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Respiratory tract infections (RTIs) are a complex global public health challenge,

with children being the most affected population. Affected children often

exhibit gut microbiota-related symptoms, such as dysbiosis, feeding

difficulties, and malabsorption. Studies show that the lungs and large intestine

share embryological homology and a mucosal immune system, with gut

microbiota influencing respiratory health—a phenomenon termed the “lunggut

axis” Gut dysbiosis may disrupt respiratory microbiota homeostasis, elevating

susceptibility to respiratory infections. Probiotic administration mitigates gut

dysbiosis and antibiotic resistance induced by antibiotic overuse. It can also

restore the balance of gut microbiota, enhance the immune response and

metabolic regulation, and thus prevent and assist in treating respiratory

infections and other respiratory diseases. A deeper understanding of the

relationship between the lung-gut axis microecology and respiratory infections

in children may provide novel insights and approaches for disease prevention,

diagnosis, and treatment. This review will describe the normal microecology of

the respiratory tract in children, the microecological changes associated with

respiratory tract infections in children, and the interactions between the “lung-

gut axis” and the use of probiotics. It will also provide an outlook on these topics.

KEYWORDS

gut-lung axis, pediatric respiratory tract infections (RTIs), microbiota, microecology,

probiotics

1 Introduction

Symbiotic microorganisms colonize the human body’s surfaces and externally

connected cavities (e.g., skin, vagina, intestines), outnumbering human cells by 10-fold.

However, respiratory microbiota research remains nascent. The gut microbiota,

comprising ∼40 trillion microorganisms, is one of the largest human microbial

communities. Its gene pool is ∼150 times larger than the human genome, earning it the

designation “enteric nervous system” or “second brain” (1). Research shows that the

lung and large intestine have embryological homology, a common mucosal immune

system, secretion function, and other modern biological basis, gut microbiota can

regulate the function of the gastrointestinal tract but also affect respiratory health, the

formation of “intestine-lung axis” (2), therefore, many scholars are researching to

improve the gut microbiota and other micro-ecological way of treating or assisting in

the treatment of respiratory diseases, and has achieved some results. Respiratory
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microecology in early life by genetic, environmental, and other

factors, and through the body’s metabolism, inflammation, and

immune system effects on disease development and regression

(3). Respiratory infections are one of the most common diseases

in children, and changes in the abundance and species of

respiratory and gut microbiota may occur at the onset of

diseases. Probiotics such as lactobacilli are useful in the treatment

of respiratory infections in children, but more research is needed.

Therefore, this paper summarises recent studies in the hope of

elucidating the relationship between lung and gut microbiota and

respiratory infections in children, and to provide a basis for

further research. We illustrated the connection between lungs

and intestines during respiratory infection.

2 Interaction between the
“lung-intestinal axis”

Differences in the mother’s mode of delivery also influence

infant microbiome development. Vaginal delivery exposes the

infant to the mother’s vaginal and gut microbiome, potentially

allowing key microbiomes to become established early in the

infant’s colon. In contrast, cesarean delivery exposes the skin

and environmental microbiome, creating significant microbial

acquisition, which promotes a less desirable microbial

community and affects the gut microbiome in children up to age

6. Studies have shown that children born by cesarean section are

at a higher risk of mucosal immune system-related diseases than

children born vaginally. This is because newborns delivered

vaginally have a variety of gram-positive bacteria transferred

from their mothers (e.g., Bifidobacterium bifidum), whereas

newborns delivered by cesarean section do not. According to

experiments in mice, intranasal exposure to Gram-negative and

Gram-positive bacteria results in the synthesis of more

lipopolysaccharides (LPS), which polarises the immune response

to Th1 cell-mediated immune responses (4). Also, primary

immune cells isolated from vaginally delivered infants produce

higher levels of tumour necrosis factor (TNF-a) and interleukin

18 (IL-18) when stimulated, which may help neonates to better

control respiratory viral infections through a mature immune

system (5). Beyond delivery mode, the source of respiratory

pathogens is multifactorial. Studies suggest that maternal

transmission, environmental exposure (e.g., airborne particles),

and dysbiosis-induced virulence of commensals collectively

contribute to pathogenic colonization (6). Children grow up in

an exposed environment, constantly receiving stimulation from

external antigens, and the immune system constantly produces

antibodies to prevent infections. Symbiotic microorganisms, such

as respiratory microbiota and gut microbiota, have the function

of regulating immunity, and play an important role in the

development and work of the immune system. Respiratory

microecology changes when respiratory tract infections (RTIs)

occur in children, and the gut microbiota also changes to some

extent in some children. Gut microbiota influences the systemic

immune response, including the lungs, by regulating the

maturation and function of the intestinal immune system. Gut

microbiota can affect the integrity of the intestinal mucosal

barrier and promote or inhibit the production of inflammatory

factors, which reach the lungs with the blood circulation and

participate in the immune regulation and inflammatory response

in the lungs. In addition, gut microbiota can indirectly regulate

the immune status of the lungs by influencing the differentiation

and function of immune cells such as T cells, B cells, and

dendritic cells. At the same time, gut flora are involved in the

metabolism and absorption of a wide range of nutrients,

including the production of SCFAs. These metabolites can

influence physiological processes such as energy metabolism, fat

storage, and insulin resistance in the host, and may also reach

the lungs through the blood circulation and have an impact on

lung cell metabolism and function. In addition, gut flora can

influence the metabolism of bile acids, which act as signaling

molecules and play an important role in regulating inflammation

and fibrosis in the lungs. Research has shown that there is close

two-way communication between gut flora and the nervous

system, known as the “gut-brain axis”. However, the function of

this axis is not limited to the brain, but also extends to the lungs.

Gut flora can influence the activity of lung cells by affecting

the release of neurotransmitters from the vagus nerve, such as

acetylcholine Ach, which regulates the neural reflexes and

autonomic functions of the lungs, thus affecting respiratory

movements, airway tone, and airway responsiveness (7, 8). Gut

microbiota can produce a variety of hormone-like substances

and neurotransmitters, such as serotonin, dopamine, GABA

(γ-aminobutyric acid), etc., which are able to enter the blood

circulation and affect the function of several organs throughout

the body, including the lungs. In addition, gut microbiota can

indirectly affect the physiological function of the lungs by

regulating the host’s endocrine system (e.g., thyroid, adrenal

gland, etc.). Traditional Chinese Medicine (TCM) also believes

that the lungs and the large intestine are mutually exclusive, lung

diseases and intestines, intestinal diseases and lungs, and the

lungs and intestines interact with each other through the

elevation of energy and the metabolism of sweat and fluids (9).

Based on the study of children’s gut microbiota and immune

system development, Budden et al. proposed the theory of the

“lung-intestinal axis” that lungs and intestines rely on embryonic

homology, immune channels, neural channels and other

pathways to be interconnected, which provides a new way of

thinking for the treatment of children’s respiratory tract

infections (2).

Related studies also show that the gut microbiota can regulate

the body’s immune function, and can directly regulate the lung

immune function, at the same time respiratory system diseases will

also affect the stable state of the gut microbiota, such as wheezing

children in the body of bifidobacteria decreased significantly,

respiratory infections in children susceptible to diarrhoea, are

indicating that the children appear to have a disturbance of gut

microbiota phenomenon (10). Teo et al. reported that children

with upper RTIs exhibit decreased gut microbiota abundance at

the phylum level (e.g., Firmicutes, Bacteroidetes); in the level of

the genus, the abundance of the genus Upper Enterococcus

increased greatly, the abundance of the genus Eubacterium,
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anabolic, fecal bacilli genus and bifidobacteria genus on the contrary,

a significant decline. Gut dysbiosis is characterized by increased

opportunistic pathogens (e.g., Escherichia coli, Enterococci) and

reduced probiotics (e.g., Bifidobacteria, Lactobacilli) (11).

Alterations in the same gut microbiota disorders have also been

shown to be present in recurrent respiratory infections in

pediatrics (12). A study of 16SrRNA gene sequencing of feces of

infants infected with syncytial virus showed a higher abundance

of S247, Clostridium, Olfactobacteriaceae, Lactobacillus, and

Actinobacillus than in normal infants in moderately and severely

infected children, and a decrease in Moraxobacteriaceae flora

in severely syncytial virus-infected children (13). In addition to

this, children with tuberculosis had reduced diversity of gut

microbiota, elevated pro-inflammatory bacteria Prevotella and

opportunistic pathogens Enterococcus, and reduced probiotic

bacteria Bifidobacteria, among others, compared to healthy

children (14). Hilty M et al. also suggested that the gut microbiota

disorders in children with recurrent respiratory tract infections

were significantly higher than those in children without recurrent

respiratory tract infections and that children with recurrent

respiratory tract infections may be affected by gut microbiota

disorders, resulting in lower immunoglobulin levels, decreased

immunity, and an increased risk of recurrent respiratory tract

infections (15). Zhang D et al. showed that children with upper

respiratory tract infections who were <3 years old and had an

intestinal microecological imbalance had lower values of CD3+

and CD4+ than those in the non-disordered group and the

healthy control group, and children with upper respiratory tract

infections who had an imbalance of the gut microbiota at an age

of less than 6 years old (including the <3 years old and the 3–6

years old age groups) had reduced levels of IgA compared with

those of the non-disordered group and the healthy control

group at the same age. It was demonstrated that gut microbiota

disorders during respiratory tract infections affected both cellular

and humoral immunity in children under 6 years of age (16),

decreasing the gut microbiota-associated immune function of

the children. See Figure 1, the gut microbiota dysbiosis during

respiratory infections affects both immune and metabolic pathways.

3 Normal flora

The nasopharynx of infants is a sterile environment at birth,

with contact with the external environment and the population,

microorganisms gradually gather in the nasopharynx and other

places in children, the respiratory microbiota is mainly thick-

walled bacteria, actinomycetes, Aspergillus phylum, bacillus-like

organisms, bacillus-like organisms, and Streptococcus aureus,

etc., and the abundance and types of the flora tend to be

stabilized when they grow up to about 6 years of age (3).

A study of nasopharyngeal microecology in children before the

age of 2 years showed that the composition of the dominant

nasopharyngeal flora had already been formed by the age of 6

weeks, which could be any of the predominant species of

Streptococcus spp., Moraxella catarrhalis, Staphylococcus spp.,

Corynebacterium spp., Mixed Corynebacterium spp., and/or

FIGURE 1

The connection between intestinal microbiota changes and pulmonary infection immunity. (Created with Figdraw).
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Corynebacterium spp. (13) The pattern of nasopharyngeal flora

gradually changed after the age of 6 weeks, e.g., the pattern of

the predominant Staphylococcus spp. Disappeared gradually and

shifted to a Haemophilus dominated, and the dominance of

Corynebacterium spp.、Cunningham spp. was gradually replaced

by Moraxella spp., Cunningham spp. The nasopharyngeal

microecology was relatively stable if the nasopharyngeal flora

was dominated by Moraxella spp. by 6 months of age.

Nasopharyngeal microcosm with Haemophilus spp. and

Streptococcus spp. Dominant was relatively more variable.

There were different correlations between different

microorganisms as to whether or not they colonized: a positive

correlation between Streptococcus pneumoniae colonization in

the nasopharynx and Haemophilus influenzae; a negative

correlation between C. catarrhalis, human rhinoviruses, and

enteroviruses, and Staphylococcus aureus colonization; a positive

correlation between C. catarrhalis colonization and coronaviruses

and adenoviruses; a significant positive correlation between

Staphylococcus aureus and influenza viruses; and between

Haemophilus influenzae and human rhinoviruses, respiratory

syncytial virus were positively correlated; there was a negative

correlation between human rhinovirus and coronavirus.

Nasopharyngeal colonization with Streptococcus pneumoniae was

negatively correlated with Staphylococcus aureus (17, 18).

Recent studies have shown that the composition of

oropharyngeal flora in children is similar to that of adults,

and healthy adults have a rich flora settled in the oropharynx,

including some pathogenic subgroups such as Streptococcus,

Haemophilus influenzae, Neisseria spp. and possibly gram-negative

anaerobic commensals such as Weilonella spp., Prevotella spp.,

Porphyromonas and Clostridium spp. However, there is a

significant predominance of certain organisms in the children’s

oropharynx, e.g., Neisseria spp., Streptococcus granulosus spp.,

Prevotella, Porphyromonas and Clostridium spp. (19) A survey

showed that healthy children aged 0–6 years were colonised by

Haemophilus influenza, Streptococcus pneumoniae, Staphylococcus

aureus, and Catamonas in the upper respiratory tract. With the

growth of age, the colonisation of the upper respiratory tract

increases (20). 2 to 3-year-old children’s upper respiratory tract

flora is very limited, and the diversity is low, 3 to 4-year-old

children’s upper respiratory tract in the diversity of species

increased, and the ratio of aerobic bacteria and anaerobic bacteria

is still 1:1.03, for this age of young children, the anaerobic and

aerobic bacteria are the dominant species of the upper respiratory

tract, and work together to maintain the microecological balance

of the upper respiratory tract. Ecological balance of the upper

respiratory tract. With the increase of age, the respiratory

microecology tends to stabilize, and the ratio of respiratory aerobic

and anaerobic bacteria in young people between the ages of 18 and

23 increased to 3.5:1 (21). Adult lung flora mainly from the

oropharynx, the dominant genera include Streptococcus spp.,

Prevotella spp., Clostridium spp., and Weilonella spp., while

Haemophilus spp. and Neisseria spp. are less common, with the

thick-walled bacillus and anaplasmosis as the main composition,

while the children’s upper respiratory tract anatomical structure is

different from that of the adults, and nasopharyngeal secretion is

more, so the lung flora from the nasopharynx and the oropharynx,

mainly from the upper respiratory tract, Molluscum contagiosum,

Staphylococcus, Streptococcus, and Haemophilus (22). We have

broadly summarised the composition of the main flora of the

upper and lower respiratory tract in children as follows, see Table 1.

4 Children’s respiratory tract infection
micro-ecological changes

Pathogens in pediatric RTIs may originate from vertical

transmission, environmental reservoirs, or opportunistic

overgrowth of resident flora (6), highlighting the complexity of

microbial sources in disease progression. Most of the bacteria

cultured from secretions during respiratory tract infections

are commensal bacteria of the upper respiratory tract, and

most of them show an increase in the number of pathogenic

bacteria and a decrease in the number of pathogenic bacteria.

The microecology of the nasopharynx changes during the

development of acute respiratory infections. A cross-sectional

study of Streptococcus pneumoniae colonization in children

under 3 years of age found that the density of Streptococcus

pneumoniae in the nasopharynx increased gradually before

respiratory infection, peaked at the onset of respiratory infection,

and then gradually returned to baseline levels at the time of non-

infection during the later stages of respiratory infection (23).

A study examined the differences in oropharyngeal flora between

children with community-acquired pneumonia (CAP) and acute

suppurative tonsillitis (AST) and healthy children. Differences in

oropharyngeal flora between children with community-acquired

pneumonia (CAP) and acute suppurative tonsillitis (AST) and

healthy children were found: Streptococcus spp., Prevotella spp.,

Veillonella spp., Neisseria spp., Haemophilus spp., Cilioplasma

spp., Porphyria spp. were the predominant genera in the CAP

group, and Streptococcus spp., Prevotella spp., Veillonella spp.,

Neisseria spp., Porphyria spp. were the predominant genera

in the AST group. Aeromonas, Neisseria, Porphyromonas, and

Clostridium; and in the control group, the dominant genera

were Streptococcus, Prevotella, Verrucella, Ciliophora, Neisseria,

Porphyromonas, and Clostridium. Compared with healthy

children, the oropharyngeal flora of children with respiratory

tract infections had a change in the composition of some of the

dominant genera, with an increase in the relative abundance of

Streptococcus spp. and a decrease in the relative abundance of

Megacoccus spp. and Campylobacter spp. in children with CAP;

and a decrease in the relative abundance of ciliated bacteria spp.

in the oral cavity of children with AST. Moreover, the abundance

of oropharyngeal flora was significantly lower in children with

TABLE 1 Common commensal pathogens of the upper and lower
respiratory tract.

Pathogenic
commensal bacteria

conditionally pathogenic
bacteria

upper respiratory tract Streptococcus pneumoniae, Staphylococcus

aureus, Haemophilus influenzae

lower respiratory tract Streptococcus pneumoniae, Staphylococcus

aureus, Catamorium spp.
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pneumonia than in healthy children, while there was no significant

change in the structure of oropharyngeal flora in children with

AST, suggesting that lower respiratory tract infections may

have a greater impact on the microecological balance of the

oropharynx than upper respiratory tract infections (24).

Common pathogens of respiratory tract infections in children are

viruses, such as syncytial virus and influenza virus. During

influenza virus infection, the respiratory microecological species

change, and the number of bacteria colonizing the mucosal

surface of the respiratory tract increases, leading to a greater

chance of secondary infections and a series of differences in

the clinical presentation of patients, such as higher C-reactive

protein values, more frequent antibiotic treatment, and longer

hospitalization cycles when S. aureus is combined with other

bacteria compared to when S. aureus is solely colonized.

Moreover, children are more likely to get pneumonia when

Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus

pneumoniae are fixed than when S. aureus is fixed (20). Flora

shift may also occur in respiratory tract infections, and it has

been shown that children with upper respiratory tract infections

have a higher detection rate of gram-positive organisms in throat

swabs, with S. aureus being the most highly detected, and

Escherichia coli being highly detected among the gram-negative

organisms (25). Some nasopharyngeal colonization was detected

in the secretions of children with pneumonia, demonstrating that

nasopharyngeal colonization may occur in pneumonia.

5 Progress and prospect of probiotic-
assisted treatment of children’s
respiratory tract infections

Now commonly used in the treatment of children’s respiratory

tract infections are antibiotics, but the extensive use of antibiotics

can easily lead to the occurrence of drug resistance and gut

microbiota dysbiosis (26), increasing the chances of recurrent

respiratory infection. One study reported that multiple antibiotic

exposures during a woman’s pregnancy can cross the placenta to

reach the unborn baby. This means that maternal antibiotic use

during pregnancy may disrupt the balance of the infant’s gut

microbiota, leading to a decrease in beneficial flora and an

increase in pathogenic bacteria. This imbalance in the microbiota

may affect the production and transmission of neurotransmitters,

which in turn may affect the infant’s neurodevelopment. Thus

this vertical transmission of antibiotics may increase the risk of

respiratory disease in infants as well as affect their

neurobehavioral status. In addition, there may be potential

pathogens in the placenta, such as group B streptococci, which

may carry antibiotic-resistant genes and pass through the

placenta to the infant’s microbiota (27). Based on the gut

microbiota and respiratory diseases there is a reciprocal effect of

the role of the gut microbiota, that the gut microbiota, especially

the probiotic bacteria can be adjusted through the immune

system to prevent and assist in the treatment of children’s

respiratory tract infections, to reduce the use of antibiotics.

Prebiotics can also be added to assist in treatment when using

probiotics, such as oligofructose and oligogalactose which can

pass through the upper gastrointestinal tract without being

digested, and arrive in the intestines to be fermented by the gut

microbiota, providing energy and nutrition for the probiotics,

thus increasing the number and activity of the probiotics and

inhibiting the growth of the harmful bacteria, to maintain a

balanced state of the gut microbiota. This balance is essential for

intestinal health and can prevent the occurrence of many

intestinal diseases, also beneficial in preventing gut microbiota

disorders that tend to follow respiratory infections. A study

found that Streptococcus aureus has an obvious antagonistic

effect on pathogenic bacteria in vitro and in vivo, and the mouse

model confirmed that Streptococcus aureus can inhibit the

colonization of pathogenic bacteria in the mucosal epithelial

cells, and protect the bacterial balance of the respiratory tract in

mice. And type A streptococci such as Streptococcus salivarius,

Streptococcus bradypneumoniae, Streptococcus oralis, etc. are the

normal flora colonized in the upper respiratory tract of the

human body, and dominate the oropharyngeal flora of healthy

children, which is conducive to the protection of the respiratory

tract and the prevention of infections (28). Relevant animal

experiments have also found that mice treated with

Streptococcus A can resist Streptococcus B infection and prevent

respiratory infections, which needs to be further researched

developed, and used in the prevention and treatment of

respiratory infections in children (29). Studies have shown that

probiotics can enhance the activation of inflammatory vesicles by

SCFA, up-regulate the expression of IL-1β and IL-10, and

activate the adaptive immune response to improve the body’s

ability to clear pathogenic bacteria and other pathogens, to

achieve the positive regulation of the immunity of antipathogenic

microorganisms, and it is believed that probiotics have a certain

preventive and curative effect on COVID-19 infection (30). In

clinical trials, it was also shown that children with upper

respiratory tract infections taking Bifidobacterium bifidum had

fewer occurrences of intestinal microecological imbalance, a

lower average annual incidence of respiratory tract infections,

and significantly fewer coughs, fever, secondary diarrhea, and

antibiotics each time respiratory tract infections occurred, and

laboratory tests showed that serum CRP and PCT concentrations

in the children supplemented with probiotics were significantly

lower than in the control group, and the serum IgG and IgA

levels were significantly higher. Indicating that oral probiotics

have a certain effect on preventing and treating recurrent

respiratory tract infections in children and enhancing their

immunity (31–33). Further supporting this, a recent meta-

analysis by Zhang et al. demonstrated that probiotic

supplementation significantly reduces the incidence and duration

of respiratory infections in children, likely via gut microbiota

modulation and mucosal immune enhancement (33).

6 Conclusion

Although the “lung-gut axis” is becoming better known, the

respiratory microecology is complex and diverse, the intestinal
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microbiota is massive and the impact of microbiota changes on

health still needs further research and exploration, and the

general public has little knowledge of microbiota, which needs to

be improved. Children’s respiratory tract and intestinal tract have

embryonic homology, and in the dynamic process of continuous

development, the gut microbiota influences the occurrence and

development of respiratory tract infections and other diseases

through the regulation of humoral immunity and cellular

immunity, and the displacement of the flora and changes in the

number of species in respiratory infections also lead to gut

microbiota disorders. Given the high prevalence of pediatric

RTIs, their prevention and treatment have garnered significant

attention. Based on the proposal of the “lung-intestinal axis”, the

use of gut microbiota, the extraction of intestinal or respiratory

probiotics to produce probiotic preparations for the prevention

of respiratory tract infections, and adjuvant therapeutic drugs

will become a new trend. Probiotics have shown beneficial effects

not only in the prevention and control of gastrointestinal and

respiratory infections but also have shown promise in the

treatment of other diseases, see Table 2. However, further

research is needed to elucidate probiotic therapies’ efficacy,

adverse effects, and optimal timing for gut microbiota

modulation in pediatric RTIs. As evidenced by clinical trials and

meta-analyses (31–34), probiotics represent a promising strategy

for respiratory infection prevention, though further research is

needed to standardize protocols.
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