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Background: Community-acquired pneumonia (CAP) is a prevalent pediatric
condition, and lobar pneumonia (LP) is considered a severe subtype. Early
identification of LP is crucial for appropriate management. This study aimed to
develop and compare machine learning models to predict LP in children with CAP.
Methods: A total of 25 clinical and laboratory variables were collected. Missing
data (<2%) were imputed, and the dataset was split into training (60%) and
validation (40%) sets. Univariable logistic regression and Boruta feature
selection were used to identify significant predictors. Four machine learning
algorithms-Logistic Regression (LR), Support Vector Machine (SVM), Extreme
Gradient Boosting (XGBoost), and Decision Tree (DT)-were compared using
area under the curve (AUC), balanced accuracy, sensitivity, specificity, and F1
score. SHAP analysis was performed to interpret the best-performing model.
Results: A total of 278 patients with CAP were included in this study, of whom 65
were diagnosed with LP. The XGBoost model demonstrated the best performance
with an AUC of 0.880 (95% CI: 0.807–0.934) in the training set and 0.746 (95% CI:
0.664–0.843) in the validation set. SHAP analysis identified age, CRP, CD64 index,
lymphocyte percentage, and ALB as the top five predictive factors.
Conclusion: The XGBoost model showed superior performance in predicting LP
in children with CAP. The model enabled early diagnosis and risk assessment of
LP, thereby facilitating appropriate clinical decision-making.
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1 Introduction

Community-acquired pneumonia (CAP) is a common respiratory infectious disease in

children and the leading cause of pediatric hospitalization, posing a significant threat to

the health of children under 5 years of age (1, 2). It has been reported that there are

approximately 120 million new cases of community-acquired pneumonia in children

each year globally, resulting in nearly 1 million deaths among children under 5 years

old (3). Among all CAP cases, lobar pneumonia (LP) represents a severe subtype

associated with higher rates of complications and mortality (2). However, the clinical

symptoms and signs of LP are non-specific (4), making definitive diagnosis primarily

dependent on chest x-ray or CT imaging. Early-stage imaging studies often struggle to

provide a conclusive diagnosis of LP. Moreover, both domestic and international
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guidelines advise against the routine use of chest imaging as a

standard diagnostic tool for pediatric CAP (5, 6). Consequently,

given the potential severe outcomes, identifying risk factors for

LP in children is of paramount importance.

In recent years, machine learning methods have demonstrated

significant potential in predicting CAP outcomes and identifying

high-risk patients. Xu et al. (7) successfully predicted adverse

outcomes in CAP patients using various machine learning

algorithms, with the random forest model performing best,

achieving an accuracy of 84.9%. In another study (8) developed a

deep learning-based model capable of accurately predicting survival

in CAP patients using commonly available clinically relevant feature

variables, achieving an AUC of 0.917. A machine learning-based

causal probabilistic network model demonstrated superior

performance in predicting 30-day mortality for adult patients with

community-acquired pneumonia compared to existing clinical

scoring systems (such as CURB-65) (9). Among various machine

learning algorithms, XGBoost has shown exceptional performance

in medical applications. Recent studies have demonstrated XGboost

algorithms superior predictive capabilities compared to other

algorithms. For instance, in predicting COVID-19 severity, XGBoost

achieved an AUC of 0.93, outperforming Random Forest

(AUC= 0.89) (10). Additionally, Zhou S. et al. developed an

XGBoost-based machine learning model that not only achieved

excellent performance in predicting the 28-day mortality risk for

SIC patients (AUC up to 0.923) but also provided personalized

prediction explanations through SHAP analysis (11).

Nevertheless, research focusing on the specific risk factors

associated with LP in children remains limited. At present, there

is a lack of information regarding the early prediction and

detection of LP, and no distinct clinical laboratory or diagnostic

markers for LP have been identified. This study employed four

machine learning algorithms to comprehensively evaluate and

quantify the risk factors associated with LP in children. The

workflow was shown in Figure 1.
2 Methods

2.1 Study design and participants

A cross-sectional retrospective study was conducted on children

with community-acquired pneumonia (CAP) who were admitted to

the pediatric ward of Suzhou Hospital, Affiliated Hospital of Medical

School, Nanjing University from January 2018 to December 2019.

We included children aged under 14 years, with a diagnosis of

CAP according to the guideline (5). In radiological diagnosis,

pneumonia was categorized into two main types based on the

pattern and extent of inflammatory infiltration visible on chest

x-rays: lobar pneumonia (LP) and non-lobar pneumonia (non-

LP). The diagnosis of lobar pneumonia was confirmed by an

experienced attending pediatrician based on the definition

provided by the guidelines (5, 12), taking into account the

patient’s medical history, clinical presentation, and characteristic

chest imaging findings. The inclusion criteria for patients in this

study were as follows: (i) patients over 3 months and under 14
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years old; (ii) diagnosis of CAP; (iii) hospitalization for

treatment; (iii) complete laboratory data. The study excluded

patients with congenital heart disease, inherited metabolic

disorders, neurological disorders, bronchopulmonary dysplasia,

immunosuppression and co-infections of other systems. Within

24 h of a patient’s admission, all venous blood was drawn. The

study protocol was approved by the Institutional Review Board

and Ethics Committee of Suzhou Hospital, Affiliated Hospital of

Medical School, Nanjing University (No. IRB2021025). In

consideration of the retrospective nature and anonymous analysis

of the study design, the requirement for written informed consent

from parents was waived.
2.2 Data collection and measurement

A preliminary analysis was conducted to assess the predictive

characteristics associated with lobar pneumonia, considering their

clinical significance and factors identified in previous studies.

A total of 25 variables were included in this study. The variables

consisted of patients’ basic characteristics and laboratory results.

Basic information included age, gender, height, weight, full term or

not, delivery mode, payment method, use GCs or not, duration of

fever, duration of hospitalization and prehospitalization duration.

Laboratory items included white blood cells (WBC), neutrophil

percentage (N%), lymphocyte percentage (L%), C-reactive protein

(CRP), CD64-index, procalcitonin (PCT), prealbumin, alanine

aminotransferase (ALT), aspartate aminotransferase (AST),

hemoglobin (HGB), platelets (PLT), total protein (TP), albumin

(ALB) and globulin (GLB).
2.3 Statistical analysis

Missing values were present in some variables of the dataset.

These missing values in the covariates were imputed through

simple imputation. Subsequent to processing, the data was

randomly split into a 60% training set for model development

and a 40% validation set for parameter tuning and assessing

model generalizability. The detailed information between the two

sets was shown in Supplementary Table S1. To evaluate the

model’s reliability, we utilize tenfold cross-validation on both the

training and testing sets.

The univariable logistic regression and Boruta feature selection

were used to perform variable filtering. First, potential risk factors

screening was conducted using univariate logistic regression

analysis. Factors with P value less than 0.05 were selected. Then, a

Boruta algorithm was utilized to obtain variables from all risk

features. The Boruta is a random forest-based feature selection

method. It iteratively compares the importance of original

variables to permuted “shadow” variables (13). Through statistical

testing, it identifies and eliminates unimportant features until all

variables are classified or a predefined iteration limit is reached

(14). We used Boruta to assess variable importance with 1,000

iterations. The normalized hits (normHits) metric directly reflects

the frequency with which a feature is deemed important across
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FIGURE 1

Study workflow.
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multiple iterations, serving as a straightforward indicator of feature

significance (15). In general, higher normHits values correspond

to greater feature importance. Additionally, the mean importance

(MeanImp) value gives insight into the magnitude of a feature’s

importance, with elevated scores indicating higher feature

relevance. Both metrics were considered to get a comprehensive

view of feature importance. The final model was developed by

incorporating the shared features of both algorithms.

We aimed to compare four machine learning algorithms

including the Logistic Regression (LR), Support Vector Machine

(SVM), Extreme Gradient Boosting (XGBoost), and Decision Tree

(DT) to identify the best performing model for interpretation. To

assess the machine learning algorithm’s performance, a confusion
Frontiers in Pediatrics 03
matrix was utilized. Machine learning-based classifiers were

assessed for area under the curve (AUC), balanced accuracy,

sensitivity, specificity, and F1 score. The best-performing model, as

determined by comprehensive evaluation metrics, will be selected

for subsequent analysis. The significance of each feature to the

model output was demonstrated using variable importance, which

led to the selection of the top five variables for in-depth

discussion. Moreover, a Shapley additive explanation (SHAP) was

conducted for the purpose of visualizing the model.

In this study, all continuous variables were presented as the

mean ± standard deviation (SD) or median and interquartile

range (IQR). Categorical variables were expressed as counts and

percentages. The statistical analysis process was carried out using
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R software (v 4.2.3), with a P-value of <0.05 being deemed

statistically significant.
3 Results

3.1 Baseline characteristics

A total of 278 CAP pediatric patients who were hospitalized

from January 2018 to December 2019 were included in the
TABLE 1 Baseline demographic and clinical characteristics of patients
with and without LP.

Characteristics Non-lobar
pneumonia
(n= 213)

Lobar
pneumonia
(n= 65)

P-value

Age, years 2.62 ± 2.18 4.00 ± 2.44 <0.001

Gender 0.657
Male 105 (49.30%) 30 (46.15%)

Female 108 (50.70%) 35 (53.85%)

Height, cm 93.91 ± 19.73 105.68 ± 20.38 <0.001

Weight, kg 15.67 ± 6.78 19.00 ± 7.46 <0.001

Full term 0.544
No 12 (5.63%) 5 (7.69%)

Yes 201 (94.37%) 60 (92.31%)

Mode of delivery 0.603
Natural 145 (68.08%) 42 (64.62%)

Cesarean 68 (31.92%) 23 (35.38%)

Payment method 0.112
Medicare 164 (77.00%) 56 (86.15%)

Self-payment 49 (23.00%) 9 (13.85%)

Use GCs 0.033
No 76 (35.68%) 14 (21.54%)

Yes 137 (64.32%) 51 (78.46%)

Duration of fever, days 2.89 ± 2.54 3.80 ± 2.78 0.014

Duration of
hospitalization, days

6.74 ± 1.67 8.03 ± 1.88 <0.001

Prehospitalization
duration, days

7.54 ± 6.92 7.37 ± 6.29 0.855

White blood cell
count, 109/L

8.11 (6.28–11.11) 8.65 (6.98–12.02) 0.252

Neutrophil
percentage, %

50.80 (35.40–63.30) 62.80 (50.60–71.40) <0.001

Lymphocyte
percentage, %

39.00 (27.80–54.90) 26.90 (18.50–42.60) <0.001

C-reactive protein,
mg/L

5.00 (3.00–11.70) 12.00 (4.00–22.00) <0.001

CD64 index 2.13 (1.02–5.06) 2.45 (1.04–7.18) 0.013

Procalcitonin, ng/ml 0.10 (0.06–0.18) 0.10 (0.07–0.22) 0.400

Prealbumin, mg/L 147.00 (122.00–
188.00)

130.00 (116.00–
167.00)

0.373

ALT, U/L 13.00 (10.00–18.00) 11.00 (8.00–13.00) 0.078

AST, U/L 38.00 (32.00–48.00) 33.00 (26.00–42.00) 0.009

HGB, g/L 124.00 (118.00–
130.00)

125.00 (120.00–
133.00)

0.186

PLT, 109/L 263.50 (212.00–
321.00)

263.50 (220.00–
318.00)

0.917

TP, g/L 67.60 (64.50–70.60) 67.70 (64.70–70.90) 0.346

ALB, g/L 42.20 (40.50–44.10) 41.00 (38.90–43.80) 0.003

GLB, g/L 25.00 (22.90–27.60) 26.60 (24.50–30.20) <0.001
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study. The dataset was relatively complete with only 2% missing

values. The baseline characteristics, as presented in Table 1, were

analyzed before modeling, comparing patients with non-lobar

pneumonia (n = 213) to those with lobar pneumonia (n = 65). No

significant differences were observed in gender distribution, full-

term birth status, mode of delivery, payment method, white

blood cell count, procalcitonin, prealbumin, ALT, hemoglobin,

platelet count, or total protein levels between the two groups.

However, lobar pneumonia group was associated with longer

duration of fever (2.89 ± 2.54 vs. 3.80 ± 2.78 days, p = 0.014) and

hospitalization (8.03 ± 1.88 vs. 6.74 ± 1.67 days, p < 0.001). Laboratory

findings revealed that lobar pneumonia patients had significantly

higher neutrophil percentage (62.80% vs. 50.80%, p < 0.001),

C-reactive protein levels (12.00 vs. 5.00 mg/L, p < 0.001), CD64 index

(2.45 vs. 2.13, p = 0.013), and globulin levels (26.60 vs. 25.00 g/L,

p < 0.001). Conversely, they had lower lymphocyte percentage

(26.90% vs. 39.00%, p < 0.001), AST levels (33.00 vs. 38.00 U/L,

p = 0.009), and albumin levels (41.00 vs. 42.20 g/L, p = 0.003).
3.2 Feature selection

The univariable logistic regression analysis (Table 2) was

conducted to select several significant predictors that associated

with lobar pneumonia (LP). Age (OR = 1.356, 95%CI: 1.156–

1.606), weight (OR = 1.080, 95%CI: 1.025–1.141), and duration of

fever (OR = 1.203, 95%CI: 1.050–1.387) were positively associated

with LP. Inflammatory markers, CRP (OR = 1.021, 95%CI 1.006–

1.039) and neutrophil percentage (OR = 1.035, 95%CI: 1.012–

1.061) showed positive associations, while lymphocyte percentage

demonstrated a negative correlation (OR = 0.952, 95%CI: 0.925–

0.977) with LP. Regarding biochemical parameters, ALB, ALT,

and AST are negatively associated with LP. Additionally, CD64

index (OR = 1.059, 95%CI: 1.003–1.124) and GLB (OR = 1.115,

95%CI: 1.013–1.231) showed significant positive associations. All

reported features were statistically significant at the p < 0.05 level.

Figure 2 showed the results of feature selection based on the

Boruta algorithm. After 1,000 iterations, the variables were sorted

based on their Z score value. The green variables, including age,

lymphocyte percentage, CRP, weight, neutrophil percentage,

CD64 index, ALB, and TP were deemed acceptable. The variable
TABLE 2 Univariable logistic regression for identifying risk factors
associated with LP.

Characteristics β SE OR, 95%CI P-value
Age, years 0.304 0.08325 1.356 (1.156–1.606) 0

Weight, kg 0.077 0.0272 1.08 (1.025–1.141) 0.005

Duration of fever, days 0.185 0.07031 1.203 (1.05–1.387) 0.009

CRP, mg/L 0.021 0.00822 1.021 (1.006–1.039) 0.012

Lymphocyte percentage −0.049 0.01375 0.952 (0.925–0.977) 0

Neutrophil percentage 0.035 0.01182 1.035 (1.012–1.061) 0.004

ALB, g/L −0.167 0.06251 0.847 (0.746–0.955) 0.008

CD64 index 0.058 0.0282 1.059 (1.003–1.124) 0.041

ALT, U/L −0.078 0.03615 0.925 (0.855–0.985) 0.032

AST, U/L −0.035 0.01682 0.966 (0.933–0.997) 0.038

GLB, U/L 0.108 0.04943 1.115 (1.013–1.231) 0.028
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FIGURE 2

Feature selection results using boruta algorithm from 22 initial clinical variables. The boxplot shows the Z-score importance of each variable after
1,000 iterations, where green boxes represent confirmed important features, and red boxes represent rejected features. The y-axis represents the
importance score, and variables are ordered by their relative importance on the x-axis.
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known as “age” had a meanImp score of 12.69 and a maximum

normHits value that can reach 0.98. Considering the above two

approaches and incorporating clinical expertise from experienced

physicians, the variables age, weight, duration of fever, CRP,

lymphocyte percentage, neutrophil percentage, CD64 index, ALT,

AST, and ALB were selected for building the machine

learning models.
3.3 Model performance comparisons

Based on Figure 3, the smoothed Receiver Operating

Characteristic (ROC) curve graph compares the performance of

four different machine learning models. The graph displays ROC

curves for Logistic Regression (LR), Support Vector Machine

(SVM), XGBoost model, and Decision Tree (DT). The x-axis

represents 1-specificity, and the y-axis represents sensitivity, with

curves closer to the upper left corner indicating better model

performance. In the training set, the DT model exhibited the

highest predictive capability with an AUC of 0.931, with a 95%

confidence interval (CI) of 0.864–0.968, closely followed by the
Frontiers in Pediatrics 05
XGBoost model with an AUC of 0.880 (95% CI: 0.807–0.934).

The LR and SVM model demonstrated relatively lower

performance in the training set, achieving AUC values of 0.784

(95% CI: 0.668–0.870) and 0.770 (95% CI: 0.666–0.859),

respectively. In contrast, within the validation set, the XGBoost

model maintained superior predictive capability with an AUC of

0.764 (95% CI: 0.664–0.843), significantly outperforming the

other algorithms. Both LR and SVM achieved identical AUC

values of 0.627, accompanied by similar 95%CI (LR: 0.504–0.743;

SVM: 0.507–0.742). The DT model exhibited the lowest

performance in the validation set, with an AUC of 0.539 (95%

CI: 0.403–0.786).

We evaluated the performance of four ML algorithms using

AUC value and confusion matrix-derived metrics (accuracy,

sensitivity, specificity, and F1 score) across both training and

validation datasets (Table 3). Among all algorithms, the

XGBoost model demonstrated the most consistent and superior

performance, with robust training metrics (AUC 0.880, accuracy

0.819, specificity 0.916) and maintained relatively stable

performance in validation (AUC 0.764, accuracy 0.611,

specificity 0.878). While the DT model initially showed the
frontiersin.org
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FIGURE 3

Smoothed receiver operating characteristic (ROC) curve graph of four different machine learning models. (A) Comparison of the AUC performance
metrics among DT, LR, SVM and XGBoost algorithms on the training set. (B) Comparison of the AUC performance metrics among DT, LR, SVM and
XGBoost algorithms on the validation set. DT, decision tree; LR, logistic regression; SVM, support vector machine; XGB, XGBoost.

TABLE 3 Evaluation of the performance of four algorithms based on AUC and confusion matrix.

Algorithm Data set AUC Balanced accuracy Sensitivity Specificity F1 score
LR Train 0.784 0.759 0.778 0.740 0.571

Valid 0.627 0.660 0.552 0.768 0.500

SVM Train 0.770 0.763 0.694 0.832 0.602

Valid 0.627 0.598 0.379 0.817 0.400

XGBoost Train 0.880 0.819 0.722 0.916 0.712

Valid 0.764 0.611 0.345 0.878 0.408

DT Train 0.931 0.811 0.692 0.930 0.720

Valid 0.539 0.633 0.476 0.789 0.400
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highest training performance (AUC 0.931, accuracy 0.811,

specificity 0.930), it experienced significant performance

degradation in validation (AUC 0.539, accuracy 0.633,

specificity 0.789), suggesting potential overfitting. LR and SVM

demonstrated similar performance metrics, both of which

were inferior to XGBoost. Overall, the XGBoost model

displayed the most consistent and robust performance across

both datasets, making it the superior choice for predictive

modeling in our study.
3.4 Model interpretation

As the XGBoost algorithm proved to have the best predictive

performance, we employed SHAP analysis to interpret the model

and identify risk factors associated with pediatric lobar

pneumonia (Figures 4A,B). According to the SHAP value, age,

CRP, CD64 index, L%, and ALB emerged as the top five

predictive factors. Case one (Figure 4C) involved a 9-month-old

(0.75 years) infant weighing 10 kg. SHAP waterfall analysis

revealed that the model’s final output value f(x) =−1.37 was
Frontiers in Pediatrics 06
lower than the baseline prediction E[f(x)] =−1.07, indicating a

reduced likelihood of lobar pneumonia. Among the contributing

factors, age (0.75 years) demonstrated the strongest negative

contribution (SHAP value: −0.235), followed by CRP (4 mg/L,

−0.106) and lymphocyte percentage (73.6%, −0.104). Additional
negative contributions were observed from ALB (40.8 g/L,

−0.0558), neutrophil percentage (17.4%, −0.0348), and weight

(10 kg, −0.0237). In contrast, two variables showed positive

contributions: CD64 index (11.7, + 0.234) and AST (40 U/L,

+0.0211). Case two (Figure 4C) involved a 10-year-old patient

weighing 46.5 kg. SHAP waterfall analysis revealed that the

model’s final output value f(x) =−0.195 was higher than the

baseline prediction E[f(x)] =−1.07, suggesting an increased

likelihood of lobar pneumonia. Among the contributing factors,

age (10 years) exhibited the strongest positive contribution

(SHAP value: +0.373), followed by CRP (53 mg/L, +0.313) and

weight (46.5 kg, +0.202). Additional positive contributions were

lymphocyte percentage (8.8%, +0.127) and neutrophil percentage

(83.8%, +0.0711). In contrast, three features showed negative

contributions: AST (19 U/L, −0.103), ALB (44.6 g/L, −0.0558),
and CD64 index (5.22, −0.0556).
frontiersin.org

https://doi.org/10.3389/fped.2025.1490500
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 4

SHAP interpret the model. (A) Ranking of variable importance based on the mean SHAP value. (B) Beeswarm plots of feature distribution. All training
cases were used to illustrate the features, with each row representing a feature and the X-axis showing the SHAP value. The distribution of SHAP values
for each feature was displayed through color coding, where yellow indicated higher feature values and magenta indicated lower feature values.
(C) SHAP waterfall for case one. (D) SHAP waterfall for case two.
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4 Discussion

Over the past few years, the prevalence of lobar pneumonia

among children has been on the rise, presenting a substantial

challenge for its early clinical identification and treatment (16). The

clinical presentation of lobar pneumonia in children is frequently

atypical at the outset, primarily characterized by symptoms such as

fever, cough, and other respiratory manifestations. Initial lung

auscultation can be challenging in detecting the lesions, often

leading to confusion with upper respiratory tract infections, acute

tracheitis, and other similar conditions. If left undetected and

untreated in its early stages, the condition can rapidly progress to

complications including empyema, pyopneumothorax, pleural

effusion, lung atelectasis, lung necrosis, and extrapulmonary

complications such as liver dysfunction, myocardial damage, and

gastrointestinal dysfunction. In some cases, it may evolve into

severe, refractory pneumonia, or even multiple organ failure, posing
Frontiers in Pediatrics 07
a significant threat to life. Consequently, early identification, precise

diagnosis, and prompt treatment are of utmost importance.

In this retrospective cohort study, we developed and evaluated four

machine learning models to predict the risk of LP in pediatric patients

with CAP. Among these models, XGBoost demonstrated the most

stable performance, outperforming logistic regression, support vector

machine, and decision tree models, with an AUC of 0.880, accuracy

of 0.819, and specificity of 0.916 in the training set, and an AUC of

0.764, accuracy of 0.611, and specificity of 0.878 in the validation set.

SHAP analysis identified age, CRP, CD64 index, lymphocyte

percentage, and albumin as the five most important predictive

factors. The local interpretability of the model was further confirmed

through case studies, where older age, elevated CRP, and altered

lymphocyte percentages were found to have a significant impact on

predicting the risk of LP. These findings suggest that the XGBoost

model holds potential value for the early identification of LP in

pediatric CAP patients, aiding in timely clinical decision-making.
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This study revealed that the age in the lobar pneumonia group

was 4.00 ± 2.44 years, markedly older than that observed in the

non-lobar pneumonia group (2.62 ± 2.18 years), aligning with

prior research conducted by other scholars (16). Older children

possess more robust natural immune systems and relatively

mature self-protective mechanisms. Their own antibodies can

restrict lung inflammation to specific lobes or segments, whereas

younger children, with less developed immune systems, often

experience more widespread lung inflammation affecting multiple

lobes or segments. Recent studies have found that the CD64

index, a diagnostic indicator for infectious diseases, has been

widely used in the diagnosis of sepsis, systemic infection,

bronchitis, and acute pancreatitis (17, 18). A previous study found

that the CD64 index exhibited superior diagnostic value compared

to conventional markers (WBC, PCT and CRP) in early detection

of neonatal infections, suggesting its potential as a reliable

biomarker for early diagnosis (19). However, Gros A. et al. found

that although the CD64 index demonstrates high specificity (89%)

in diagnosing bacterial infections in ICU patients, its relatively low

sensitivity indicates that the marker may be more suitable for

combined application with other biological markers rather than

standalone use. CRP, an acute-phase reactant produced by the

liver, plays a pivotal role in inflammatory processes and exhibits

high sensitivity in the clinical diagnosis of infectious diseases. It is

frequently utilized in clinical settings as a non-specific marker to

evaluate infection, the intensity of inflammatory responses, tissue

damage, and patient prognosis (20, 21). Research has indicated

that hypoalbuminemia constitutes an independent risk factor for

an unfavorable prognosis in patients suffering from severe

community-acquired pneumonia (22). This condition may be

associated with factors such as inflammatory responses, inadequate

nutritional status, and diminished immune function, all of which

can influence the recovery process of pneumonia.

Furthermore, hypoalbuminemia might also correlate with the

severity of lung infection and the magnitude of inflammatory

responses (23). Our findings align with this, showing that children

with lobar pneumonia exhibit lower albumin levels compared to

those with non-lobar pneumonia, while concurrently presenting

higher CRP levels in the former group. Neutrophils and lymphocytes

are pivotal in the immune response to lobar pneumonia.

Neutrophils, a category of white blood cells, are the initial line of

defense against inflammation, often surging in response to infection

or tissue injury. The activation and accumulation of neutrophils in

the lungs are associated with adverse clinical outcomes, as it

indicates a suppressed immune state that may impair the patient’s

capacity to eradicate infections. Research has established that a

diminished lymphocyte ratio heightens the mortality risk in

pneumonia patients (24), a trend mirrored in our study, where

children with lobar pneumonia exhibit a lower lymphocyte ratio

than those with non-lobar pneumonia. This disparity could be

attributed to the direct assault on lymphocytes by pathogens,

heightened lymphocyte consumption due to immune system

activation, or the migration of lymphocytes from the bloodstream to

the infection site.

A recent single-center retrospective study enrolled 533 pediatric

patients with LP caused by Mycoplasma pneumoniae (MP)
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infection, aiming to analyze clinical characteristics and establish a

predictive model for bronchoscopic intervention (25). Through

binary logistic regression analysis, the authors identified risk factors

for bronchoscopic intervention, including fever duration ≥6.5 days

before bronchoscopy, CRP ≥20.94 mg/L, LDH ≥461.5 U/L, fever,
and pleural effusion. The predictive scoring model based on these

factors indicated that patients with scores ≥6 points had >80%

probability of requiring bronchoscopic intervention. The model

demonstrated an area under the ROC curve of 0.860 (95% CI:

0.824–0.897) (25). Compared with the previous research, our study

demonstrated both unique contributions and complementary

findings. While Li. et al. (25) developed a scoring system for

predicting bronchoscopic intervention in MP-induced lobar

pneumonia with comparable model performance (AUC 0.860), our

machine learning approach, particularly the XGBoost model (AUC

0.880 for training set and 0.764 for validation set). Additionally,

both studies identified CRP as a crucial predictor. However, our

study incorporated novel biomarkers such as CD64 index and

emphasized the role of age, lymphocyte percentage, and ALB.

Furthermore, our machine learning approach, validated through

both training and validation sets, provides a more robust

framework for risk prediction compared to the conventional logistic

regression analysis (26). While their scoring system offers practical

clinical utility with specific cutoff points, our model’s ability to

predict LP risk in CAP patients enables earlier intervention.

In this study, we compared four machine learning algorithms

(LR, SVM, XGBoost, and DT) for predicting pediatric lobar

pneumonia. The XGBoost model demonstrated superior and more

stable performance compared to other algorithms, achieving an

AUC of 0.880 in the training set and maintaining robust

performance with an AUC of 0.764 in the validation set. While

the DT model showed the highest AUC (0.931) in the training set,

its significant performance drop in the validation set (AUC 0.539)

suggested overfitting. In addition, to enhance model

interpretability, we employed SHAP analysis to identify and rank

the contributing factors. The analysis revealed that age, CRP,

CD64 index, lymphocyte percentage, and ALB were the top five

influential risk factors. We also generated SHAP dependence plots

for each variable, which are provided in the Supplementary

Figure S1. Through case-specific SHAP waterfall analysis, we

observed that these features contributed differently to individual

predictions. For instance, older age, elevated CRP levels, and

higher neutrophil percentage typically indicated an increased

likelihood of LP, while factor such as higher ALB levels were

associated with reduced risk. Comparatively, other studies have

also explored the application of machine learning in pediatric

bacterial infections, yielding promising results. For instance,

Kanwal et al. (27) utilized photoplethysmography (PPG) signals

and machine learning classifiers to diagnose CAP in children,

achieving high accuracy in low-resource settings, which highlights

the potential of non-invasive diagnostic tools. Similarly, Chiu et al.

(28) demonstrated that machine learning models, including

XGBoost, outperformed traditional scoring systems in predicting

invasive bacterial infections (IBIs) in febrile infants, with AUROC

values reaching 0.85. Le et al. (29) applied machine learning to

predict severe sepsis in pediatric patients using electronic health
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record data, achieving an AUROC of 0.916 at the time of onset,

significantly outperforming conventional scoring systems.

Furthermore, Liu et al. (30) developed machine learning models to

predict ICU admission for pediatric pneumonia patients,

emphasizing the importance of timely decision-making in critical

care. A recent study by a Taiwanese group (31) introduced an

explainable deep learning model for predicting IBIs in febrile

infants, achieving an AUROC of 0.87 while providing

interpretability through SHAP analysis. These studies collectively

underscore the growing role of machine learning in the

management of pediatric bacterial infections. Our findings align

with this trend, contributing to the advancement of predictive

tools for pediatric bacterial infections while specifically addressing

the unique challenges of predicting lobar pneumonia.

This study has several limitations. First, the relatively small sample

size (278 patients with CAP, including 65 LP cases) may limit the

model’s robustness and generalizability. This sample size is notably

smaller compared to some other machine learning studies in

pediatric infections, such as Chiu et al.’ s study (28) with 4,211

patients and Liu et al.’s study (30) with 8,464 cases. The limited

sample size might affect the model’s performance. In addition, the

relatively homogeneous study population from a single center may

not fully represent pediatric populations from different regions or

with varying environmental factors. Although chest x-ray was

essential for the initial categorization of pneumonia types in our

study, our model excluded radiological features in favor of

immediately available clinical and laboratory parameters at

admission, which may have limited the model’s comprehensive

predictive capability. While our model demonstrated good

performance in the training set (AUC 0.880), the moderate decrease

in performance in the validation set (AUC 0.764) suggests potential

variability in model generalization. The top five risk factors identified

through SHAP analysis (age, CRP, CD64 index, lymphocyte

percentage, and ALB) may vary in their predictive strength across

different populations and clinical settings. Additionally, certain

laboratory parameters used in our model, particularly the CD64

index, may not be routinely available in all healthcare institutions,

which could limit the model’s widespread application. Furthermore,

differences in clinical practices, diagnostic criteria, and treatment

protocols across institutions may impact the model’s performance

and applicability. Future studies should focus on external validation

through multi-center and multi-regional cohorts to assess the

model’s robustness across different clinical settings and populations.
5 Conclusion

In conclusion, our study developed and compared four

machine learning models for predicting lobar pneumonia in

children with CAP. Among the models, the XGBoost algorithm

demonstrated the best overall performance. The model achieved

an AUC of 0.880 in the training set and 0.764 in the validation

set, generally outperforming LR, SVM, and DT models.

SHAP analysis was employed to interpret the XGBoost model,

identifying age, CRP, CD64 index, lymphocyte percentage, and

albumin (ALB) as the top five predictive factors for LP. These
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findings not only validate the importance of traditional clinical

indicators but also highlight the potential of machine learning to

uncover additional predictive insights. Despite the limitations of

this single-center, small-sample retrospective study, our findings

suggest that the XGBoost model provides a reliable tool for early

diagnosis and risk assessment of LP in children.
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