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Higher in-hospital proportion of
breast milk intake improves brain
functional connectivity and
neurological assessment in
preterm infants
Rui Yang1†, Hua Wang2†, Qian Cai2, Danqi Chen2, Jiajun Zhu2,
Shuiqin Yuan2, Fang Wang2* and Xinfen Xu2*
1School of Nursing, Capital Medical University, Beijing, China, 2Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
Objective: Preterm infants may face neurodevelopmental challenges linked to
altered brain maturation processes. This study aimed to investigate the impact
of in-hospital breast milk intake on brain resting-state functional connectivity
(rs-FC) and neurological assessment at discharge in preterm infants.
Methods: We collected data on breast milk intake from 97 preterm infants,
evaluated neurological outcomes using the Amiel-Tison Neurological
Assessment (ATNAT), and assessed rs-FC via functional near-infrared
spectroscopy (fNIRS). Groups were stratified by breast milk intake proportion
(cutoffs of >70% vs. ≤70%; cutoffs of >90% vs. ≤90%), and conducted logistic
regression analysis to explore the relationship between rs-FC and
neurological assessment.
Results: Preterm infants with >70% breast milk intake exhibited significantly
higher ATNAT levels (x2 = 8.306, p= 0.004) and stronger rs-FC (p= 0.001)
between the right precentral gyrus (PCG) and inferior parietal lobe (IPL). The
>90% intake group also showed higher ATNAT levels (x2 = 7.090, p= 0.008)
and further rs-FC enhancements (PCG-PFL: p= 0.016; PCG-IPL: p= 0.008).
Logistic regression confirmed rs-FC as a predictor of optimal neurological
assessment [p= 0.011, Exp (B) = 0.206, 95% CI: 0.062– 0.682].
Conclusion: Higher in-hospital breast milk intake (>70% of total enteral nutrition)
improves rs-FC and neurological outcomes in preterm infants, with dose-
dependent effects.
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Introduction

Approximately 15 million preterm infants are born annually worldwide, accounting

for more than 1 in 10 infants (1). The incidence of preterm infants in China is

approximately 7.0% (2). Preterm birth affects critical steps of third-trimester and early

postnatal brain development, leading to a higher incidence of neurological disorders,

including issues with cognition, language, motor skills, and social emotions (3–5).

These infants have greater nutritional needs, and breastfeeding plays a crucial role in

their neurological development (6, 7).
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The duration of breastfeeding correlates positively with

microstructural changes in brain (8, 9), particularly in regions

such as the frontal and temporal lobes, the internal capsule, the

corticospinal tract peripheral regions, the superior longitudinal

fasciculus, and the superior fronto-occipital fasciculus. These

areas are associated with higher cognitive functions, including

executive function, planning, socio-emotional processing, and

language (10). Breast milk is associated with improved structural

connectivity of developing brain networks and greater fractional

anisotropy in these major white matter fasciculi (10). Such

structural improvements likely underlie the observed functional

connectivity enhancements. Breast milk has the potential to

enhance neurodevelopmental outcomes in preterm infants by

promoting the healthy development of visual, language, motor,

memory, higher cognitive, and emotional functions, thus

improving overall neurodevelopmental outcomes. The benefits of

breast milk on neurological development may persist into old

age, with a particular emphasis on enhancing verbal reasoning

abilities (11).

Due to the immaturity of various developmental aspects in

preterm infants, their organ function and adaptability are

generally inferior compared to term infants, necessitating that

preterm infants receive specialized care in the neonatal intensive

care unit (NICU) (12, 13). The majority of preterm infants in

the NICU receive partial breastfeeding, which means breast milk

constitutes a part of the nutritional intake for preterm infants in

the NICU. Despite the well-established association between

breast milk and the neurological development of preterm infants

(14), the effects of early in-hospital breast milk intake volume on

their neurological assessment remain unclear. Therefore, this

study aimed to investigate the impact of in-hospital breast milk

intake on brain resting-state functional connectivity (rs-FC) and

neurological assessment in preterm infants. Functional Near-

Infrared Spectroscopy was chosen to measure infants’ FC for its

suitability in neonatal neuroimaging, and Amiel-Tison neurological

assessment for its validated reliability in assessing preterm

neurological development. We hypothesized that infants with

higher in-hospital breast milk intake would exhibit better

neurological outcomes at discharge.
Material and methods

Participants

This observational study enrolled 106 preterm infants admitted

to the neonatal intensive care unit (NICU) of a Grade III Level

A hospital between December 2019 and February 2021. These
Abbreviations

ATNAT, Amiel-Tison neurological assessment; COH, coherence; COR,
correlation; FC, functional connectivity; FCNs, functional connectivity
networks; FDR, false discovery rate; fNIRS, functional near-infrared
spectroscopy; HbO, oxy-hemoglobin; HbR, deoxy-hemoglobin; IPL, inferior
parietal lobe; NICU, neonatal intensive care unit; OD, optical density; PCG,
precentral gyrus; PFL, posterior frontal lobe; PLV, phase locking value; ROIs,
regions of interest; rs-FC, resting-state functional connectivity.
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infants had a gestational age of 30–34 weeks and Apgar scores

≥7 at 1 and 5 minutes. Exclusion criteria included congenital

malformations, chromosomal abnormalities, moderate-to-severe

hypoxic-ischemic encephalopathy, grade IV periventricular/

intraventricular hemorrhage, cystic periventricular leukomalacia,

congenital genetic metabolic diseases, and parental history of

depression, mental illness, or congenital brain development

disorders. Parental history of depression or mental illness was

excluded to avoid confounding by heritable neurodevelopmental

risks. Ethical approval was obtained from the hospital’s ethics

committee (approval number: 2019-058), and written informed

consent was obtained from the parents. The study was registered

as ChiCTR1900027648 on ClinicalTrials.gov and followed a

previously published protocol (15). Due to COVID-19 pandemic-

related home confinement and isolation policies, the recruitment

period was extended, and the discharge follow-up section of the

protocol was omitted.
In-hospital breast milk intake

Mothers were encouraged to initiate breast milk expression

immediately after delivery, with colostrum recommended for

preterm infants as soon as available. Breast milk was the

preferred nutritional source for preterm infants, provided the

mother could express and deliver it to the NICU. Standardized

feeding guidelines (16) were followed, supplemented with human

milk fortifier (Similac HMFortifi, Abbott), once preterm infants

reached enteral feed volumes of 80 ml/kg/day. In cases where

parental consent was obtained for the use of donor human milk,

it was utilized when the mother’s own milk was insufficient, with

preterm formula utilized as a last resort. For infants without

parental consent, preterm formula was provided when maternal

or donor human milk was insufficient. Daily nutritional intake in

the NICU was documented electronically, encompassing both

maternal and donor human milk. Detailed records of nutritional

intake and volume were recorded daily, with the proportion of

breast milk consumption calculated as the volume of breast milk

intake relative to the total enteral nutrition volume

during hospitalization.
Neurological assessment at discharge

The neurological assessment of preterm infants was assessed at

discharge by a trained NICU nurse using the Amiel-Tison

neurological assessment (ATNAT). ATNAT is effective in

detecting abnormal neurological signs, exhibiting good inter- and

intra-assessor reliability and validity (17, 18). Consisting of 35

items, ATNAT utilizes a non-quantitative scoring system based

on a three-point ordinal scale: “0” for typical responses, “1” for

moderately abnormal responses, and “2” for definitely abnormal

responses. Scores were assigned accordingly by the nurse, who

remained blinded to infants’ breast milk intake. The assessment

typically takes 10–15 min to complete. To simplify analysis,

responses categorized as “1” and “2” were combined to indicate
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non-optimal neurological assessment due to the infrequent

occurrence of definitely abnormal responses (n = 2).

Consequently, infants were classified as having either optimal or

non-optimal neurological assessment.
fNIRS measurements

Functional connectivity (FC) is investigated in early brain

development to understand the functional integration of different

brain regions (19). FC represents the statistical relationship between

brain areas, forming functional connectivity networks (FCNs) (20).

Functional Near-Infrared Spectroscopy (fNIRS) is a noninvasive

neuroimaging technique sensitive to the developmental integration

of circulatory, neurovascular, and metabolic functions in neonatal

and infant brains (21). Previous studies have validated fNIRS for

assessing the cerebrum (22), and recent studies had extended its

utility to studying the neonatal cerebral cortex (23, 24).

Resting-state (rs) FC was measured using fNIRS at preterm

infants’ discharge. Infants were placed in a quiet, dimly lit room

after feeding, where they wore fNIRS headgear. Data collection

began once infants acclimated to the environment and headgear,

with their actions recorded during the process. Soft silicone pads

within the headgear and a headrest at the occipital lobe position

aided measurements. Data collection occurred with infants wearing

a electrocardiogram monitor, supervised by the same nurse.

Hemodynamic changes were collected using NirSmart

(NirScan Inc., HuiChuang, Beijing), measuring oxygenated and
FIGURE 1

Schematic diagram of light sources and detection probes locations and ROI
fNIRs headcap (S:light source, D: dtection probe). (B) ROIs (Regions of intere
frontal lobe; OL, occipital lobe; IPL, inferior parietal lobe; IFG, inferior front

Frontiers in Pediatrics 03
deoxygenated hemoglobin concentration changes in the cortex at

760 and 850 nm wavelengths. The device, equipped with 58

channels (22 sources and 16 detection probes), had a sampling

rate of 10 Hz. Optode probes were placed at T3, T4, Fpz, and Oz

points following the international 10–20 system, with a 2.0 cm

distance between the source and detector defining each

measurement channel. The measurement area encompassed the

prefrontal lobe, occipital lobe, bilateral motor area, and bilateral

temporal lobe, comprising the regions of interest (ROIs) for this

study. ROIs (n = 15) were determined based on Brodmann areas

(25), as presented in Supplementary Table 1. Figure 1 illustrates

the brain areas covered by the fNIRS array. Data were recorded

using NIRScan software (NirScan Inc., HuiChuang, Beijing).
fNIRS data processing

fNIRS data preprocessing was conducted using HomER2 (26),

a MATLAB-based graphical user interface program. Channels with

poor light intensity (signal-to-noise ratio <1.5), indicative of

suboptimal optode-scalp contact, were excluded. Raw optical

intensity was normalized to optical density (OD) by dividing by

the mean intensity, yielding a relative (percent) concentration

change. OD data were further converted to oxy-hemoglobin

(HbO) and deoxy-hemoglobin (HbR) using the modified Beer–

Lambert law (27).

During measurements, intervals corresponding to preterm infants’

movements, crying, or other actions were manually marked as invalid
s (ROIs = 15). (A) Locations of 22 light sources and 16 dtection probes on
st), (STG:, superior temporal gyrus; PCG, precentral gyrus; PEL, posterior
al gyrus; FPA, frontopolar area.).
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by the same NICU nurse. Considering the minimum duration of −2
to 8 s required for infants’ hemodynamic response function to return

to baseline levels (28), 10 s of data were excluded after each invalid

section across all channels to ensure the inclusion of only resting-

state periods. Valid data sections were included only if they were

consecutively at least 5 s long without interruption. Participants

with ≥300 s of total valid data (29) and >70% reserved channels

were included for further analysis. Artifact correction involved

wavelet filtering (30) and principal component analysis (31), with a

band-pass filter (0.01–0.1 Hz) applied to remove low-frequency

noise and physiological interference.
Statistical analysis

Demographic and clinical characteristics between groups were

compared using the Mann–Whitney U test or two-sample t-test

in SPSS 26.0. After obtaining FC values (Correlation, COR;

Coherence, COH; Phase Locking Value, PLV) derived from

hemodynamic signals (oxy-hemoglobin, HbO; deoxy-hemoglobin,

HbR; total hemoglobin), between-group t-tests were conducted,

with significant results corrected for multiple comparisons using

the false discovery rate (FDR) method (32). COR reflects linear

temporal relationships between hemodynamic signals (HbO, HbR

and total hemoglobin) in distinct brain regions. COH measures

frequency-dependent synchronization of signals, capturing shared

oscillatory activity. PLV quantifies phase consistency between

signals across trials, indicating stable inter-regional coupling.
FIGURE 2

Participant flowchart. (rs-FC, resting-state functional connectivity).
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These metrics are widely validated in neonatal fNIRS studies

(30–32). A 15 × 15 p-value matrix (COR of HbR) illustrating the

results of between-group comparisons was generated.

Furthermore, multinomial logistic regression was performed in

SPSS 26.0 to explore the relationships between FC and ATNAT

scores, with confounding factors such as sex, mother’s age,

singleton status, delivery mode, gestational age, birth weight, and

breast milk intake included as covariates. Covariates (sex,

gestational age, etc.) were selected a priori based on their

established impact on preterm outcomes (12, 15). A p-value of

<0.05 was considered statistically significant.
Results

Demographic and clinical characteristics

A total of 106 participants were recruited for the study. Nine

preterm infants were initially measured but subsequently

excluded from the analyses due to insufficient valid data

(<300 s), and five due to poor channel light intensity readings

(>30%), as shown in Figure 2. Consequently, the study included

97 preterm infants, among whom 73 had breast milk intake

exceeding 70% of in-hospital total enteral nutrition, while 24 had

intake equal to or less than 70% (Table 1). Furthermore,

subgroup analyses were conducted to assess the impact of breast

milk intake, comparing infants with over 90% intake to those

with 90% or less. Table 1 presents the demographic and clinical
frontiersin.org

https://doi.org/10.3389/fped.2025.1508840
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 1 Demographic and clinical characteristics.

Variables Breast milk intake volume reached 70% Breast milk intake volume reached 90%

≤70% (n= 24) >70% (n= 73) p-value ≤90% (n = 32) >90% (n= 65) p-value
Gestational age, days 229.208 ± 7.852 228.644 ± 8.993 0.784 229.531 ± 7.100 228.415 ± 9.402 0.555

Birth weight, g 1,692.667 ± 301.482 1,637.671 ± 298.685 0.437 1,733.406 ± 320.388 1,610.846 ± 281.298 0.071

Female, n (%) 11 (46.8%) 43 (58.9%) 0.263 15 (46.9%) 26 (40.0%) 0.221

Mother’s age, years 30.958 ± 3.223 31.164 ± 3.789 0.811 31.281 ± 3.540 31.038 ± 3.716 0.752

Singleton, n (%) 8 (33.3%) 38 (52.1%) 0.111 12 (37.5%) 34 (52.3%) 0.170

Cesarean section, n (%) 21 (87.5%) 62 (84.9%) 0.526 27 (84.4%) 56 (86.2%) 0.815

Apgar Score 1 mina 9.000 (1.250) 9.000 (0.000) 0.752 9.000 (2.000) 9.000 (1.000) 0.706

Apgar Score 5 mina 10.000 (0.000) 10.000 (0.000) 0.720 10.000 (0.000) 10.000 (0.000) 0.562

Age at measurement, daysa,b 257.500 (7.000) 261.000 (8.000) 0.177 257.500 (7.000) 261.000 (8.000) 0.147

Weight at measurement, g 2,432.083 ± 406.233 2,359.452 ± 358.364 0.407 2,430.000 ± 290.244 2,351.538 ± 359.784 0.329

aMedian (interquartile range); Mann–Whitney U-test.
bAge range, days (250, 280).
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characteristics stratified by breast milk intake thresholds. The

proportion of breast milk intake during hospitalization ranged

from 5.73% to 100% for preterm infants.
Functional brain connectivity

FC between the right frontal lobe and right occipital lobe was

significantly increased in preterm infants breastfed with >70% in

the hospital (p = 0.001, FDR, Figure 3A1) compared to those

breastfed with ≤70%. This connectivity involved the right

precentral gyrus (PCG) and the right inferior parietal lobe (IPL),

as illustrated in Figure 3B1. Furthermore, in preterm infants

receiving >90% of in-hospital breast milk, FC in these neural

systems was further enhanced, particularly in the right frontal

lobe. Specifically, significant differences were observed in FC

between the right PCG and right posterior frontal lobe (PFL)

(p = 0.016, FDR, Figure 3A2), as well as between the right PCG

and right IPL (p = 0.008, FDR). The anatomical labels depicting

altered FC are presented in Figure 3B2.
Neurological assessment at term

Significant differences were observed in the neurological

assessment at discharge (x2 ¼ 8:306, p = 0.004) between preterm

infants with >70% and those with ≤70% of in-hospital breast

milk intake. A higher proportion of breast milk intake among

preterm infants was associated with optimal neurological

assessment at term age. Similarly, significant differences were

noted in the neurological assessment at discharge

(x2 ¼ 7:090, p = 0.008) between preterm infants with >90% and

those with ≤90% of in-hospital breast milk intake volume.

Logistic regression analysis was conducted with demographic

and clinical characteristics as covariates (sex, mother’s age,

singleton status, delivery mode, gestational age, birth weight, and

breast milk intake), FC as a predictor, and ATNAT results as the

outcome variable. The results are presented in Table 2. The

regression model between FC (specifically, between the right
Frontiers in Pediatrics 05
PCG and right IPL) and ATNAT was statistically significant

(p = 0.011, B =−1.578, Exp[B] = 0.206, 95% confidence interval

[CI]: 0.062– 0.682; Hosmer and Lemeshow Test: Chi-

square = 5.637, p = 0.688).
Discussion

The study results indicate that preterm infants with >70% in-

hospital breast milk intake exhibit better neurological assessment

and enhanced development of rs-FC in the brain compared to

those with ≤70% intake. Furthermore, our findings suggest that

variations in rs-FC might correspond to differences in the

neurological assessment of preterm infants. This study offers new

insights into the neural basis of divergent neurological outcomes

among preterm infants.

The present study unveiled an increase in rs-FC between the

right PCG and the right supramarginal gyrus in preterm infants

with an in-hospital breast milk intake volume exceeding 70%,

with this positive effect demonstrating a dose-dependent pattern:

infants with >90% breast milk intake exhibited stronger rs-FC

than the >70% group, implying that higher proportions may

yield incremental benefits. However, a definitive threshold

requires validation in larger cohorts with granular intake data.

Our findings support mother-infant bonding practices and DHM

supply in NICU. These interventions may inhance infants’ breast

milk intake in NICU.

The PCG, serving as the primary motor cortex, and the

supramarginal gyrus, situated in the IPL, jointly contribute to

motor complexity processing, crucial for action perception and

execution (33). Notably, previous research has highlighted a

positive correlation between enhanced fine motor skills and

enlarged PCG size in children (34). Furthermore, stroke patients

exhibited improved upper limb movement following training,

associated with increased FC of both the primary motor cortex

and supramarginal gyrus (35).

The PFL encompasses the lateral and medial divisions of the

pre-motor cortex and supplementary motor cortex. Alterations in

rs-FC of the motor area have been observed in preterm infants,
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FIGURE 3

p-values of comparison of FC (COR of HbR). (A) p-values (adjusted p-values after FDR) matrix of t-test for FC (COR of HbR) between two groups of
preterm infants (A1: preterm infants with in-hospital breast milk intake of >70% and ≤70%; A2: preterm infants with in-hospital breast milk intake of
>90% and ≤90%). The horizontal and vertical coordinates represent the ROI number. (B) Resting-state FC was increased between the right PCG and
the right IPL (p= 0.001) in preterm infants with in-hospital breast milk intake of >70% (B1). Resting-state FC was increased between the right PCG and
the right IPL (p= 0.008) and between the right PCG and the right PFL (p= 0.016) in preterm infants with in-hospital breast milk intake of >90% (B2).
(PCG, precentral gyrus; IPL, inferior parietal lobe; PFL, posterior frontal lobe).

TABLE 2 Effects of ATNAT associated with FC in binary logistic
regression models.

FC Model ATNAT at term equivalent age

OR 95%CI p-values
rPCG- rIPL Crude Model −0.14a −0.04∼−0.46 0.011

Adjusted Modelb −0.24a −0.06∼−1.05 0.010

rPCG- rPFL Crude Model −0.15a −0.05∼−0.46 0.014

Adjusted Model −0.25 −0.07∼−0.93 0.066

aP<0.05.
bAdjusted model considered sex, mother’s age, singleton, delivery mode, gestational age,
birth weight and breast milk intake as covariates.

Yang et al. 10.3389/fped.2025.1508840
with a prevalent decrease in FC of the pre-motor cortex noted in

very preterm infants compared to full-term counterparts (36).

The development of executive functions, indicative of meaningful

outcomes, has garnered attention (37). The observed increase in
Frontiers in Pediatrics 06
FC implies an enhancement in executive function related to

volitional movement, suggesting that a higher proportion of early

breast milk intake might contribute to improved executive

function in preterm infants.

Blesa et al. (8) demonstrated an augmented fractional

anisotropy-weighted connectivity, as observed through MRI, in

infants who received ≥75% exclusive breast milk feeds compared

to those who did not. Moreover, the degree of anatomical

connectivity was further enhanced in these neural systems

among infants who received ≥90% exclusive breast milk. Our

results also indicate that increased functional connectivity (FC)

serves as a predictor of the neurological assessment of preterm

infants, independent of factors such as gestational age, birth

weight, sex, singleton status, delivery mode, weight at

assessment, and breast milk intake. This suggests that a higher

proportion of breast milk intake might influence the

neurological assessment of preterm infants by enhancing rs-FC.
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Preterm infants exhibiting increased FC were more likely to be

assessed with optimal neurological assessment at their corrected

gestational age at term. Evidence has suggested that early breast

milk exposure may exert lasting effects on functional

connectivity (38). For instance, longitudinal MRI studies report

sustained improvements in white matter microstructure and

cognitive outcomes in preterm infants receiving high breast milk

volumes during hospitalization (10, 39). While our data are

limited to the neonatal period, future studies should explore

whether rs-FC enhancements observed here correlate with long-

term neurodevelopmental trajectories.

Breast milk contains neuroprotective agents such as lactoferrin,

insulin-like growth factor-1 (IGF-1), and long-chain

polyunsaturated fatty acids (LC-PUFAs), which modulate

neuroinflammation, synaptic plasticity, and myelination (14).

Human milk oligosaccharides (HMOs) may further promote gut-

brain axis signaling, indirectly supporting connectivity.

Fortification with LC-PUFAs or HMOs could theoretically

amplify these benefits, though evidence remains limited (40).

A recent study found that breast milk was protective for preterm

infants’ emotionally reactiveand sleep problems (41), enhancing

the positive effect of breast milk to brain development.
Limitations

The present study has several limitations. The relatively

small sample size may limit the generalizability of the findings.

Additionally, the absence of normality tests for rs-FC

connectivity values before conducting t-tests may have

influenced the results. In future research, we intend to address

these limitations by expanding the sample size and conducting

comprehensive statistical tests to enhance the reliability and

validity of our findings. This study focused on outcomes at

discharge; however, whether rs-FC improvements persist

beyond NICU care or correlate with long-term outcomes

remains unknown. Future longitudinal studies should address

this critical gap. While this study considered some

confounding factors, completely eliminating them is

challenging due to potential unobserved confounders or

measurement errors. Therefore, while the use of covariates in

this study may mitigate their impact, it cannot completely

eliminate their influence.
Conclusion

The study findings suggested that preterm infants with a higher in-

hospital breast milk intake were more likely to demonstrate optimal

neurological assessment compared to those with a lower intake.

Moreover, this effect exhibits a volume-dependent relationship.

Additionally, our results indicated that variations in rs-FC may

correspond to differences in the neurological assessment of

preterm infants.
Frontiers in Pediatrics 07
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