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Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder marked

by progressive, symmetrical muscle weakness and atrophy. While only a limited

number of studies on human SMA have demonstrated brain involvement, there

are also few reports detailing early brain MRI changes in SMA patients. In this

paper, we present the case of a child whose initial symptom was limb

hypotonia. The child’s brain MRI revealed abnormal signal changes and genetic

testing ultimately confirmed the diagnosis of SMA. By reviewing relevant

literature, we aim to summarize the brain MRI signal changes observed in SMA

patients and explore their possible mechanisms, with the goal of enhancing

clinicians’ ability to identify and treat neonatal SMA at an early stage.
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Introduction

SMA is a degenerative neuromuscular disease affecting lower motor neurons in the

anterior horn of the spinal cord, primarily caused by a homozygous deletion of SMN1

on chromosome 5q13 (1, 2). Its incidence ranges from 1/6,000 to 1/10,000, with a

carrier frequency of 1/40 to 1/60 (1, 2). This case initially presented with decreased

muscle tone in the extremities. Although some structures of the brain MRI showed

abnormal signal changes similar to bilirubin encephalopathy, clinical manifestations and

additional examinations did not support this diagnosis, leading to a final diagnosis of

SMA through genetic testing. Characteristic brain imaging findings in neonatal SMA

are rarely reported and are often confused with conditions like bilirubin

encephalopathy, hypoxic-ischemic encephalopathy, and hypoglycemic encephalopathy,

making diagnosis challenging. Further research is needed to clarify the diagnostic value

of brain imaging changes in SMA.

Case report

We report a neonate presenting with hypotonia one day after birth. Born at 40+5 weeks

with Apgar scores of 1–5–10 min are all rated at 10 and a weight of 2,700 g, the child

showed no abnormalities in the amniotic fluid, umbilical cord, or placenta, nor signs of
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intrauterine distress or premature rupture ofmembranes. The child did

not show any decrease in fetal movement or fetal heart rate during

pregnancy. The mother’s gestational age was 32 years. His parents

had no history of smoking, alcohol, drug use, or inherited metabolic

diseases. The child exhibited good development, alertness, and mild

jaundice. Physical examination showed no abnormalities in the heart,

lungs, or abdomen and no barrel chest or paradoxical breathing

exercises. The child’s upper limbs could move horizontally but could

not be lifted off the bed, both lower limbs could be lifted slightly off

the bed but could not resist resistance, the limbs were floppy and

could not be flexed naturally in the supine position, and they were in

a “frog position” in the prone position. None of the tendon reflexes

were elicited, the feeding and sucking reflex could be elicited,

whereas the grip and hug reflexes were markedly diminished. He

had difficulty in erecting his head, and he had no myoclonus, tongue

spasms, or finger contractures. The “Medical Research Council Scale

for Muscle Strength” suggests grade 2 muscle strength in the upper

limbs and grade 3 in the lower limbs. Upon admission, blood

glucose was 3.4 mmol/L, serum total bilirubin was 9.5 mg/dl, and

blood gas analysis was normal. During hospitalization, results for

NSE (35 ng/ml), blood cell analysis + CRP, urine analysis, stool

routine, liver and kidney function tests, electrolytes, blood culture,

TORCH tests, procalcitonin, pre-blood transfusion, and Epstein–Barr

virus tests were all normal. A spine MRI was unremarkable, while a

brain MRI on postnatal day 3 showed symmetrical patchy T1W1

hyperintensity in the bilateral basal ganglia, thalamus, periventricular

area, and brainstem (Figure 1). We did genetic testing, which showed

a homozygous deletion of exon 7 of the SMN1 gene, with a

heterozygous deletion in both parents, confirming a diagnosis of

spinal muscular atrophy. Sadly, the child’s parents withdrew

treatment, and he died of respiratory failure a week later.

Discussion

In this case, the child was admitted to the hospital with reduced

muscle tone as the primary symptom. His brain MRI showed high

signal changes in multiple regions on T1WI. Neonatal brain MRI

signal changes can have various causes, we excluded the diagnosis

of bilirubin encephalopathy and the fact that the child had no

postnatal hypoxic-ischemic events, such as asphyxia, intrauterine

distress, severe hypoglycemia, or significant infections, making the

origin of the MRI changes unclear. Ultimately, a diagnosis of SMA

was confirmed through genetic testing.

SMA is the second most common fatal autosomal recessive

disease in infancy and is classified into five types based on

symptom onset and highest motor milestones achieved (2, 3).

Patients with type 0, I, and II are more severe, and they mostly

die from respiratory failure, while type III and IV life expectancy

are generally not affected (1). Two SMA-related genes, SMN1

and SMN2, are located on chromosome 5, differing by a single

nucleotide (C-to-T transition in exon 7); SMN1 produces SMN

protein normally, whereas SMN2 produces only 10% of the total

SMN protein (1). When a homozygous deletion of SMN1 exon 7

occurs on 5q13, SMN2 alone produces insufficient SMN protein,

leading to SMA. Therefore, its severity and prognosis are closely

linked to the number of SMN2 copies, with fewer copies

indicating a more severe disease.

SMN protein levels in the brain have been found to decrease

during development, especially in the fetal and postnatal stages (4),

suggesting a critical role for SMN protein in the early stages of

brain development. Neuropathological data show that severe forms

of SMA affect the brain (5), and reduced brain structural size is

observed in mouse models of severe SMA, especially in regions

associated with high SMN protein levels, suggesting that high SMN

protein levels are required for brain development (6). We speculate

that the brain MRI changes may be related to SMA, although few

studies have explored this. To further explore the characteristics of

MRI changes in the brain of SMA, we reviewed the previously

published English literature. Three case-control studies showed

abnormal gray matter changes in patients with SMA, and seven

individual studies reported a total of 16 patients with different types

of SMA. They mention the presence of symmetrical high signal in

the white matter, putamen and thalamus in patients with SMA

type 0 (7); periventricular posterior horn of the lateral ventricle and

bilateral anterolateral thalamus high-signal-intensity lesions in

children with SMA type I (8); periventricular high intensity around

the posterior horns of lateral ventricles and delayed myelin

formation in patients with SMA type II (9) (Table 1).

Further exploration of the pathogenesis suggests that there is a

modifier gene for SMA, the zinc finger protein (ZPR1) gene (10). It

can interact with SMN sites to induce neuronal differentiation,

stimulate axon growth in motor neuron-like cells, and increase

SMN levels (10, 11). We hypothesized that previously reported

cerebral atrophy may be related to chronic hypoxia in the brain

(12), because defects in ZPR1 in critically ill SMA patients

contribute to phrenic nerve axonal loss of function and myelin

proliferation, leading to defects in diaphragmatic respiratory

function causing respiratory muscle weakness, which ultimately

can lead to chronic hypoxia in the brain (10), Hypoxia can cause

brain MRI signal changes, and abnormal signals may appear in

the basal ganglia, thalamus and surrounding cortex (13).

Moreover, the low SMN levels in SMA can lead to motor neuron

degeneration, potentially causing insufficient myelin maturation.

This could explain white matter atrophy and high-signal

intensity in the lateral ventricle and thalamus, which may reflect

unmyelinated regions or abnormal myelin development (14).

Obviously, these brain MRI changes are unusual, and the brain

MRI changes in SMA patients are diverse, and we cannot

conclude that the brain MRI changes in SMA patients are

specific. The mechanism of brain MRI changes in patients with

SMA is not fully understood, and the evidence that ZPR1

deficiency allows hypoxic episodes and reduced SMN protein

levels to cause brain MRI signal alterations remains insufficient.

However, abnormal MRI signal may indicate the presence of

SMA, and clinicians should be alert to the occurrence of such

diseases. This paper reports abnormal MRI signal changes in a

patient with SMA, suggesting a possible connection to the

disease. A limitation of this case is that the child did not

undergo SMN2 gene copy number testing, but in combination

with the time of onset of the disease and the characteristics of

the child, we made a clinical diagnosis of SMN type 0.
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SMN1 deletion and SMN2 copy number can be detected by a

variety of techniques, with genetic testing serving as the gold

standard for diagnosing SMA. Although brain MRI is not

required for diagnosis, it can reveal structural brain changes and

is a widely available, non-invasive tool that may assist in the

diagnostic process. Early treatment has been shown to prevent

FIGURE 1

(A–D axial view) bilateral basal ganglia, thalamus, lateral ventricle, brain stem symmetrical patchy T1WI high signal shadow. (E–H sagittal view) Bilateral

basal ganglia, thalamus, lateral ventricle, brain stem symmetrical patchy T1WI high signal shadow.
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the most severe forms of SMA, with its effectiveness highly

dependent on early administration. Presymptomatic treatment can

result in normal or mildly subnormal motor development that

would otherwise progress to severe disease. Currently, several

approaches are available for early treatment of SMA (15), which

are based on the general principle of increasing SMN protein

expression. Pharmacological or gene therapies that increase SMN2

expression, antisense oligonucleotide (ASO) -based therapies, and

virus-mediated therapies are included (1). ZPR1 upregulates

SMN2 protein transcription and promotes SMN protein activation

for myelin regeneration, and upregulation of ZPR1 expression to

increase SMN levels is a viable therapeutic target for the

development of new approaches to SMA treatment (10, 11).

Conclusion

Brain MRI signal changes of SMA are rare, with high mortality and

poor prognosis. So far, SMAcanonly delay the progression of the disease

rather than completely cure it (1), which highlights the difficulty and

importance of differential diagnosis of this disease. Genetic testing is

the key to the diagnosis of SMA, and cranial MRI may be helpful for

the diagnosis. Prenatal diagnosis and newborn screening are the most

important prevention options, and early identification and treatment

can help improve the prognosis of SMA patients.
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TABLE 1 Review the literature on brain MRI signal changes in SMA patients.

No. Ref. Year Classification of type/
number of cases

The main imaging findings

1 Shen et al. (16) 2024 II/22

III/21

Children with type 2 and type 3 SMA have extensive, multifocal, symmetric gray and white matter

changes.

2 Losito et al. (9) 2021 II/1 T1W1: There was an area of high intensity around the posterior horn of the lateral ventricle,

delayed myelination, and dysplasia of the corpus callosum

3 de Borba et al.

(17)

2020 III/19

lV/6

The cerebellar volume of SMA patients was significantly smaller and lobular gray matter was

significantly reduced. (T1-weighted image)

4 Maeda K et al.

(7)

2019 0/1 Progressive atrophy was observed in the cerebral cortex, subcortical white matter, thalamus, and

basal ganglia, and symmetrical hyperintensities were observed in the white matter, putamen, and

thalamus.

5 Mendonca et al.

(12)

2019 0/3 There was supratentorial atrophy, thinning of the corpus callosum, widening of the sulci and

ventricles, severe reduction of white matter (3/3), and severe atrophy of the hippocampus. In two

patients, the putamen and thalamus (lateral and occipital) were detected symmetrically

hyperintense on T2-weighted images and FLAIR sequences, with ventricular dilatation.

6 Querin G et al.

(18)

2019 III/19

lV/6

Patients with SMA have increased gray matter density in motor and extra-motor areas.

(T1-weighted image)

7 Ito et al. (8) 2004 I/1 T2-weighted and FLAIR images showed high signal intensity lesions around the posterior horn of

the lateral ventricle and bilateral anterolateral thalamus.

8 Oka et al. (19) 1995 I/1 T1w1-weighted images diffuse brain atrophy with more prominent white matter, with agenesis of

the corpus callosum, enlargement of the third ventricle and lateral ventricle, and T2-weighted

sequences showed areas of hyperintensity around the posterior horn of the lateral ventricle.

9 Cneude et al.

(20)

1999 I/1 Central nervous system (thalamus, cerebellum) lesions, Severe cortical dysplasia.

10 Yohannan et al.

(21)

1991 I/8 Seven cases showed generalized cortical atrophy, and one case showed hypoattenuated, non-

enhancing areas in the white matter involving both frontal lobes.
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