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Artificial Intelligence is revolutionizing prenatal diagnostics by enhancing the
accuracy and efficiency of procedures. This review explores AI and machine
learning (ML) in the early detection, prediction, and assessment of neural tube
defects (NTDs) through prenatal ultrasound imaging. Recent studies highlight
the effectiveness of AI techniques, such as convolutional neural networks
(CNNs) and support vector machines (SVMs), achieving detection accuracy
rates of up to 95% across various datasets, including fetal ultrasound images,
genetic data, and maternal health records. SVM models have demonstrated
71.50% accuracy on training datasets and 68.57% on testing datasets for NTD
classification, while advanced deep learning (DL) methods report patient-level
prediction accuracy of 94.5% and an area under the receiver operating
characteristic curve (AUROC) of 99.3%. AI integration with genomic analysis
has identified key biomarkers associated with NTDs, such as Growth
Associated Protein 43 (GAP43) and Glial Fibrillary Acidic Protein (GFAP), with
logistic regression models achieving 86.67% accuracy. Current AI-assisted
ultrasound technologies have improved diagnostic accuracy, yielding sensitivity
and specificity rates of 88.9% and 98.0%, respectively, compared to traditional
methods with 81.5% sensitivity and 92.2% specificity. AI systems have also
streamlined workflows, reducing median scan times from 19.7 min to 11.4 min,
allowing sonographers to prioritize critical patient care. Advancements in DL
algorithms, including Oct-U-Net and PAICS, have achieved recall and
precision rates of 0.93 and 0.96, respectively, in identifying fetal abnormalities.
Moreover, AI’s evolving role in genetic research supports personalized NTD
prevention strategies and enhances public awareness through AI-generated
health messages. In conclusion, the integration of AI in prenatal diagnostics
significantly improves the detection and assessment of NTDs, leading to
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greater accuracy and efficiency in ultrasound imaging. As AI continues to advance,
it has the potential to further enhance personalized healthcare strategies and raise
public awareness about NTDs, ultimately contributing to better maternal and
fetal outcomes.

KEYWORDS

artificial intelligence, prenatal diagnostics, machine learning, neural tube defects,
ultrasound imaging
Introduction

Artificial intelligence (AI) is transforming various aspects of

medicine, including diagnostics, treatment planning, and patient

care (1). AI algorithms improve diagnostic accuracy by analyzing

extensive clinical data from electronic health records (EHRs) and

medical imaging, facilitating the rapid and precise identification

of diseases such as coronary artery disease and cancers (2, 3). AI

in radiology improves image interpretation, enhances condition

detection via computer-assisted diagnosis systems, and advances

prenatal ultrasound diagnostics for fetal anomaly identification

(4–6). Moreover, machine learning (ML) models are being

developed for predictive analytics, enabling healthcare providers

to evaluate patient outcomes based on historical data, which is

especially beneficial for managing chronic diseases (7). AI’s

ability to integrate large datasets allows for the creation of

personalized treatment plans tailored to individual genetic and

clinical profiles, resulting in more effective therapies (8, 9).

Additionally, AI supports clinicians with decision support

systems that provide real-time recommendations based on

current guidelines, which is crucial in urgent care settings for

optimizing triage and resource allocation. The automation of

routine administrative tasks through AI can mitigate physician

burnout, allowing healthcare providers to focus more on patient

care and ultimately enhancing job satisfaction. However, the

integration of AI in healthcare raises ethical concerns related to

data privacy, algorithmic bias, and the implications of machine

decision-making (8, 10). This highlights the necessity for diverse

training datasets to ensure equitable clinical outcomes. Despite

these challenges, the potential of AI and ML to improve

healthcare delivery is substantial, empowering healthcare

professionals and contributing to a more efficient system (11, 12).
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Neural tube defects (NTDs) are major public health issues

arising from incomplete closure of the neural tube during early

embryonic development (13, 14). These multifactorial conditions,

shaped by genetic and environmental factors, include serious

birth defects like spina bifida and anencephaly (15, 16). Figure 1

illustrates the different types of NTDs within their developmental

contexts. Their prevalence varies significantly by region due to

genetic and environmental factors. Globally, the incidence of

NTDs is approximately 2.1 per 100,000 (17), with prevalence

rates between 0.3 and 199.4 per 10,000 births (18). Sub-Saharan

Africa has the highest incidence at about 4.0 per 100,000 (17),

while North America has the lowest at around 0.5 (19). Over the

past two decades, NTD incidence has generally declined in about

89% of countries, thanks to improved public health initiatives

like folic acid fortification. These trends highlight the urgent

need for targeted public health strategies to promote folic acid

supplementation among women of childbearing age, increasing

awareness and access to this crucial preventive measure (17). The

evolution of the field has ushered in the integration of AI,

presenting a significant opportunity to enhance the detection,

management, and comprehension of NTDs, which could

transform maternal and child health interventions (20). AI has

made notable strides in the early diagnosis of NTDs by

employing ML algorithms that analyze complex datasets,

including fetal ultrasound images and maternal health records, to

uncover subtle patterns that indicate these conditions much

earlier than traditional methods would allow (21, 22). ML

techniques are being utilized in several vital areas, such as

biomarker identification, predictive modeling, and the analysis of

diverse datasets. A prominent application of machine learning

lies in identifying biomarkers that facilitate early diagnosis,

ultimately improving our understanding of the biological

mechanisms underlying NTDs and enabling more targeted

interventions (23). Furthermore, ML has been utilized to analyze

large datasets, such as EHRs, to predict NTD occurrences based

on maternal and environmental factors. A systematic review

highlighted the potential of deep learning (DL) models to extract

meaningful patterns from complex health data, significantly

improving predictive accuracy in healthcare, particularly in

prenatal care, where timely interventions can reduce risks

associated with NTDs (24). Moreover, ML has been integrated

into the study of organoids to simulate and analyze the effects of

various genetic and environmental factors on neural tube

development (25). This integration enhances the analysis of

experimental data, leading to more robust conclusions about the

causes and potential treatments for NTDs. Furthermore, the
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FIGURE 1

Overview of various NTDs in their developmental contexts. The NTDs depicted include anencephaly (absence of brain and skull), craniorachischisis
(complete neural tube failure affecting both skull and spine), open spina bifida (exposed spinal column), closed spina bifida (defect with the spinal cord
covered by skin but potential hidden neurological issues), encephalocele (protrusion of brain tissue through an abnormal skull opening), and
iniencephaly (malformations of the skull and spine). Key developmental structures—neural groove, neural fold, cranial neuroport, caudal neuroport,
and somite—are labeled to contextualize neural tube formation and associated defects. These conditions emerge during the critical phase of
neural tube closure, highlighting the importance of proper embryonic development and potential disruptors. In the developing neural tube, area
“A” refers to the dorsal aspect involved in patterning, while area “B” represents the ventral aspect where motor neuron progenitors are generated
and brain and spinal cord vesicles begin to differentiate. This figure is adapted from Botto et al. (16).
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combination of ML with advanced imaging technologies has shown

promise in enhancing the detection and classification of defects in

embryonic development by identifying subtle morphological

changes associated with NTDs, aligning with the broader trend

of using ML to improve diagnostic accuracy and efficiency in

medical imaging (24, 26).

This review examines advancements and future directions in

AI applications for diagnosing NTDs. It assesses the effectiveness

of various AI techniques for predicting NTDs and classifying

related genetic mutations. The review explores methods for

biomarker discovery in open NTDs, evaluating their potential to
Frontiers in Pediatrics 03
enhance prenatal diagnostics and clinical outcomes. It also

highlights the role of AI-assisted ultrasound technology in

improving detection accuracy and integrating AI with systems

biology to enhance our understanding of NTDs. Innovations in

precision medicine, including personalized dietary

recommendations for prospective parents and AI-driven health

communication strategies for raising awareness about NTD

prevention, are emphasized. The review concludes with future

research directions, underscoring the need for collaboration

between technology developers and clinicians while addressing

the ethical implications of AI in this critical area of healthcare.
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An overview of machine learning and
deep learning

AI, ML, and DL constitute a hierarchical framework of

computational intelligence, each with unique methodologies

and applications (1). AI is the broad framework for creating

intelligent systems that mimic human cognitive functions like

problem-solving and learning. ML, a subset of AI, allows

systems to learn from data and experiences without explicit

programming, using techniques such as supervised,

unsupervised, and reinforcement learning (27). DL, a subset of

ML, employs multi-layered neural networks to automatically

extract features from large datasets. This complexity requires

substantial computational power, often provided by Graphics

Processing Units (GPUs), which outperform traditional

Central Processing Units (CPUs) in parallel processing. While

ML is suitable for simpler tasks and smaller datasets, DL

excels in complex applications like image and speech

recognition due to its advanced architecture. The rise of GPUs

and other hardware accelerators has significantly enhanced the

speed of training and efficiency of inference in DL (28–30).

ML encompasses various algorithms that derive insights and

make predictions across fields such as agriculture, healthcare,

finance, and e-commerce, with performance heavily reliant on

the quality and quantity of training data. In contrast, DL

utilizes neural networks, including convolutional neural

networks (CNNs) for image processing and recurrent neural

networks (RNNs) for sequential data analysis, to handle

complex data types (1, 31). Recent advancements in DL,

especially in transformers and self-attention mechanisms, have

significantly improved capabilities in tasks like language

translation, making DL crucial for high-accuracy applications

such as autonomous driving and robotics. The integration of

ML and DL techniques enhances performance on complex

problems, as seen in hybrid models that combine CNNs and

long short-term memory networks (LSTMs) for text

classification (32, 33). Despite their different methodologies,

the interplay between ML and DL creates a robust framework

for tackling complex challenges, with ongoing research

necessary to address computational demands and model

interpretability, optimizing these technologies for broader

applications (34). AUROC is a vital metric for evaluating AI

algorithms, particularly in binary classification tasks, as it

measures a model’s ability to distinguish between positive and

negative classes across various thresholds, providing

insights into sensitivity and specificity. An AUROC of 1

indicates perfect classification, while 0.5 suggests no

discriminative ability, akin to random guessing. This metric is

especially useful in scenarios with imbalanced class

distributions, allowing for a more nuanced comparison of

algorithms beyond simple accuracy. Incorporating

AUROC into the evaluation process helps researchers and

practitioners better understand the trade-offs associated with

their AI models, ultimately enhancing decision-making

capabilities (35).
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Use of AI in prenatal diagnostics

AI, particularly through ML and DL, is revolutionizing prenatal

diagnostics by significantly enhancing the accuracy and efficiency

of fetal assessments. These technologies are increasingly applied

in various facets of prenatal care, such as screening for

congenital anomalies, predicting pregnancy complications, and

improving ultrasound imaging (21, 36, 37). AI algorithms,

especially DL models, excel at analyzing ultrasound images to

identify fetal anomalies that may be overlooked by human

operators. For example, CNNs have been utilized to standardize

fetal anatomy assessments, which minimizes inter-operator

variability and boosts diagnostic consistency (38, 39). This

advancement allows for more precise evaluations of conditions

like congenital heart defects and kidney anomalies. Furthermore,

AI has markedly improved non-invasive prenatal testing (NIPT)

methods by elevating detection rates of chromosomal

abnormalities through the analysis of complex datasets from

maternal blood samples, offering safer diagnostic options for

expectant mothers (40, 41). Moreover, ML models are employed

to develop predictive analytics that can identify pregnancies at

risk for complications such as preterm birth and preeclampsia by

examining various factors, including maternal history and

biophysical parameters, thus enabling personalized care strategies.

AI technologies also support continuous monitoring of maternal

and fetal health parameters through wearable devices that track

vital signs, providing immediate alerts for any deviations and

facilitating timely medical interventions (42, 43).

Thatoi et al. recently conducted a systematic review and meta-

analysis on the effectiveness of AI algorithms for detecting

congenital fetal abnormalities, particularly in the heart and brain.

Analyzing data from 243,456 pregnancies, they found that DL

and ML models exhibited high diagnostic performance, with

sensitivity between 82% and 99% and specificity from 78% to

99%. Their analysis, utilizing the DerSimonian-Laird technique

and Summary Receiver Operating Characteristic (SROC) plots,

achieved a significant area under the SROC curve of 0.960,

indicating a strong ability of these AI algorithms to distinguish

between abnormal and normal cases across the included studies.

Individual studies reported AUROC curves ranging from 0.85 to

0.95, demonstrating good to excellent discrimination. These

findings highlight the potential of AI algorithms, especially

CNNs, to deliver reliable diagnostic predictions, potentially

reducing infant mortality and improving treatment outcomes for

affected pregnancies (44). Moreover, Spahić et al. (45) advanced

the integration of AI in diagnosing fetal neurological impairment

disorders with their TRUEAID system. This innovative approach

combines the finely tuned Kurjak Antenatal Neurodevelopmental

Test (KANET), which utilizes four-dimensional ultrasound

technology to assess fetal neurological development during the

critical third trimester, with a convolutional neural network to

create an AI-powered ultrasound module for automated

diagnostic support. The study reports an accuracy of 93.83%,

highlighting the system’s potential for early detection of

conditions like cerebral palsy, epilepsy, and autism spectrum
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disorder (45). The KANET, developed over the past 15 years,

evaluates fetal behavior and movement patterns through a brief

15–20 min ultrasound session, meticulously recording specific

criteria such as head, hand, and foot movements, eye

movements, facial expressions, and the continuity of complex

movements. The research emphasizes the importance of early

diagnosis for timely intervention and illustrates the viability of AI

technologies in enhancing fetal neurobehavioral assessments.

This pilot study lays the groundwork for AI-based diagnostics,

with significant implications for improving outcomes for affected

children and expanding access to advanced diagnostic capabilities

in various healthcare settings (46, 47).
Use of AI for early detection of neural
tube defects

AI offers a transformative approach to prenatal diagnostics, but

challenges persist, including the requirement for large labeled

datasets and the integration of AI tools into clinical practice.

Still, AI holds significant potential for enhancing early detection

and intervention for NTDs. Table 1 provides an overview of AI

applications for the early detection and prediction of NTDs.

Mahalle et al. (22) investigated the application of ML techniques,

specifically CNNs and gradient boosting machines (GBMs), for

the early detection of birth defects. The study emphasized the

importance of early identification of these defects to facilitate

timely intervention. By utilizing a diverse range of datasets,

including fetal ultrasound images, genetic information, maternal

health records, and demographic details, the authors trained their

ML models on labeled data containing accurate diagnoses of

various birth defects. The proposed methodology not only

achieved high accuracy in detecting NTDs, fetal heart

abnormalities, and chromosomal issues but also aimed to

enhance understanding of the biological processes underlying

these conditions. The user-friendly interface designed for
TABLE 1 Overview of AI applications in early detection and prediction of NT

Study Focus Techniques used Key
Wang et al. (48) Prediction of NTDs SVM, RFE SVM mod

training ac

Aguiar-Pulido
et al. (49)

Genetic variations in
spina bifida

Machine learning Discovered
associated

Mustafa et al.
(50)

Gene polymorphism
and folic acid

Grey wolf optimizer-assisted
deep learning

Achieved
factors for

Karthik et al. (23) Genetic markers for
NTDs

RFE and differential gene
expression

Identified
myelomen

Weaver et al. (20) Neurogenic bladder
dysfunction

Ensemble models Achieved 7
further en

Vahedifard et al.
(51)

Fetal brain MRI analysis CNNs, U-Net architectures Achieved a
automatin

Mahalle et al.
(22)

Early detection of NTDs CNNs, GBMs High accu
birth defec

Qi et al. (52) Deep learning for NTDs Deep learning models Patient-lev
AUROC o

Abbreviations: AI, artificial Intelligence; NTDs, neural tube defects; CNNs, convolutional neural

feature elimination; AUROC, area under the receiver operating characteristic curve.
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healthcare professionals further supported its practical

implementation, enabling them to provide prompt guidance and

assistance to expecting parents (22). Vahedifard et al. (51)

conducted a narrative review on the application of AI and ML

techniques in fetal brain magnetic resonance imaging (MRI). The

study highlights the prevalence of central nervous system

abnormalities in fetuses, which occur in approximately 0.1% to

0.2% of live births and 3% to 6% of stillbirths, emphasizing the

importance of early detection and categorization of these

conditions. The authors discuss various AI models, primarily

CNNs and U-Net architectures, that have been employed for

automating the processing of anatomical fetal brain MRI.

Notably, some models demonstrated accuracy rates exceeding

95%. The review also outlines the capabilities of AI in tasks such

as gestational age prediction, fetal brain extraction and

segmentation, and placenta detection. Furthermore, the study

addresses the use of classification algorithms, including K-nearest

neighbor and random forest, for identifying brain pathologies.

The authors stress the need for large-scale, labeled datasets to

enhance the efficacy of DL methods, as well as the importance of

shared fetal brain MRI datasets due to the limited availability of

such images. They conclude by highlighting the necessity for

healthcare professionals, particularly neuroradiologists, general

radiologists, and perinatologists, to understand the role of AI in

improving fetal brain MRI diagnostics (51).
Use of AI in prediction and assessment
of severity of neural tube defects

Techniques like Support Vector Machines (SVM) and

Recursive Feature Elimination (RFE) are effectively employed to

analyze genetic and demographic data, enhancing the

understanding and prediction of NTDs such as spina bifida (23).

SVM classifies NTD occurrences by merging genetic and

demographic datasets, clarifying risk factors for these birth
Ds.

findings and accuracy Implications
els predicted NTDs with 71.50%
curacy

Suggests need for robust datasets and
optimization of predictive models

function-altering variants
with spina bifida

Informs targeted preventative strategies and
personalized medicine

99.5% accuracy in predicting risk
NTDs

Highlights the importance of integrating
genetic and nutritional factors

critical biomarkers related to
ingocele

Enhances prenatal diagnostics for at-risk
pregnancies

0% accuracy; highlights need for
hancements

Indicates potential for improving NTD-related
assessments

ccuracy rates over 95% in
g fetal brain MRI processing

Highlights the need for large, labeled datasets
for improved diagnostics

racy in detecting NTDs and other
ts using diverse datasets

Supports timely intervention and enhances
understanding of biological processes

el prediction accuracy of 94.5% and
f 99.3%

Supports the use of heatmaps for assessing
anomaly severity

networks; GBMs, gradient boosting machines; SVM, support vector machine; RFE, recursive
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defects (49). RFE refines feature selection to identify the most

significant genetic markers. This integration improves model

accuracy and informs public health initiatives and preventive

measures for at-risk populations. The research spans public

health, genetics, and maternal-fetal health, highlighting the

importance of interdisciplinary approaches to complex health

issues (53, 54). Current models show some predictive ability, but

further research is necessary to refine methods and incorporate

additional risk factors for better prenatal care outcomes. Wang

et al. demonstrated that SVM models predicted NTDs with

71.50% accuracy on training datasets and 68.57% on testing

datasets, emphasizing the need for robust datasets to enhance

predictive performance. While these accuracy rates indicated

potential for classifying and forecasting NTD rates at the village

level, significant room for improvement remained. Future

research should have focused on optimizing model parameters,

exploring additional features, and integrating other ML

algorithms (48). In contrast, Weaver et al. (20) advanced DL

techniques for assessing neurogenic bladder dysfunction in spina

bifida patients. Their ensemble model combined volume-pressure

recordings—measuring urine volume and bladder pressure—with

fluoroscopic imaging data, achieving 70% accuracy (95% CI 66%,

76%). However, a weighted kappa of 0.54 signifies only moderate

agreement between the model’s predictions and clinical

evaluations, indicating substantial improvement is needed. The

scale ranges from −1 (complete disagreement) to 1 (perfect

agreement). These results underscore the importance of refining

and validating the DL model to enhance its clinical applicability

and reliability. With the clinical model showing only 61%

accuracy and a weighted kappa of 0.37, the findings highlight the

advantages of DL over traditional methods for more effectively

assessing bladder dysfunction severity in this vulnerable

population (20). Moreover, a 2025 study by Qi et al. highlighted

DL’s immense potential, reporting a patient-level prediction

accuracy of 94.5% and an AUROC of 99.3% for various NTDs,

with models generating heatmaps to assist clinicians in evaluating

anomaly severity (52). Further exploration by Karthik et al. in

2022 employed RFE to identify critical genetic markers linked to

open NTDs, emphasizing the multifactorial nature of NTDs and

the necessity of integrating genetic insights into predictive

models to enhance their accuracy and applicability in clinical

settings (23). This holistic approach underscores the importance

of multifaceted strategies in advancing the predictive power of

models for complex health conditions such as NTDs.
Integration of AI with biomarkers for
detection of neural tube defects

AI models excel at analyzing extensive genomic datasets to

identify various genetic variants, such as single-nucleotide

variations (SNVs) and copy number variants (CNVs). These

models enhance the sensitivity and specificity of variant calling,

which is crucial for pinpointing mutations linked to congenital

disorders (55). Tools like SpliceAI and MMSplice are often

integrated into AI frameworks to prioritize harmful variants that
Frontiers in Pediatrics 06
may contribute to NTDs (56). Researchers at Weill Cornell

Medicine have applied a ML approach to explore genetic

variations associated with spina bifida, a type of NTD. By

examining the genomes of 149 individuals with spina bifida and

149 healthy controls, they discovered function-altering variants in

genes that differentiate affected individuals from those without

the condition. The study highlighted significant pathways related

to glucose and lipid metabolism, which are vital for cellular

energy and influenced by maternal health factors like diabetes

and obesity, known risk factors for NTDs. The findings

demonstrate the efficacy of ML algorithms in classifying genetic

data, enabling the identification of genes that distinguish spina

bifida cases from controls, thus minimizing biases present in

traditional studies. These insights could inform targeted

preventative strategies, including personalized nutritional advice

for couples planning to conceive. Moreover, the researchers aim

to establish an international consortium to expand their

investigation, enhancing the understanding of the genetic basis of

spina bifida across diverse populations and promoting

personalized medicine approaches to prevent this serious

condition (49). Furthermore, a study by Karthik et al. (23)

employed a ML technique, specifically RFE and differential gene

expression analysis, to identify key biomarkers related to open

NTDs, particularly myelomeningocele, by analyzing amniotic

fluid datasets (GSE4182 and GSE101141). The research identified

four significant biomarkers: Growth Associated Protein 43

(GAP43), Glial Fibrillary Acidic Protein (GFAP), Repetin

(RPTN), and CD44, which are involved in critical processes such

as axon growth, astrocyte differentiation, and neuroinflammation.

The findings were validated using various binary classifiers, with

logistic regression achieving an accuracy of 86.67% and an AUC-

ROC of 0.90 in distinguishing affected from healthy samples.

GAP43 and GFAP are particularly important for early diagnosis

due to their roles in neurodevelopment and response to central

nervous system injuries, with elevated levels indicating abnormal

neurodevelopment and astroglial activation, respectively. This

research highlights the potential of these biomarkers to improve

prenatal diagnostic methods for conditions like

myelomeningocele, enabling healthcare providers to identify at-

risk pregnancies earlier and facilitating timely interventions for

better outcomes in newborns (23). In their 2021 study, Mustafa

et al. investigated the relationship between gene polymorphism

and folic acid interactions in the context of NTDs. The research

highlighted the significance of the minimum folate carrier (MFC

A80G) gene polymorphism, particularly the homozygous mutant

type (GG) genotype, alongside maternal folic acid consumption

in reducing the prevalence of NTDs. Utilizing a grey wolf

optimizer-assisted deep recurrent neural network, the authors

achieved an impressive accuracy rate of 99.5% in predicting the

associations between these factors. Their findings indicated a

remarkably low error ratio of 0.015%, underscoring the

effectiveness of combining genetic information with nutritional

factors to mitigate the risk of NTDs in offspring (50). Folic acid

plays a crucial role in reducing the risk of NTDs, including spina

bifida and anencephaly, during pregnancy. As a vital B vitamin,

it is essential for DNA synthesis, repair, and methylation—
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processes critical for early fetal development. Once converted to

tetrahydrofolate (THF) in the body, folic acid supports

nucleotide synthesis, aiding in the formation and closure of the

neural tube (57). Research indicates that women who consume

sufficient folic acid before and during early pregnancy can

significantly lower their risk of NTDs (13, 14).

The integration of ML with systems biology is transforming the

study of complex genetic conditions like spina bifida by allowing

researchers to analyze genetic data in conjunction with

environmental factors (49). This multidisciplinary approach

enhances the understanding of conditions NTDs, which are

influenced by both genetic predispositions and environmental

exposures. By utilizing ML algorithms to process large datasets,

researchers can effectively identify at-risk populations and

develop targeted interventions, overcoming challenges faced by

genome-wide association studies (GWAS) in detecting subtle

genetic signals associated with rare conditions (58, 59).

Ultimately, the goal is to create personalized prevention strategies

tailored to individual families, allowing healthcare providers to

offer customized advice and interventions that could reduce the

risk of spina bifida and other NTDs. As ML continues to evolve,

future research will likely focus on sophisticated models that

incorporate various datasets, further improving predictive

capabilities and deepening our understanding of complex genetic

conditions (49). Overall, these studies underscores the

transformative role of ML in biomedical research, particularly in

identifying critical biomarkers for complex conditions such as

open NTDs and advancing personalized maternal-fetal healthcare.
Integration of AI in prenatal ultrasound
imaging

Currently, there are relatively few studies utilizing AI to predict

NTDs, with most existing models focusing on binary classification

(normal vs. abnormal) or identifying general intracranial image

patterns (60, 61). However, AI-assisted ultrasound technology is

significantly enhancing the detection of NTDs and other fetal

anomalies through various mechanisms. One of the most notable

advancements is in diagnostic accuracy, where AI algorithms

have achieved sensitivity and specificity rates as high as 88.9%

and 98.0%, respectively. These rates surpass those of traditional

methods, which report lower sensitivity at 81.5% and specificity

at 92.2% (24, 26). Moreover, AI systems automate routine tasks,

such as capturing standard image planes and measuring

biometric parameters, which has reduced median scan times

from 19.7 min to 11.4 min, thereby easing the cognitive burden

on sonographers and allowing them to concentrate on other

critical patient care aspects (26, 62). This streamlining leads to

enhanced workflow efficiency, enabling sonographers to conduct

smoother examinations with fewer interruptions and fostering

better patient interactions. Moreover, AI provides real-time

quality assurance during ultrasound examinations, offering

immediate feedback to ensure that images meet diagnostic

standards and mitigating human judgment errors. It also

addresses traditional ultrasound limitations, such as fetal
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measurement consistency and anomaly detection under less-

than-ideal conditions. Beyond NTDs, AI applications extend to

assessing other fetal conditions, like congenital heart disease and

brain abnormalities, with high accuracy in distinguishing normal

from abnormal fetal brain structures (39, 63). This integration of

AI into ultrasound technology represents a transformative

advancement in prenatal care, significantly improving the

screening and diagnosis of fetal anomalies and ultimately leading

to better outcomes for affected infants and families. As research

progresses, further advancements are anticipated, paving the way

for fully automated systems and enhanced collaboration between

AI developers and medical professionals. Overall, AI is

transforming obstetric ultrasound by improving diagnostic

capabilities, optimizing workflows, and facilitating timely medical

interventions, ultimately enhancing prenatal care and outcomes

for affected infants and families (4, 24).

Table 2 showcases advancements in DL algorithms for

diagnosing fetal abnormalities, such as NTDs, using ultrasound

and MRI, highlighting their potential to enhance diagnostic

accuracy and efficiency in clinical settings. Recent studies

emphasize notable progress in DL techniques for classifying and

detecting fetal brain abnormalities through these imaging

modalities. Chen et al. (62) developed an enhanced convolutional

neural network algorithm called Oct-U-Net, aimed at improving

the automatic recognition and diagnosis of fetal spina bifida in

three-dimensional (3D) ultrasound images. This research

involved 3,300 pregnant women who underwent 3D ultrasound

examinations, with Oct-U-Net evaluated using various metrics

such as recall rate, precision rate, pixel accuracy (PA), mean

intersection over union (MIoU), and mean standard error. The

findings revealed that Oct-U-Net outperformed both the fully

convolutional network (FCN) and the original U-Net algorithm,

achieving recall and precision rates of 0.93 and 0.96, respectively,

alongside a PA of 0.949 and an MIoU of 0.917. Moreover, Oct-

U-Net demonstrated a notably lower mean standard error of

4.1243 and a reduced average running time of 12.15 s compared

to other algorithms, suggesting its superior diagnostic capabilities

for fetal spina bifida in 3D ultrasound imaging (67). Xie et al.

(64) examined the feasibility of DL algorithms on a large dataset

from a hospital database, which included 10,251 normal and

2,529 abnormal pregnancies, ultimately analyzing 15,372 normal

and 14,047 abnormal ultrasound images. Their algorithms

achieved impressive segmentation precision, recall, and Dice’s

coefficient of 97.9%, 90.9%, and 94.1%, respectively, with an

overall classification accuracy of 96.3%, sensitivity of 96.9%, and

specificity of 95.9% (64). Lin et al. (65) introduced the Prenatal

ultrasound diagnosis Artificial Intelligence Conduct System

(PAICS), utilizing a dataset of 43,890 images and 169 videos

from 16,297 pregnancies. PAICS demonstrated robust diagnostic

performance in identifying ten types of intracranial

abnormalities, achieving macro- and microaverage areas under

the receiver-operating-characteristics curve (AUC) of 0.933 and

0.977 for internal validation, respectively (65). Chowdhury et al.

(66) developed StackFBAs, a novel DL framework for detecting

fetal brain abnormalities from MRI images, achieving an overall
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TABLE 2 Summary of studies on advances in deep learning for fetal imaging.

Study Methodology Dataset Details Key Findings
Xie et al. (64) Deep learning algorithms for classification

of fetal brain ultrasound images
10,251 normal and 2,529 abnormal
pregnancies; 15,372 normal and 14,047
abnormal images analyzed

Segmentation precision: 97.9%, recall: 90.9%, DICE: 94.1%;
overall accuracy: 96.3%, sensitivity: 96.9%, specificity: 95.9%

Chen et al. (62) Enhanced convolutional neural network
(Oct-U-Net)

3,300 pregnant women, 3D ultrasound images Outperformed FCN and original U-Net—Recall rate: 0.93—
Precision rate: 0.96—Pixel accuracy (PA): 0.949—Mean
intersection over union (MIoU): 0.917—Mean standard error:
4.1243—Average running time: 12.15 s

Lin et al. (65) Development of the Prenatal ultrasound
diagnosis Artificial Intelligence Conduct
System (PAICS)

43,890 images from 16,297 pregnancies; 169
videos from 166 pregnancies

AUC of 0.933 (macro) and 0.977 (micro) for internal
validation; performance comparable to expert sonologists

Chowdhury
et al. (66)

StackFBAs deep learning framework for
detecting fetal brain abnormalities from
MRI images

Utilized a Greedy-based Neural Architecture
Search to generate 94 CNN architectures

Overall accuracy: 80%, F1-score: 78%, sensitivity: 76%,
specificity: 78%; incorporated federated learning techniques

Qi et al. (52) Deep learning model for detection and
classification of fetal CNS anomalies using
ultrasound imaging

Multi-center dataset focusing on four
anomalies: anencephaly, encephalocele,
holoprosencephaly, rachischisis

Patient-level prediction rate: 94.5%, AUROC: 99.3%;
improved diagnostic accuracy with heatmaps for visual cues

Abbreviations: AUC, area under the curve; CNN, convolutional neural network; DICE, sørensen-dice coefficient; FCN, fully convolutional network; MIoU, mean intersection over union; PA,

pixel accuracy; AUROC, area under the receiver operating characteristic; F1-score, harmonic mean of precision and recall.
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accuracy of 80% and incorporating federated learning techniques

(66). Qi et al. (52) advanced the field further with a model

focused on detecting central nervous system anomalies, achieving

a patient-level prediction rate of 94.5% and an AUROC of 99.3%

(52). These studies collectively illustrate the transformative

potential of DL in prenatal diagnostics, significantly enhancing

healthcare delivery and patient outcomes.
Future directions

The integration of AI into genetic research is transforming

NTD prevention by enabling personalized strategies for

prospective parents. AI allows for the thorough analysis of

genetic data to identify mutations and variations that increase

the risk of NTDs, while also factoring in environmental

influences. This comprehensive approach enables healthcare

providers to offer tailored recommendations, such as

personalized nutritional advice on folic acid, which effectively

reduces NTD risks. The goal is to empower families by

considering their unique genetic backgrounds, lifestyle choices,

and dietary needs. Moreover, AI enhances traditional GWAS to

overcome challenges associated with the rarity of NTDs, leading

to more robust findings (68–70). As AI technology advances, its

role in genetic research is expected to expand, promoting

interdisciplinary collaboration that translates findings into clinical

practice and paving the way for personalized NTD

prevention strategies.

AI-generated health messages are proving effective in raising

public awareness about NTD prevention, particularly regarding

the importance of folic acid. Research shows that these messages

often match or exceed the clarity and effectiveness of human-

created content, as seen in studies like the Folic Acid Message

Engine (71, 72). This technology produces tailored messages

that effectively engage specific demographics, ensuring broader

reach on social media. Moreover, AI can generate a consistent

flow of fresh content, addressing challenges in maintaining
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long-term health communication campaigns. By providing

timely reminders and educational materials for prospective

parents, AI helps close significant knowledge gaps about folic

acid’s role in reducing NTD risks. As AI technology evolves,

its application in health communication may grow, potentially

leading to more sophisticated algorithms that analyze audience

responses in real-time, while also emphasizing the importance

of ethical considerations. Overall, AI-generated health

messages offer a valuable opportunity to enhance public

understanding of NTD prevention and improve health

outcomes for at-risk communities.
Conclusions

The integration of AI into the study and prevention of NTDs

represents a significant advancement in research and clinical

practice. Studies showcase various applications of these

technologies, such as predictive modeling, genetic mutation

identification, biomarker discovery, and AI-assisted imaging,

which enhance diagnostic accuracy, patient care, and

personalized prevention strategies based on individual genetic

and environmental factors. As research evolves, the potential for

precision medicine grows, allowing healthcare providers to offer

targeted recommendations based on genetic predispositions and

lifestyle choices. Furthermore, AI-driven health awareness

campaigns can improve public understanding of NTD

prevention, guiding informed decisions by prospective parents.

Moving forward, combining ML techniques with traditional

medical practices will enhance our understanding of complex

conditions like spina bifida and promote innovative solutions.

Collaborative efforts across disciplines will be essential for

translating these advancements into practical benefits for at-risk

patients. This ongoing exploration underscores AI’s crucial role

in the future of maternal-fetal medicine and public health

initiatives aimed at reducing NTD incidence.
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