal serum and placenta (58). Prenatal

maternal exposure to air pollutants, especially in the first and

third trimesters, affects the distribution of white blood cells in

the fetus, and may also lead to an imbalance in fetal T helper

(Th) cell subsets, increasing the risk of allergic reactions in

children (59, 60). Loss et al. assessed mRNA expression of Toll-

like receptors (TLR) 1 through TLR9 and CD14 in cord blood

and found that gene expression of innate immunity receptors

was higher overall in the cord blood of newborns from a rural

setting (P for multifactorial multivariate ANOVA = .041),

particularly so for TLR7 [adjusted geometric means ratio

(aGMR), 1.15; 95% CI, 1.02–1.30] and TLR8 (aGMR, 1.15; 95%

CI, 1.04–1.26) (61). In addition, prenatal exposure to farms can

modulate the immune system of offspring, and from umbilical
Frontiers in Pediatrics 05
cord blood cells obtained from mothers born to mothers

who were exposed to farms before birth, a decreased TH2

immune response, a decrease in the number of white blood

cells, an increase in the number of Treg cells, and an increase

in immunosuppressive ability, while pro-inflammatory

cytokines such as TNF-α and IL-6 in umbilical cord blood

are increased (62, 63).
3 Postnatal factors affecting the
development of the infant microbiota
and immune system

3.1 Effects of mode of delivery on infants

Although the fetus has begun to colonize and establish

microbiota in the mother’s body, the main maternal origin of

microbiota may begin to build up in large quantities during

production. Vaginal delivery(VD) or caesarean section(CS)

largely determines the commensal microbiota that begins to settle

in the newborn, and there are significant differences in the

degree of oral and intestinal microbial development between

different modes of delivery (64, 65).

VD infants have oral and intestinal microbiota enriched with

the mother’s vaginal microbiota, such as Lactobacillus, Prevotella

and Bifidobacterium, during the first week of life (66). At the

same time, VD infants are consistently enriched with maternal

gut microbiota such as Bacteroidetes, Bifidobacterium and

Escherichia coli, which may be due to the better adaptation of

maternally transmitted high-abundance bacteria to the intestinal

environment (29). It was found that neonates VD had high levels

of gram-negative bacteria, which led to a significant enrichment

in lipopolysaccharide (LPS) biosynthesis, and that LPS

stimulation of primary human immune cells led to higher levels

of TNF-α and IL-18, suggesting a link between the

immunostimulatory potential of gut microbial LPS and the

overall immune status of neonates (67). Another study also

showed that LPS was involved in building tolerance to the

colonized gut microbiota and initiating the neonatal immune

system, and that stimulatory LPS helped reduce the risk of

immune-mediated disease (68). Cord blood from vaginally

delivered infants has higher immune cell counts and activity

(e.g., neutrophils, monocytes, NK cells), higher concentrations of

cytokines and expression levels of TLR 2 and TLR 4, and

expression levels of CD 16 and CD 56 surface receptors (68).

Newborns delivered by CS have microbiota similar to the

maternal skin microbiota, such as Staphylococcus,

Corynebacterium, Propionibacterium and environmental

microbiota, whereas Bifidobacterium spp. which are common in

VD are not found (69). Bacteroides are associated with a lower

proportion of the oral and intestinal microbiota of neonates born

by CS compared with VD, which may further contribute to

reduced bacterial diversity in caesarean section infants (70).

Compared with VD, the potential pathogens of CS infants are

more abundant, such as Clostridium perfringens or Escherichia

coli (71, 72). It may be related to the reduction of leukocytes
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such as lymphocytes and dendritic cells(DC) in the umbilical cord

blood of infants born by CS, as well as the expression of lower

levels of the surface innate antigen receptors TLR2 and TLR4 by

mononuclear cells in the umbilical cord blood (73, 74). In

addition, CS infants had reduced responses to TLR1/2

stimulation of TNF-α and IL-6 (74). CS may affect the critical

window period of immune system startup and destroy the

mother-to-child transmission and immune stimulation potential

of specific microbiota (67). Based on mouse models, it has been

found that differences in the earliest initiation of the immune

system may continue to affect the development and healthy

development of the human immune system (75). Another study

also found that newborns born by CS were at higher risk of

developing chronic diseases in the future due to changes in early

immune system stimulation (76). Compared with VD, CS is

associated with an increased risk of childhood immune diseases

such as asthma and allergies, leukemia and IBD. The above

results suggest that the mode of delivery affects the colonization

of neonatal microbiota and the development of the immune

system, thereby providing different defenses against infection in

the later stages. CS will increase the risk of antibiotic exposure

and change the composition of breast milk. At the same time, it

leads to an increase in the relative abundance of opportunistic

pathogens in neonates, affecting the immune and metabolic

development of infants. In addition, by analysing the early

microbiota composition and dynamics of 34 mother-infant pairs,

Selma-Royo et al. found a significant effect of home vs. hospital

births, which was also evident at 6 months of age, but by which

time the differences associated with mode of delivery had

disappeared (77). Therefore, while focusing on the mode of

delivery, relevant factors (e.g., place of delivery, etc.) should be

added to the mix to better understand infant bacterial

colonisation and its potential long-term impact on

infant development.
3.2 Effects of feeding methods on infants

Traditionally, breast milk has been considered sterile, but

several studies have confirmed that breast milk provides an

important source of bacteria for infants, with Staphylococcus,

Streptococcus, Bifidobacterium, Propionibacterium and

Lactobacillus present in breast milk samples (78, 79). According

to WHO’s recommendation, breast-feeding begins within one

hour after birth, and exclusive breast-feeding can last until the

baby is 6 months old (5). The oral microbiota of breastfed

infants is highly similar to that of their mother’s mouth, breast

milk and areolas. Streptococcus dominates the oral microbiota of

exclusively breastfed infants, while Actinomyces and Prevotella are

higher in formula-fed infants (80). Bifidobacterium were less

represented in the intestinal microbiota of infants fed formula

that was not supplemented with probiotics or human milk

oligosaccharides (HMO) compared to breastfed children, and

supplementation of formula with Bifidobacterium did not

significantly increase Bifidobacterium in the infant gut (81).

Differences in the initial microbiota due to different feeding
Frontiers in Pediatrics 06
patterns can have long-term effects on the oral and intestinal

microbiota of infants (82).

The development and maturation of the innate and adaptive

immune systems of neonates is time-dependent. In the first few

days, immune-related substances such as secretory

immunoglobulins in breast milk are the main source of

antibodies and immune cells in newborns (82, 83). Breast milk

contains high levels of sIgA, which has a crucial role in pathogen

clearance, microbiota colonization and in microbiota homeostasis

by influencing microbiota gene expression. Studies have shown

that maternal sIgA may regulate the development of the oral

microbiota by limiting the colonization of potentially pathogenic

species, protecting and regulating the homeostasis of mucosal

epithelial cells, and has been found to inhibit the local adhesion

of specific pathogenic bacteria (84, 85). SIgA in the feces of

breastfed infants around 6 months of age was significantly higher

than that of formula-fed infants (86). Breast milk also provides

immunoglobulins, complement proteins, lysozyme and

lactoferrin, antimicrobial substances that protect infants from

pathogens and influence their immune maturation. Depending

on the Fc receptor (FcRn) of newborn mice, IgG derived from

breast milk can enter the blood stream of mice, which is very

important to protect against mucosal diseases induced by

Escherichia coli (87). The main cytokine present in human milk

is IL-10, which suppresses the immune response and participates

in tolerance to dietary and microbial antigens (88). Breast milk

contains macrophages, neutrophils and lymphocytes, which can

be transferred directly to the infant through breast milk and

trigger an immune response in the infant and influence the

phenotype of the infant’s immune cells, particularly the B and

T cell phenotype (89, 90).

There are other bioactive components present in human milk,

mainly composed of species involved in HMO metabolism in

human milk (91, 92). Charbonneau et al. dissected the presence

of microbiota-dependent effects of HMO (93). Because HMO

can’t be digested by infants, they play a role as prebiotics,

supporting the growth of some beneficial bacterial strains such as

Bifidobacterium, Streptococcus, Staphylococcus and so on in

infants’ gastrointestinal tract (94), regulates intestinal epithelial

cell response and improves intestinal barrier function, provides

the primary substrate that shapes the intestinal microbiota of

infants and influences the maturation of the intestinal mucosal

immune systemand as immunomodulators that compete with

potentially pathogenic microbiota to prevent infection and the

adhesion and invasion of certain pathogens (95, 96). In addition,

HMOs can be fermented by certain gut bacteria to produce

short-chain fatty acids(SCFAs), SCFAs are known to be

immunomodulators and can even shape the adult immune

system by activating G-protein coupled receptor 41/43(GPR 41/

43). This pathway was shown to reduce the severity of allergic

asthma and colitis in mouse models (97–99). The above studies

suggest that increasing HMO content and thus short-chain fatty

acid levels by breastfeeding newborns may be a new option for

preventing allergic diseases in children.

The above results indicate that breast milk contributes to the

establishment of oral and intestinal microbiota, and that
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immune-related substances in breast milk directly or indirectly

promote the development of the infant’s immune system. In the

long run, breastfeeding is associated with enhanced cognitive

development and reduced risk of diseases such as nephrotic

syndrome, obesity and type 2 diabetes in children (100–103).

However, Gámez-Valdez et al. found that in colostrum samples

from women with gestational diabetes mellitus, the GDM group

showed higher microbial diversity (104). Also in Piñeiro-Salvador

et al. peripheral blood and colostrum paired samples from

mothers with BMI > 30 and BMI < 25 were analysed and found

that compared to the lean group, the colostrum B lymphocyte

compartment was significantly reduced, and CD16 blood

monocytes had an increased CD16 expression compared to the

lean group in obesity (105). In conclusion, gestational diabetes

mellitus (GDM) and obesity affect colostrum composition and

lead to abnormal oral and intestinal microbiota colonisation and

impact on the establishment of the immune system via the breast

milk microbiota and maternal-derived cytokines and leukocytes.

Therefore, more long-term follow-up clinical studies are needed

to elucidate the influence of maternal factors on breast milk

composition and the control mechanisms linking breast milk

composition to a diverse infant microbiome and health or

disease status later in life.
3.3 Effects of antibiotic exposure on infants

Exposure to antibiotics in early life will destroy most oral and

intestinal microbiota, reduce the diversity of microbiota and

change the bacterial community structure (Table 2). Dzidic et al’s
TABLE 2 Effects of antibiotic exposure on infant microbiota.

Nation Research
type

Sample
size

Route of antibiotic
use a

Netherlands Longitudinal
study, multi-
center

98 infants intravenous injection ant

China Control study,
single-center

9 infants oral
administration + intravenous
injection

Cep
pen

Irish Control study,
single-center

18 infants Parenteral therapy Am
gen

Suomi Longitudinal
study, single-
center

142 infants oral administration ma

Danish Control study,
single-center

72 infants oral administration azit

Chile Longitudinal
study, single-
center

31 infants oral administration am
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research shows that there are a lot of unique bacteria in infants

treated with amoxicillin and penicillin in early life (Effect of

caries removal status and time, p = 0.05).For example, the genus

Granulicatella was higher in abundance at 24 months of age

(p = 0.003) in children not taking antibiotics while Prevotella

(p = 0.020) was more prevalent at 7 years of age in children

treated with antibiotics in early life (82). Kennedy et al. showed

that antibiotic treatment was positively correlated with two OTUs

in Pasteurellaceae and Neisseriaceae families, and negatively

correlated with OTUs within the Prevotellaceae family (112). It is

reported that antibiotic exposure reduces α diversity and

increases the abundance of Enterobacteriaceae, and antibiotic-

specific enrichment of antibiotic resistance genes (ARGs) and

multidrug resistant organisms (MDROs) (113, 114).

Antibiotic use may have potential long-term effects on

microbiota development. The results of the study showed that the

proportion of Neisseria and Streptococcus mitis/dentisani was

increased in the oral cavity of 7-year-old children who had not

been exposed to antibiotics in the first two years of life, while the

levels of Prevotella and Actinomyces were higher in children

exposed to antibiotics (82). In a study by Yassour et al, antibiotic

treatment in the first year of life was found to be associated with a

reduction in microbial diversity at 3 years of age (115). At the

same time, mouse pups were treated with antibiotics, and it was

found that the levels of interleukin IL-4 and IgE increased, the

number of Treg cells decreased, and the Treg/Th balance was

disrupted (116, 117). Early antibiotic exposure has been reported

to predispose to microecological dysregulation and immune system

dysfunction, increasing susceptibility to asthma, allergic diseases,

IBD, Crohn’s disease, type 1 diabetes, and other diseases (118, 119).
Type of
ntibiotic

Changes of microbiota Reference

ibiotics Bacteroidetes abundance and diversity were
significantly lower at all time points in antibiotic-
treated infants compared to controls (p = 0.03,
p = 0.003 and p < 0.001 for abundance, and
p = 0.009, 0.004, 0.004 for diversity, at T = 1, T = 2
and T = 3 respectively

(106)

halosporin,
icillin

The F/B ratio decreased by about 1/3 (p < .05),
with an increase in Bacteroidetes and decrease in
Firmicutes

(107)

picillin,
tamicin

Lower levels of Bifidobacteria at 4 weeks compared
with controls (5% vs. 25%; p = .013); lower levels of
Lactobacilli (1% vs. 4%; p < .009)

(108)

crolide In the last 6 months, Proteobacteria (1.96-fold
change p < .02), Clostridium (2.68-fold change
p < .004) and Bacteroides (2.04-fold change
p < .004) increased, Bifidobacterium(0.23-fold
change p < .004) and Lactobacillus (0.12-fold
change p < .004) decreased

(109)

hromycin Short-term, azithromycin caused a 23% reduction
in observed richness and 13% reduction in
Shannon diversity.

(110)

oxicillin Total Bifidobacterium concentrations not
significantly altered but complete disappearance of
Bifidobacterium adolescentis species (0% vs. 36.4%,
p < .001)

(111)
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3.4 Effects of environmental exposure on
infants

The results of many studies suggest that it is environmental

factors, rather than host genetic factors, that shape the human

gut microbiota (120). The biodiversity of the environment, the

human commensal microbiota and the human immune system

are a complex system of interactions. Current findings show that

air pollutants can be ingested directly into the body through the

oral cavity with food and liquids, and also by being inhaled into

the lungs, where smaller particles reach the alveolar space and

are transported by alveolar macrophages to the oropharynx and

gastrointestinal tract.The intake of particulate matter will change

the intestinal microbiota (for example, the relative numbers of

Bacteroides, Firmicutes and Verrucomicrons have changed

significantly), or increase the production of ROS and the release

of inflammatory factors to promote the disorder of intestinal

microbiota (121, 122). Lehtimäki et al. showed that urbanization-

related changes in the infant microbiota increase the risk of

asthma and atopic features, possibly through crosstalk with the

developing immune system (123). In contrast, exposure to the

farm environmental microbiota directs the infant gut microbiota

toward appropriate tolerances, thereby reducing their risk of

developing asthma. Thus, postnatal environmental exposure is an

important factor in the infant oral and gut microbiota (124).
4 Discussion

Dysbiosis of the oral microbiota increases the risk of

developing oral and systemic diseases, and many related diseases

overlap with systemic diseases caused by dysbiosis of the gut

microbiota (125). Research has shown that the oral microbiota is

an endogenous reservoir of the gut microbiota (126). Interactions

between multiple factors such as bacterial translocation,

circulating bacteria, bacterial metabolites, immune cells, and
TABLE 3 Effects of various probiotics on the microbiology of the infant’s mo

Probiotics
Oropharyngeal Probiotic ENT-K12 Effective in reducing acute and RR

respiratory symptom episodes, redu
the number of days children are ab

Bifidobacterium lactis Probio-M8 Reducing the duration and frequen
in hospitalised children under two

Lactobacillus rhamnosus GG ATCC 53103 Attenuating microbiota changes in
microbiota

Lactobacillus paracasei N1115 Enhancement of lactic acid bacteria

Lactobacillus reuteri DSM 17938 Significant improvement in bowel

Lactobacillus paracasei CBA L74 Reducing the incidence of respirato

Bifidobacterium longum subsp. infantis M-63 Decreased faecal pH, increased leve
movements and watery stools. Con
microbiota at key developmental st

Lactobacillus acidophilus, Bifidobacterium bifidum
and Bifidobacterium infantis

Prevention of NEC and feeding int

Lactobacillus rhamnosus GG The resulting increase in the abund
in Escherichia coli appear to preven
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inflammatory factors influence the homeostasis of the oral and

intestinal microbiota in a bidirectional manner (127). Thus,

researchers propose that oral microbes are major contributors to

the overall health of the host and that the oral-gut axis may

serve as a potential causal mechanism linking systemic diseases

(128). It is particularly important to establish healthy oral and

gut microbiota during the critical window of 1,000 days of life.

The abundance of bifidobacteria in infants decreases with

generations and there is a trend toward increased oral and

intestinal pathogens due to antibiotic use, the presence of latent

pathogens in the mother and the environment, and genetic

disorders (129). The depletion and exhaustion of the collective

microbial reservoir by the misuse of antibiotics leads to the

emergence and spread of drug-resistant microorganisms, making

the re-establishment of a healthy microbiota difficult, with

increased susceptibility to infections, greater symptomatology and

higher mortality rates (130). The World Health Organization has

identified antibiotic resistance as one of the top ten global health

threats (131). Probiotics have great potential as a “new age”

immunotherapy and an alternative to antibiotics. Probiotics are

microorganisms that contain sufficient quantities of defined

microorganisms to interfere with the growth of pathogenic

bacteria through the secretion of bacteriostatic substances,

competition with pathogenic bacteria for nutrients and adhesion

sites. Enomoto et al. reported that prenatal supplementation of

pregnant women with Bifidobacterium breve M-16 V and

Bifidobacterium longum BB536 and subsequent postnatal

supplementation of newborns may activate the anti-allergic

mechanisms of the immature immune system and significantly

reduced the risk of eczema/atopic dermatitis found in infants in

the probiotic group during the first 18 months of life [OR: 0.231

[95% CI: 0.084–0.628 ] and 0.304 [0.105–0.892] at 10 and 18

months of age, respectively]. In conclusion, probiotics increase

the diversity of the oral and intestinal microbiota, enhance

immunity in infants and children, and combat viral respiratory

infections through strain-specific immunomodulatory effects and
uth and intestines.

Research findings Reference
Ti episodes in school-aged children, shortening the duration of
cing the use of antibiotics and antiviral medication, and reducing
sent from school and parental work

(134)

cy of acute RTI symptoms, antibiotic prescribing, and length of stay
years of age

(135)

preterm infants by accelerating the Bifidobacteria-dominated gut (136)

, increase in faecal sIgA levels maintenance of faecal pH (137)

frequency in functional constipation (138)

ry and gastrointestinal infections in young children attending school (139)

ls of acetic acid and IgA in faeces, and decreased frequency of bowel
tributes to the development of a Bifidobacteria-dominated gut
ages in full-term infants

(140)

olerance in preterm babies (141)

ance of Prevotella, Lactococcus and Ruminalococcus and the decrease
t penicillin-induced alterations in the microbiota

(142)
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stimulation of the interferon (IFN) pathway (132, 133). Numerous

basic and clinical studies have demonstrated the effectiveness of

probiotics in the treatment of oral and intestinal diseases in

infants (Table 3). In addition, probiotics have specific effects

on reducing the expression of resistance genes in addition to

their general effects on pathogenic bacteria. Studies have

shown that probiotic strains such as C. butyricum MIYAIRI 588

reduce the expression of resistance genes (143). Probiotic

strains may be a potential solution for mitigating the problem

of antibiotic resistance, and more research is expected to

advance the understanding of probiotic strains for mitigating

antibiotic resistance.

It has been found that during the critical window of the first

1,000 days of life, it is possible to regulate the health of

newborns in a non-invasive and inexpensive way, such as

supplementing with probiotics and prebiotics to regulate and

restore the oral and intestinal microbiota in order to reduce

children’s risk of diseases such as asthma, allergies, and obesity,

as well as global morbidity and mortality rates associated with

childhood malnutrition (144–147). In the future, personalized

infant diets should be further explored and developed to restore

microbiota disorders caused by factors such as cesarean section,

prenatal or postnatal antibiotics. The study by Gámez-Valdez

and Piñeiro-Salvador found that differences in bacterial

communities and leukocytes in samples from colostrum from

obese women may have an impact on the establishment of an

infant’s oral and intestinal microbiomes and immune system,

and may even pose a threat to the infant’s future health (104,

105). Korpela et al. transferred fecal microbiota from mothers to

infants to correct gut microbiota imbalances common in CS-

born infants and showed that FMT restored microbiota

development in infants born vaginally, while FMT attenuated

increased levels of potentially opportunistic pathogens in infants

born as a result of CS (148). Microbial Ecosystem

Transplantation (MET), on the other hand, is a more advanced

and precise method than Fecal Microbiota Transplantation

(FMT), which involves the purification and cultivation of selected

beneficial bacteria from a sample to produce a well-defined and

stable microbial ecosystem that can be transplanted into a

recipient (149). Therefore, an innovative application of MET may

be to address the specific needs of the infant gut microbiota by

developing age-specific formulas for the first 1,000 days of life to

promote healthy development and prevent or treat dysbiosis.

These age-specific MET formulations may have long-term

benefits for infant health by supporting immune and metabolic

development. Further research is needed to evaluate the safety,

efficacy, and long-term consequences of probiotics, FMT, and

MET in infants as promising avenues for future research in the
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field of infant microbiota therapy.Currently, many questions

remain about microbiota-immune system interactions, the oro-

intestinal axis, or the mechanisms of their interactions with

systemic diseases. There is a need for more in-depth exploration

of the impact of maternal and child factors (e.g., obesity,

diabetes) on the establishment of the microbiota and the

immune system, and the mechanism of action of how alterations

in the microbiota can increase susceptibility to disease, in order

to provide a scientific basis for targeted interventions and

therapeutic approaches.
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