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Cardiac injury caused by iron
overload in thalassemia
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Cardiac iron overload affects approximately 25% of patients with β-thalassemia
major, which is associated with increased morbidity and mortality. Two
mechanisms are responsible for iron overload in β-thalassemia: increased iron
absorption due to ineffective erythropoiesis and blood transfusions. This
review examines the mechanisms of myocardial injury caused by cardiac iron
overload and role of various clinical examination techniques in assessing
cardiac iron burden and functional impairment. Early identification and
intervention for cardiac injury and iron overload in β-thalassemia have the
potential to prevent and reverse or delay its progression in the early stages,
playing a crucial role in its prognosis.
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Introduction

β-thalassemia is the most common inherited disease, characterized by decreased or

absent β-globin chain synthesis and hemoglobin A production (1–3). An estimated 1.5%

of the global population is reported to be β-thalassemia carriers (4). It is most common

in individuals from or ancestry from African countries, the Indian subcontinent, the

Mediterranean, the Middle East, and Southeast Asia (1–6). In recent years, the

prevalence of β-thalassemia in Europe and the North America has been on the rise,

largely attributed to immigration patterns (7). β-thalassemia can be categorized into

non-transfusion-dependent thalassemia (NTDT) and transfusion-dependent

thalassemia (TDT) based on the level of reliance on blood transfusions (8). According

to a 10-year retrospective cohort study, mortality rates for TDT in England were

6.2%, significantly higher than the age/sex-adjusted mortality rate of 1.2% for the

general population (9).

The incidence of myocardial iron overload in transfusion-dependent β-thalassemia

patients has increased from 11.4%–15.1% in early studies to 26.1%–36.7% in recent

studies (10, 11). This may be due to increased survival leading to a higher rate of

comorbidities (12, 13). Cardiovascular disease remains the primary cause of death

among patients with β-thalassemia, while iron overload persists as a significant

challenge (14). Two mechanisms are responsible for iron overload in β-thalassemia:

increased iron absorption due to ineffective erythropoiesis and blood transfusions (15).

Due to ineffective red blood cell production, NTDT patients experience anemia and

hypoxia, which suppresses hepcidin expression, thereby promoting the absorption of

iron in the intestine (16, 17). Furthermore, low levels of hepcidin will cause an

upregulation of transferrin, further promoting the excessive iron release by macrophages

(18). TDT patients receive blood transfusions, which equates to an average daily intake
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of approximately 0.40 mg/kg iron. For patients who receive 25–30

U red blood cells per year, the cumulative iron in the patient will

exceed 70 g by the 30th year (8, 19).

As iron loading progresses, the capacity of transferrin to

bind and detoxify iron is eventually exceeded, leading to non-

transferrin-bound iron in plasma, which promotes oxidative

stress, mitochondrial dysfunction, and ferroptosis (20).

Myocardial iron overload can cause iron overload

cardiomyopathy (IOC), which presents as restrictive or dilated

cardiomyopathy, heart failure (HF) (21–23), and atrial

fibrillation (AF) (24, 25). Because the outcomes of transfusion-

dependent β-thalassemia are often driven by cardiac

involvement, early diagnosis and monitoring are crucial for

patient management.
Mechanisms of myocardial injury caused by
iron overload

Studies have shown that iron myocardial overload causes

myocardial dysfunction. Unbound iron enters the

cardiomyocytes through the L-type calcium channels (26).

Endosome-mediated uptake might also be involved (27). Once

in the cardiomyocytes, iron binds to ferritin and is transported

to lysosomes for degradation and long-term storage (27).

When oxidative stress overcomes the defenses, the rapid

Fenton reaction leads to an overproduction of hydroxyl ions,

an extremely reactive ion that will participate in lipid

peroxidation and change membrane permeability. Such

permeability can cause a leak of hydrolytic enzymes that

initiate cell damage and culminate in cardiomyocyte death

(28). In the presence of iron overload with concomitant

ischemia, iron overload will exacerbate ischemia-reperfusion

injury (29, 30). Unbound iron continuously entering the heart

and vasculature aggravates the damage and pathological

processes caused by iron overload and other heart pathologies

(e.g., previous myocardial ischemia) (31, 32). Iron overload in

the context of ischemia/reperfusion injury will also aggravate

injury through ferroptosis (33–36). Disruptions in calcium ion

metabolism by iron overload in cardiomyocytes are thought to

contribute to cardiac dysfunction in such patients (37), while

heart fibrosis does not appear to be involved (38). These may

also be mechanisms by which cardiac iron overload causes

cardiac dysfunction in thalassemia patients.

The fact that cardiomyocyte iron overload is a storage

problem and not an infiltrative process indicates that iron can

be removed to reverse cardiac iron overload and associated

damage (39). Combination iron chelation therapy for severe

transfusional myocardial iron overload reduced liver iron

overload but without changes in left ventricular ejection

fraction (40). On the other hand, Khamseekaew et al. (41)

showed that iron chelation therapy led to decreased cardiac

oxidative stress, improved cardiac mitochondrial function, and

improved cardiac function. The increased cardiac risk could

also be due to other metabolic abnormalities induced by iron

overload, including insulin resistance (32, 42).
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Molecular mechanism of myocardial injury
caused by cardiac iron overload in
thalassemia

Iron overload is a common feature in patients with β-

thalassemia, but the molecular mechanism of cardiac damage

caused by iron overload in thalassemia is poorly understood. The

following has been reported so far. Figure 1 outlines the main

cardiac injury mechanisms associated with iron overload.
Iron metabolism
At present, the exact molecular mechanism of iron overload

leading to heart damage is mainly considered to be ferroptosis

(33–36). Ferroptosis is a form of cell death dependent upon

intracellular iron and is distinct from apoptosis, necrosis, and

autophagy (43). Heme oxygenase 1 up-regulation in response to

hypoxia and hypoxia/reoxygenation degrades heme and induces

or exacerbates iron overload and ferroptosis in the endoplasmic

reticulum of cardiomyocytes. Ferroptosis triggered by GPx4

reduction and iron overload in the endoplasmic reticulum

completely differs from mitochondria-driven necrosis (33) and

will participate in cardiomyocyte death (44). Mitochondrial iron

uptake depends on the activity of the mitochondrial Ca2+

uniporter, which is essential in causing mitochondrial

dysfunction and ferroptosis in cardiac iron overload (34).

Hepcidin, a peptide hormone originated from the liver,

regulates iron absorption and distribution by suppressing the

activity of transferrin (45). The transferrin is accountable for

modulating iron absorption from the gastrointestinal tract and its

release in macrophages and hepatocytes. Additionally, iron ions

binding to transferrin significantly reduce its potential toxicity,

while unbound free iron ions are the main factor causing tissue

cell damage (46, 47). Transferrin is saturated by iron overload in

β-thalassemia (48). Under the stimulation of iron overload and

inflammation, the expression of Hepcidin is upregulated; whereas

under the stimulating conditions of anemia, hypoxia, or the

synthesis/injection of erythropoietin, its expression is

downregulated (49–51). Nevertheless, in patients with

β-thalassemia, the generation of hepcidin is decreased due to

ineffective erythropoiesis (52–54). In patients with thalassemia,

the high levels of growth differentiation factor 15 (GDF15) and

erythroferrin can also inhibit the production of hepcidin (55, 56).

This gives rise to a vicious cycle: hepcidin levels in patients with

β-thalassemia are frequently too low, thereby triggering excessive

iron absorption in the intestines and the mobilization of iron in

macrophages, ultimately leading to iron overload in various

organs, including the heart (52–54). Regular blood transfusions

are likely to inhibit the expression of hepcidin driven by

erythropoiesis in patients with TDT (57). Consequently, the

hepcidin level in TDT patients is typically higher than that in

NTDT patients (57). In addition to the regulatory role of

hepcidin, the expression of iron transporters such as transferrin

receptor 1 (Tfr1) and transferrin is crucial for understanding the

dynamics of cardiac iron overload (48). Tfr1 mediates the uptake

of iron bound to transferrin, while transferrin facilitates the
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FIGURE 1

The primary mechanisms of cardiac injury associated with iron overload Tf transferrin. ER, endoplasmic reticulum; HO-1, heme oxygenase-1; GPx4,
glutathione peroxidase 4.
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excretion of iron from cells (58, 59). In β-thalassemia, disruption of

these transporters, coupled with low hepcidin levels, leads to an

imbalance in iron metabolism, further exacerbating iron

accumulation in cardiac tissue (60).

The therapy targeting the hepcidin-transferrin axis has

demonstrated initial potential, capable of effectively alleviating

iron overload and ineffective erythropoiesis. The specific

mechanisms and therapeutic effects will be elaborated on in

detail in the treatment section that follows.
Calcium channel
Calcium is a critical regulator of cardiac function by

maintaining cardiac excitation-contraction coupling, and

disturbances in cardiac calcium regulation are a major

contributor to left ventricular dysfunction in iron overload

cardiomyopathy (37). L-type Ca2+ channels participate in iron

uptake into cardiomyocytes (61). Iron overload reduces

CaV1.3-dependent L-type Ca2+ currents (24). In the presence of

elevated oxidative stress, such as in iron overload, sarcoplasmic

reticulum Ca2+ leaks through the Ca2+ release channels (62),

sarcoendoplasmic reticulum Ca2+-ATPase activity is inhibited,

the sodium-calcium exchanger currents are elevated (63), and

L-type calcium channels are reduced (64, 65). Reduced peak

systolic Ca2+ levels, slow Ca2+ relaxation rates, and elevated

diastolic Ca2+ levels contribute to impaired cardiomyocyte

functions (66). L-type Ca2+ channels are also found in pancreatic

beta cells (67, 68) and the parathyroid gland cells (69).

Therefore, iron overload will also induce endocrine dysfunction

that can indirectly influence the heart.

T-type calcium channels also play a significant role in the

pathophysiology of myocardial iron overload, particularly in

patients with β-thalassemia. In conditions of iron overload, such

as those seen in thalassemia, T-type calcium channels may serve

as critical pathways for iron entry, exacerbating cardiac iron

accumulation and contributing to cardiomyopathy. Research has

demonstrated that T-type calcium channels are involved in the

mechanisms of iron uptake in cardiomyocytes. Specifically, iron

overload conditions have been shown to increase the expression
Frontiers in Pediatrics 03
and activity of T-type calcium channels, leading to enhanced

iron influx into the cardiomyocytes. This process is particularly

concerning because excessive iron deposition can lead to

oxidative stress, mitochondrial dysfunction, and ultimately, heart

failure. The interplay between calcium and iron metabolism is

complex, as elevated intracellular calcium levels can further

promote iron-induced cellular damage, creating a vicious cycle of

injury in the myocardium (70, 71).

Atrial and ventricular tachyarrhythmias can develop due to

heterogeneous electrical conduction and repolarization (72). Iron

overload reduces CaV1.3-dependent L-type Ca2+ currents,

resulting in atrial fibrillation (24). Sudden cardiac death may

occur without involvement of ischemia or infarction (73–75).

These are enough to show that the risk of cardiac iron overload

can affect the life safety of patients with thalassemia.
Oxidative stress
In β-thalassemia, ineffective erythropoiesis results in increased

hemolysis and the release of free hemoglobin, which further

exacerbates oxidative stress through the Fenton reaction, where

iron catalyzes the conversion of hydrogen peroxide into highly

reactive hydroxyl radicals (76). Furthermore, the accumulation of

malondialdehyde, a marker of oxidative stress, has been observed

in patients with β-thalassemia, indicating heightened oxidative

damage (77). The role of hypoxia-inducible factor 1-alpha (HIF-

1a) in this context is particularly noteworthy. HIF-1a is known

to be involved in cellular responses to hypoxia and oxidative

stress. In cases of iron overload, HIF-1a levels may be altered,

influencing the expression of genes involved in iron metabolism

and oxidative stress response (78). This dysregulation can lead to

increased erythroid apoptosis and further exacerbate the iron

overload condition, creating a vicious cycle of damage (78). The

accumulation of ROS is particularly detrimental in cardiac

tissues, where it can disrupt calcium homeostasis, contributing to

cardiac dysfunction and arrhythmias (79).

Glutathione (GSH), a key antioxidant in the body, plays a vital

role in mitigating oxidative stress. In thalassemia patients, the

dysregulation of the glutathione antioxidant system can
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exacerbate the effects of iron overload. Studies have shown that

patients with thalassemia exhibit reduced levels of GSH, which

compromises their ability to neutralize ROS effectively (80, 81).

This reduction in GSH levels is often correlated with increased

markers of oxidative damage, such as malondialdehyde and total

carbonyls, indicating a higher degree of lipid peroxidation and

protein oxidation (82).

The upregulation of glutamate-cysteine ligase, an enzyme

involved in GSH synthesis, has been observed in some

thalassemia patients as a compensatory response to oxidative

stress. However, this adaptive mechanism may not be sufficient

to counteract the overwhelming oxidative burden caused by iron

overload (83). The interplay between iron accumulation and the

glutathione antioxidant system is crucial, as the depletion of GSH

can lead to further cellular damage and contribute to the

progression of cardiac complications in thalassemia patients.

Moreover, the use of antioxidants has been explored as a

potential therapeutic strategy to mitigate oxidative stress in

thalassemia patients. For example, alpha lipoic acid has shown

promise in reducing oxidative stress markers and improving iron

levels in β-thalassemia major patients (84). Similarly, vitamin

E supplementation has been associated with decreased oxidative

stress, suggesting that antioxidant therapy could play a role in

managing myocardial iron overload and its associated

complications (85). The combination of deferiprone (an iron

chelator) and N-acetylcysteine (an antioxidant) has been reported

to enhance cardiac calcium homeostasis and reduce oxidative

stress in iron-overloaded thalassemic mice (86).

Other pathways could also be involved in cardiac injury due to

iron overload. The nuclear erythroid factor-2 (Nrf2) is a

transcription factor involved in redox responses and modulates

anti-inflammatory and cytoprotective systems to ensure cell

survival against oxidation in different tissues (87). Still,

Nrf2-deficient mice display age-dependent cardiomyopathy (87).

In summary, the mechanism of oxidative stress related to

cardiac iron overload in β-thalassemia patients involves the

interplay of excess iron, increased ROS production, and the

resultant cellular damage. Addressing this oxidative stress

through targeted therapies may improve clinical outcomes and

reduce morbidity associated with cardiac complications in

these patients.

Mitochondria
The pathophysiology of IOC in β-thalassemia patients is closely

related to mitochondrial dysfunction, which can be further

exacerbated by iron overload in cardiac tissue. The mitochondria

are central to energy production in all cells and are affected by

iron overload, leading to mitochondrial oxidative stress and

participation in ferroptosis (34). The excess cytoplasmic iron

leads to excess oxidative stress (88). Iron can enter the

mitochondria through the mitoferrin −1 and −2 proteins,

damaging the mitochondria through oxidative damage and

decreasing energy output (41, 88).

Recent studies have highlighted the role of mitochondrial

calcium uniporters (MCU) in mediating iron-induced

mitochondrial dysfunction. Research indicates that iron overload
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can lead to increased ROS production, which in turn disrupts

mitochondrial membrane potential and promotes cell death

pathways such as ferroptosis. For instance, a study demonstrated

that blocking MCU significantly reduced ROS production and

mitochondrial swelling in iron-overloaded thalassemic mice,

suggesting that MCU could be a therapeutic target for preventing

mitochondrial dysfunction in IOC (41, 89). Moreover, the

interplay between iron metabolism and mitochondrial dynamics

is critical. Iron overload has been shown to impair mitochondrial

biogenesis and dynamics, leading to altered mitochondrial

morphology and function. In a murine model of iron overload,

the expression of mitochondrial fusion and fission proteins was

significantly disrupted, correlating with increased oxidative stress

and cardiac dysfunction (41, 89). This disruption in

mitochondrial dynamics is further compounded by the activation

of apoptotic signaling pathways, which are triggered by elevated

iron levels and ROS (90). The role of signaling pathways such as

the PI3K/AKT/mTOR and MAPK pathways in mediating the

effects of iron overload on mitochondrial function has also been

explored. For example, icariin, a natural compound, has been

shown to protect bone marrow mesenchymal stem cells from

iron overload-induced dysfunction by modulating these

pathways, thereby enhancing mitochondrial function and

reducing apoptosis (91). This suggests that targeting these

signaling pathways may provide a novel approach to mitigate the

effects of iron overload on cardiac mitochondria.

Genetics factors
Polymorphisms and mutations in specific genes can participate

in cardiac iron overload. Mokhtar et al. (80) reported that

glutathione S-transferase gene polymorphism (GSTM1) null

genotype was associated with cardiac iron overload independent

of serum ferritin in Egyptian patients with β-thalassemia. On the

other hand, Abo-Shanab et al. (81) stated that the GSTM1 null

genotype is not involved in β-thalassemia or cardiac

complications. Hepcidin and hemochromatosis protein

polymorphisms appear to be involved in iron homeostasis in

patients with β-thalassemia (92, 93). Polymorphisms in the OPG/

RANK/RANKL axis might also be involved in cardiac iron

overload (94).
Identify patients at risk for cardiac iron
overload

Magnetic resonance imaging

Cardiac magnetic resonance imaging (CMRI), especially

T2*CMRI, is an excellent non-invasive detection method for

identifying iron deposits within the heart (95, 96). Iron disrupts

magnetic inhomogeneities and accelerates signal decay, thereby

reducing T2* relaxation (97). T2* CMRI is a crucial marker for

diagnosing and monitoring iron chelation therapy in IOC

patients, significantly improving the survival of β-thalassemia

major (β-TM) (98–100). T2* < 20 ms is considered to indicate

iron overload in the myocardium, while T2* < 10 ms is an
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important predictor of IOC heart failure progression (101). The

first CMRI should be performed as soon as possible after starting

iron chelation therapy (102), as CMRI can guide iron chelation

therapy (103, 104).

Due to T2* measurements being taken from the left ventriclar

(LV) mid-ventricular septum, attention has increasingly shifted

towards assessing iron loading and functionality in other cardiac

chambers, such as the left atrium (LA) and right ventricle (105).

LA strain may serve as an indicator of left ventricular diastolic

function in patients with thalassemia, given that diastolic

dysfunction often precedes contractility dysfunction (106–108).

The study showed that LA strain parameters (including LA

reservoir strain, LA conduit strain, and LA booster strain) were

independently associated with cardiac complications in the β-TM

cohort, stronger than cardiac iron levels (108). Iron overload can

also directly damage the LA wall, promoting atrial

cardiomyopathy and atrial fibrillation (109, 110).
Echocardiographic

Cardiac iron overload does not have characteristic findings on

echocardiography, and studies have shown that the left ventricular

ejection fraction (LVEF) measured by echocardiography is not

significantly correlated with the T2* measured by CMRI (111).

Echocardiography has significant advantages in non-invasiveness,

convenience, and wide application, and is suitable for follow-up

monitoring of disease progression and therapeutic efficacy

assessment in patients at high risk of iron overload or with

confirmed iron overload. In addition, echocardiography can

identify β-thalassemia patients with normal T2* MRI results but

already showing impairment of cardiac diastolic function (111).

A recent study suggested the potential value of echocardiography

radiomics in predicting cardiac problems due to iron overload

(112), which could be of value in settings where MRI is

less available.

In β-TM patients, echocardiography showed that individuals with

inter-atrial electromechanical delay >44.8 ms had 81.2% sensitivity

and 98.7% specificity in identifying occult AF (113). Therefore,

it is recommended to conduct long-term electrocardiographic

monitoring to more effectively identify AF and prevent stroke

(113). Moreover, the Left Atrioventricular Coupling Index

(LACI) and Right Atrioventricular Coupling Index (RACI) are

not related to myocardial iron load, but they are significantly

increased in patients with cardiac complications (114).
Electrocardiographic

As a basic diagnostic tool in clinical practice, the

electrocardiogram (ECG) may also provide important clues as to

whether iron overload is present (101). The prolongation of QRS

duration, QT interval, and QTc interval is associated with

cardiac iron overload in patients with transfusion-dependent

thalassemia (115). Repolarization abnormalities and bradycardia

serve as specific biomarkers in β-TM patients, aiding in the
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β-TM patients without heart failure reveal inverted T waves and

bundle branch blocks in about 46% of cases. AF occurs in 14%

to 20% of cases (113, 116). The maximum P-wave duration and

P-wave dispersion serve as effective ECG markers for the

identification of AF occurring during a five-year follow-up in

patients with β-TM (113, 116).
Biomarkers

A study demonstrated that levels of growth differentiation

factor-15, galectin-3, and N-terminal pro-B-type natriuretic

peptide were significantly elevated in patients with myocardial

iron overload compared to the healthy control group (117).

However, these biomarkers did not exhibit a correlation with T2*

CMRI and failed to predict myocardial iron overload in

asymptomatic children with β-thalassemia major (117).

Therefore, there are currently no biomarkers for diagnosis or

guidance of treatment.
Treatment

Iron chelation treatment

Despite the novel comprehension of the pathophysiology of β-

thalassemia, iron chelation therapy still remains the most

efficacious approach for reducing the morbidity and mortality

associated with iron overload in patients with NTDT and TDT

(118). Currently, there are three commonly utilized iron

chelators: deferoxamine (DFO), deferiprone (DFP), and

deferasirox (DFX) (3). DFO is administered via subcutaneous or

intravenous injection and can effectively lower hepatic iron

concentration and patient mortality (3). Regarding cardiac iron

overload, studies have demonstrated that a high-dose regime of

continuous infusion for 24 h at 60 mg/kg/day can effectively

reduce the cardiac iron burden and reverse cardiac complications

(119, 120). Nevertheless, due to the requirement of prolonged

parenteral administration, patients’ compliance with DFO is

limited (121). DFP is the first oral iron chelator and has been

approved for use in TDT patients with contraindications to or

insufficient response from DFO treatment. Owing to its

lipophilic nature, DFP is more prone to enter cardiomyocytes,

thereby reducing the iron load within cardiomyocytes (122). In

comparison with DFO, patients treated with DFP exhibit more

pronounced improvement in cardiac T2* values (123), higher left

ventricular ejection fraction (123, 124), stronger cardiac

protective effects (125), and a higher 5-year survival rate without

heart disease (122). It is necessary to be cautious of the most

severe adverse reactions, namely neutropenia and

agranulocytosis, when using DFP for a long term (126). DFO,

DFP, and DFX have all been shown to be effective for TDT

patients (118). Based on the results of the THALASSA trial

(127), DFX has become the only iron chelator approved for use

in NTDT. For patients with myocardial T2*≥ 20 ms, DFX
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treatment can prevent myocardial iron accumulation and be

accompanied by an increase in LVEF (128). After 3 years of

continuous DFX treatment, 68.1% of patients with a baseline T2*

ranging from 10 to <20 ms had their T2* normalized, and 50.0%

of patients with a baseline T2* ranging from >5 to <10 ms had

their T2* elevated to 10 to <20 ms (129). Nevertheless, in the

majority of studies, no alteration of LVEF was witnessed in

patients with T2* < 20 ms who underwent DXP treatment

(128–130). DFP is typically well tolerated, with adverse reactions

such as elevated creatinine, abdominal pain, and nausea usually

being transient and fleeting (131). The new film-coated tablet of

DFX can conspicuously enhance patients’ satisfaction and

compliance with treatment (132).

Due to the differences in the iron chelation mechanisms of

different iron chelators, some scholars believe that the

combination of iron chelators may enhance the iron chelation

effect through synergistic action (133, 134). Clinical studies have

shown that compared with the use of DFO or DFP alone, the

combination of DFO and DFP can more effectively reduce

cardiac iron burden, improve cardiac function, and further

increase the survival rate of patients (135–137). The combination

therapy of DFP and DFX as well as that of DFO and DFX have

both demonstrated superior efficacy compared to monotherapy,

and no increase in drug toxicity has been observed (138–140).

Currently, the combined therapy of DFP and DFO chelation is

the most commonly used combined treatment for the treatment

of severe cardiac iron overload (101). Nevertheless, at present,

the selection of different combination treatment regimens still

requires further exploration through head-to-head studies (141).
Target hepcidin-ferroportin axis therapy

The therapeutic regimens targeting hepcidin can lower the risk

of iron overload by suppressing iron absorption and potentiate the

efficacy of iron chelation therapy. Minihepcidins are synthetic

peptides encompassing 7–9 amino acids at the N-terminal of

hepcidin, being capable of binding to iron transporter proteins

and inducing their degradation (142). In the mice model,

minihepcidins can effectively reduce iron load and improve

ineffective red blood cell generation (43, 143, 144). However, the

study evaluating the efficacy and safety of LJPC-401

(NCT03381833), a minihepcidin, for treating myocardial iron

overload in TDT patients was prematurely terminated due to the

lack of efficacy demonstrated in the interim analysis.

The inhibitor of transmembrane protease serine 6 (TMPRSS6)

is capable of effectively reducing the degradation effect of

TMPRSS6 on hepcidin (145). The anemia condition can be

significantly ameliorated and the generation of ineffective red

blood cells as well as the iron load can be reduced by knocking

out the TMPRSS6 gene (146). It has been demonstrated that the

RNA interference therapeutic agent targeting TMPRSS6 can

effectively ameliorate anemia and iron overload in mouse models

(147). IONIS TMPRSS6-LRx, functioning as an inducer of

hepcidin, is capable of effectively alleviating the issue of iron

overload (148). Currently, its therapeutic efficacy and safety in
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the human body are being assessed in Phase 2 clinical trials

(NCT04059406).

Another approach is to employ iron transporter protein

inhibitors (VIT-2763) to restriction the availability of iron,

thereby mitigating ineffective erythropoiesis and iron overload

(149). In the mouse model of β-thalassemia, oral administration

of VIT-2763 can significantly enhance erythropoiesis and rectify

the dysregulation of iron homeostasis. VIT-2763 in combination

with DFX is also feasible, which provides a new opportunity to

improve the ineffective red blood cell generation and iron

overload in patients with β-thalassemia (150). The Phase 1

clinical study of VIT-2763 demonstrated that serum iron levels

and transferrin saturation declined transiently, and no obvious

safety concerns were identified (149). Currently, the Phase 2

clinical study of VIT-2763 (NCT04364269) is in progress.

Targeting the hepcidin-ferroportin axis offers a novel

therapeutic direction for patients with β-thalassemia, particularly

for those with NTDT, as it not only reduces iron overload but

also improves anemia, decreases ineffective erythropoiesis, and

alleviates splenomegaly. However, the impact of this therapeutic

approach on cardiac iron overload requires further investigation.

Calcium channel blockers
Despite the role of calcium dysregulation in cardiac

dysfunction induced by iron overload (37), Sadaf et al. (151)

showed that the use of calcium channel blockers was not

associated with improvements in cardiac iron overload. However,

a preliminary study involving 26 patients with thalassemia who

had received blood transfusions demonstrated that the

combination of amlodipine and iron chelators could enhance

cardiac T2* values, whereas no significant improvement was

observed in the group receiving iron chelators alone (152).

Subsequent randomized controlled trials further validated this

finding; however, the combination of amlodipine and iron

chelators did not lead to an improvement in LVEF (153–156).

The clinical application of calcium channel blockers for the

prevention and treatment of iron overload still requires more

clinical randomized controlled trials to support it.

Decreases transfusion burden
Drug therapy has shown rapid progress in recent years. Drug

therapy can promote red blood cell maturation, improve anemia,

thereby reducing the need for blood transfusions and iron load.

Thalidomide has been reported to increase hemoglobin levels or

decrease blood transfusion volume by ≥50% in 78% of children

with β-thalassemia and partial or declining response to

hydroxyurea (157–159). Luspatercept is a recombinant fusion

protein that binds to select transforming growth factor-beta

(TGF-beta) superfamily of ligands (blocks SMAD2/3 signaling)

to promote erythroid maturation and decreases transfusion

burden and iron intake, lowering the requirement for iron-

chelation therapy (160–162). Mitapivat is an allosteric activator

of pyruvate kinase that reduces the markers of ineffective

erythropoiesis and improves anemia (163). However, more

clinical data is needed to evaluate the efficacy and safety of drug

therapy. Luspatercept is a recombinant fusion protein that binds
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to select transforming growth factor-beta (TGF-beta) superfamily

of ligands (blocks SMAD2/3 signaling) to promote erythroid

maturation and decreases transfusion burden and iron intake,

lowering the requirement for iron-chelation therapy (160–162).
Anti-oxidants treatment

Recent research indicates that antioxidant treatment might

exert a key role in controlling this situation by alleviating the

oxidative stress related to iron overload. For example, DFP and

NAC monotherapy showed similar cardioprotective effects,

however, the combination of DFP with NAC showed more

significant effects in reducing cardiac iron deposition and cell

apoptosis compared to monotherapy (59). Some studies have

explored the efficacy of different antioxidant therapies compared

to traditional iron chelation methods. Research has shown that

antioxidant compounds such as vitamin E (85, 164), vitamin C

(165), silymarin (166), and NAC (167, 168) have a certain effect

in reducing oxidative stress in cardiac tissue, and no serious side

effects have been observed. Moreover, ebselen is a novel

glutathione peroxidase mimetic, exerting anti-inflammatory and

antioxidant effects (169). Ebselen combined with DFX treatment

can significantly reduce the iron burden-induced cardiac

hemosiderosis, cardiac malondialdehyde and improve cardiac

function in mice with Mediterranean anemia (170). In the Phase

II clinical trials, ebselen has demonstrated excellent tolerance and

no severe adverse reactions (171). In conclusion, although iron

chelation therapy remains the cornerstone of controlling cardiac

iron overload in patients with β-thalassemia, the combination of

antioxidant therapy as an adjunctive method shows great

potential. Future studies should further explore the optimal

combination of these treatments and their long-term impact on

the cardiovascular health of this vulnerable population.

Gene therapy
Gene therapy is a potentially curative treatment for

transfusion-dependent thalassemia (4). It included allogeneic

hematopoietic stem cell transplantation (HSCT) and xenogenic

stem cell suppression.

HSCT is the only definitive possible cure for patients with β-

TM (2–4, 172), while the utility of HSCT in β-thalassemia

intermedia is unclear (172). HSCT aims to provide stem cells

with normal globin genes that would restore effective

hematopoiesis. A successful HSCT can allow the management of

iron overload by periodic phlebotomy rather than iron chelation

therapy (1). Santarone et al. (173) reported an overall survival of

>80% and disease-free survival of 74.5% in patients with β-TM

39 years after undergoing allogeneic HSCT. Di Bartolomeo et al.

(174) showed that the 20-year overall survival was 89% and

20-year disease-free survival was 86% after HLA-matched HSCT

in patients with β-TM, most of whom were considered high risk

for transplantation-related complications. Still, despite its

promises, HSCT has limitations related to age and issues with

HLA matching (175–178). No randomized trials evaluated

allogeneic HSCT in patients with β-TM found in a Cochrane
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review (179). HLA-matched unrelated donor and HLA-matched

related donor HSCT are associated with similar event-free

survival but HLA-matched unrelated donor HSCT may increase

risk of acute and chronic GVHD in patients with β-TM (180).

HLA-matched sibling donor HSCT may increase 2-year overall

and event-free survival and reduce risk of extended chronic

GVHD compared to other types of donor HSCT in patients with

β-TM (181). Haploidentical HSCT reported to achieve 96%

3-year overall survival and 96% event-free survival in patients

with severe β-thalassemia (182).

Xenogenic stem cell suppression is based on the use of

autologous hematopoietic stem cells to overcome complications

that can be a limiting factor in allogeneic HSCT, such as donor

availability, risk of infections, graft rejection, and graft-vs.-host

disease (4). The gene therapy products include betibeglogene

autotemcel, exagamglogene autotemcel, and autologous

CD34 + cells encoding the beta-A-T87Q-globin gene (but

withdrawn from the European market in 2021) (183–193).

Betibeglogene autotemcel is an autologous hematopoietic stem

cell-based gene therapy that may increase functional adult HbA

and total Hb to normal levels and eliminate dependence on

regular packed red blood cell transfusions (185). Gene therapies,

though promising, are still under development. Autologous

transplantation of CD34 + hematopoietic stem and progenitor

cells transduced with BB305 lentiviral vector encoding betaA

−T87Q-globin gene was reported to eliminate the need for blood

transfusion in 91% of children and adults ≤50 years old with

TDT and nonbeta0/beta0 genotype (185). LentiGlobin BB305

vector gene therapy has been reported to reduce or eliminate the

need for blood transfusions in patients with TDT (184).

Exagamglogene autotemcel (exa-cel, formerly CTX001) CRISPR-

Cas9 gene therapy was reported to increase fetal hemoglobin

production through suppression of BCL11A expression and

transfusion-independence in a 19-year-old female adult with

TDT (beta0/beta+ genotype) in a case report (183).
Anti-heart failure treatment

At the moment, there are a number of randomized controlled

trials aimed at assessing the efficacy of pharmacological

interventions, device-based therapies, or cardiac transplantation

in β-thalassemia patients with HF. The treatment of

β-thalassemia patients suffering from HF should be guided by

guideline-directed anti-heart failure therapies. In an earlier

cohort study involving 52 β-thalassemia patients with HF, who

received chelation therapy in combination with standard anti-

heart failure treatment had a survival rate of approximately 50%

over a 5-year period, comparable to other HF patients (194).

A recent study evaluated the mortality rates of patients with

β-thalassemia and HF during two periods, 1992–2004 and

2004–2016 (195). The findings indicated a significant reduction

in the proportion of deaths attributable to cardiac causes (195).

Additionally, patients who achieved effective cardiac iron removal

demonstrated sustained normal cardiac function over an average

follow-up duration of 10 years (195). For patients with end-stage
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HF, heart transplantation is a worthwhile treatment option. Prior

studies encompassed 16 recipients of IOC heart transplants from

1967 to 2003, reporting a 5-year survival rate of 81% (196). In

cases where patients present with both end-stage heart failure

and end-stage liver failure, it is advisable to consider combined

heart-liver transplantation, as isolated organ transplantation may

not yield improved prognostic outcomes (196).
Management of atrial fibrillation

Currently, there is a lack of clinical studies investigating anti-

coagulation or anti-platelet therapy in β-thalassemia patients with

AF. Patients with β-thalassemia have a higher risk of stroke than

the general population, which may be due to multiple factors

such as iron overload, splenectomy, and hemolysis (101, 197).

However, there is currently no stroke risk scoring system for β-

thalassemia patients, and the CHA2DS2-VASc scoring system

developed for the general population may not be applicable to

these patients (13). Direct oral anticoagulants (DOACs) have the

advantage of being easier to manage and safer than warfarin, but

so far only a small-scale study has found that patients taking

either DOACs or warfarin did not experience any ischemic or

bleeding events during follow-up (198, 199). Furthermore, the

risks of anemia and bleeding associated with β-thalassemia

continue to pose significant challenges; thus, further clinical

research is essential to inform anticoagulation decisions for these

patients and to evaluate the safety profiles of DOACs in

comparison to warfarin.

For the control of AF rate and rhythm, iron chelation therapy

can effectively alleviate arrhythmia (40, 119, 200). When

antiarrhythmic drugs must be used, there are no clinical studies

specifically targeting the particularities of β-thalassemia patients. It

is currently believed that drugs that may cause arrhythmias (such

as flecainide and sotalol) should be used with greater caution, and

non-dihydropyridine calcium channel blockers should be avoided

in patients with HF (13). Amiodarone, a drug that effectively

controls arrhythmias, may be relatively safe for short-term use.

However, it is important to note that long-term use of

amiodarone can cause damage to the thyroid, liver, and lungs,

which are also the main organs affected by iron overload (201).
Conclusion

Despite significant progress in the management of cardiac iron

overload in β-thalassemia patients, cardiovascular disease remains

the leading cause of death in this population. By gaining a

deeper understanding of iron overload and its complex

mechanisms in the heart, accurately assessing new therapeutic

approaches based on chelators will help further improve patient

outcomes. The roles and intervention timing of calcium ion

channel antagonists, hepcidin activators, antioxidants, and gene

therapy are currently under further investigation. If myocardial
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iron overload can be diagnosed and treated in the early stages of

the disease, it will effectively prevent progression of the disease

and improve survival rates. As previously mentioned, ECG,

echocardiography, and CMRI all have their own advantages and

limitations, and they complement each other. Utilizing current

diagnostic methods together can help us detect and monitor iron

deposition in the hearts of β-thalassemia patients in an early

stage. However, observers may exhibit inconsistencies in the

interpretation of results from CMRI, echocardiography, or ECG

evaluations due to variations in their experience and expertise

during the assessment (113, 202). In the contemporary

landscape, advancements in artificial intelligence and machine

learning have reached unprecedented levels, facilitating the

effective integration of multidimensional data and the detection

of subtle changes that may elude visual observation (202).

Additionally, there is a relative lack of large-sample, high-quality

studies in β-thalassemia patients to identify definitive treatment

decisions. Federated learning can train artificial intelligence

models using multi-center data while ensuring data privacy.
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