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Introduction: Changes in hand grip strength in relation to chronological age and
maturity status could improve the predictive power through nonlinear models
in schoolchildren.
Objectives: To determine whether nonlinear models provide more accurate and
higher predictions of hand grip strength (HGS) in children and adolescents,
taking into account chronological age and maturational status.
Methods: A descriptive cross-sectional (correlational) study was designed in
schoolchildren aged 6–16 years. The sample selection was non-probabilistic
(accidental). A total of 1,048 schoolchildren from 03 public schools were selected
(562 males and 482 females). Weight, height and body mass index (BMI) were
assessed using standardized anthropometric techniques. The maturational state
was estimated by the age at which the maximum velocity of stature (APHV) is
reached, using Moore’s technique. Handgrip strength (HGS) was evaluated for both
hands using a digital dynamometer.
Results: The nonlinear (cubic) relationships showed better explanatory power and
fit than the classic linear model in both sexes and hands (HGS). In male
schoolchildren, the coefficient of determination (R²) of the nonlinear model was
2% to 3% higher than that of the linear model. Meanwhile, in females the R2 was
higher from 1%–4%, both for chronological age and maturational state. The cubic
model showed a better fit of the SEE (in males it ranged between 3.44 and 5.32
and in females between 3.36 and 3.57), large effect sizes (f² > 0.35), evidencing a
greater precision and ability to capture the variability of the HGS in both hands in
relation to the classical linear model (in males 4.81–5.55 and in females 3.37–5.08).
Conclusion: The results of the study have shown that the cubic model provides a
better explanation and fit of the relationship between chronological age and
maturity status with HGS than the classical linear model. It was also determined
that fluctuations in HGS are more accurately described by maturity status than by
chronological age. These results suggest including nonlinear models and
controlling for maturity status. This facilitates the design of interventions according
to the different stages of maturational development.
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Introduction

Hand grip strength (HGS) is a task involving maximal

isometric grip strength, in which individuals squeeze a grip

dynamometer with maximal effort for a short period of time,

followed by a relaxation phase of the contracted musculature (1).

The HGS presents several advantages, for example, high

predictive value, simplicity in use, ease of the measurement

procedure, portability, it is low cost (2) and presents a valid and

reliable assessment in both healthy people and people with diseases

(3). These characteristics appeal to healthcare professionals to

assess isometric strength in children, adolescents, and adults in

clinical and epidemiological settings (4). It is often used as a means

to predict an individual’s health throughout life (5, 6).

In general, the HGS is used as part of a battery of physical

fitness tests in schoolchildren related to health or sports

performance (7). In addition, this test is used in conjunction

with other tests (e.g., flexion and extension of arms on the floor,

suspension on a bar, abdominal muscular endurance, among

others) (8, 9). These tests together allow describing the level of

muscular fitness of schoolchildren in a more complete and

detailed manner. They offer valuable information for health

promotion and program design in physical education classes and

sports training.

It is widely known that muscle power and strength in children

and adolescents is related to age, sex, growth level, morphological

characteristics (10) and maturity status (11).

In fact, during the period of growth and development in

adolescents, there is a significant increase in muscle mass (12).

Therefore, monitoring biological maturation is important, as studies

in general, highlight that maturity status and absolute strength are

strongly associated. Since more mature children outperform less

mature children during dynamic and static strength assessments in

sporting (13–15) and non-sporting (16, 17) populations.

In general, growth curves play a significant role in

understanding and modeling the growth of children and

adolescents (18). Thus, during childhood and adolescence

physical development is characterized by nonlinear changes (19).

Which are influenced by complex biological processes such as

skeletal, hormonal and neuromuscular maturation (11).

In this context, HGS in pediatric populations is considered as a

functional indicator of health and physical performance. Thus, it

does not follow a constant growth pattern, but presents

accelerations and plateaus related to chronological age and

maturational status that reflect non-linear patterns (20).

Indeed, this information could better capture the actual

trajectories of HGS development. Recognizing that growth and

strength gain do not occur steadily, but in discrete stages and

especially during puberty.

For this reason, monitoring HGS in school children and

adolescents according to chronological age and maturity status is

fundamental to promote their health, physical development,

academic performance, sports, and for the prevention of health

problems and injuries (21–23).

In that sense, in recent years several studies have been

interested in the use of linear regression models to predict HGS

in children and adolescents by chronological age and maturity

status (4, 23–26). However, to our knowledge, there are no

studies that explicitly state that more complex models, such as

quadratic or cubic regressions, can provide more accurate

predictions of HGS adjusted for chronological age and maturity

status in adolescents.

Therefore, applying nonlinear modeling not only responds to a

statistical need, but also to a better biological understanding of

human development. This is essential to generate more accurate

estimates of HGS and to design intervention strategies adjusted

to the maturational profile of each child and adolescent.

In general, this research seeks to fill this gap in the scientific

literature. Since nonlinear models could show higher predictive

values in relation to the linear model between HGS with

chronological age and maturity status, in children and

adolescents in a region of moderate altitude in Peru.

It is proposed that the relationship between HGS with

chronological age and maturational status in children and

adolescents does not follow a constant linear pattern. Rather, it

presents a growth trajectory with accelerated changes and

decelerations throughout development. Therefore, it is

hypothesized that a nonlinear model, specifically a cubic model,

will be able to describe and predict this relationship with greater

accuracy and statistical fit than a traditional linear model.

Therefore, the aim of the study was to determine whether

nonlinear models, particularly the cubic model, offer better

predictive and explanatory ability for HGS in children and

adolescents. In comparison with linear models, considering

chronological age and maturational status as independent variables.

Materials and methods

Type of study and sample

A descriptive cross-sectional study (correlational) was designed

in schoolchildren aged 6–16 years in a region of moderate altitude

in Peru.

The sample selection was non-probabilistic (accidental). This

was due to the direct accessibility to the participating school

population during the data collection period. A total of 1,048

schoolchildren (562 males and 486 females) from the primary

(6–11 years) and secondary (12–16 years) levels of 03 public

schools in the city of Arequipa (Peru) were selected. This city is

located at 2,320 meters above sea level.

All parents and/or legal guardians of the schoolchildren

authorized the voluntary participation of the minors by signing

an informed consent form. In addition, each of the children and

adolescents received an assent, in which they accepted free and

voluntary participation in the study.

Schoolchildren who attended physical education classes and

those who completed the anthropometric tests and the HGS

evaluation were included in the study. Schoolchildren who did

not attend the day of the evaluation and those who were on

medical rest were excluded. The study was conducted in

accordance with the recommendations of the ethics committee of
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the Catholic University of Santa Maria (UCSM-096-2022) and the

Helsinki declaration for human subjects.

Techniques and procedures

Anthropometric evaluations and HGS of both hands were

carried out at the facilities of each school. The collection process

was in charge of 04 physical education teachers, both with

extensive experience in measurements and evaluation. A card

was elaborated to store the data to be collected. Student data

(date of birth, sex and year of study), age, weight, height, HGS of

both hands were considered. The data collection process was

carried out by sex, first the girls were evaluated, and then the

boys were evaluated during physical education classes.

Anthropometric measurements were evaluated following the

recommendations of Ross & Marfell-Jones (27). Body weight and

height were measured with as little clothing as possible (shorts, t-

shirt and no shoes). Weight (kg) was assessed with a a digital

scale of Seca GmbH & Co. KG, Germany, with an accuracy of

(100 g) and a scale of (0–150 kg). The scale was placed on a flat

and stable surface. Height (m) was evaluated using a Seca brand

aluminum stadiometer graduated in millimeters with a scale of

(0–2.50 m). The head was positioned according to Frankfort’s

plane (an imaginary line passing from the lower edge of the eye

orbit to the upper edge of the ear canal). Body Mass Index (kg/

m2) was calculated through the formula: [BMI =Weight(kg)/

Height(m)2].

Truncal height (sitting height) was measured using a wooden

bench with a height of 50 cm, with a measurement scale from 0–

150 cm, and with an accuracy of 1 mm.

The maturity status (MS) of children and adolescents was

assessed using the noninvasive anthropometric techniques

proposed by Moore et al. (28). This technique uses chronological

age and height. It predicts the years of maximum growth velocity

(APHV) using a regression equation for each sex. The equations

used to estimate the state of maturity in both sexes have a

percentage of explanation (R²) of 89% and a standard error of

estimation (SEE) of less than 0.52, which are highly valid and

reliable. The equations are:

Females: Maturity status (APHV) =−7.709133 + [0.0042232 ×

(age × height)].

R2 = 0:898 & SEE = 0:528

Males: Maturity status (APHV) =−7.999994 + [0.0036124 × (age ×

height)].

R2 = 0:896 & SEE = 0:542

This information allows children and adolescents to be classified

into different stages of somatic maturation, facilitating the

understanding of their physical development. For example, a

negative APHV value represents the time prior to this growth

peak. While a positive value indicates the time elapsed after

reaching it and the zero value is the time of the growth

velocity peak.

The HGS (right and left) was evaluated using a JAMAR brand

hydraulic dynamometer (Hydraulic Hand Dynamometer ® Model

PC-5030 J1, Fred Sammons, Inc., Burr Ridge, IL: USA). This

equipment has an accuracy of 0.1 kg and a scale up to 100 kg/f.

The protocol proposed by Richards et al. (29) was used to

measure this test. The volunteers were held in a sitting position

(seated in a straight-backed chair). One of the evaluators

constantly adjusted the dynamometer to the grip size of the

equipment according to age and sex. The volunteers performed

two attempts with each hand and had a rest between both

repetitions a 2 min interval as suggested by Gomez-Campos et al.

(6). Prior to the dynamometer measurements, a dress rehearsal

was performed with all children and adolescents. Each

participant performed a practice run with both hands to

familiarize him/her with the evaluation process (three maximum

attempts alternating with rest pauses).

Statistics

The normal distribution of the anthropometric data and the

HGS were verified by means of the Kolmogorov–Smirnov test.

Descriptive statistics were calculated: mean, standard deviation,

and range. Differences between both sexes and both age groups

were performed by t-test for independent samples.

Linear and nonlinear models (quadratic, cubic and quartic)

were applied. Where the best statistical fit according to the

adjusted coefficient of determination (adjusted R²), the standard

error of estimation (SEE) and the random distribution of the

residuals was the cubic polynomial model (third degree) for both

sexes, both for age and HGS and maturity status APHV and HGS:

HGS = a + b1(age) + b2(age)
2 + b3(age)

3, where: a is the inter-

section, b1, b2 and b3 are regression parameters, estimated

from the data.

APHV = a + b1(APHV) + b2(APHV)2 + b3(APHV)3, where: a is the

inter-section, b1, b2 and b3 are regression parameters, estimated

from the data.

Regression coefficients, adjusted R², as well as effect size (f²) were

also calculated for each model, following Cohen’s classification.

In addition, nested model comparisons were applied using F-tests

(F-test) for each combination of sex, hand tested and

predictor variable.

The quartic model was not adopted, as it did not significantly

improve the fit and presented risks of overfitting in our data.

The regression analysis was performed separately for each sex.

For all cases, p < 0.05 was adopted and calculations were performed

in Excel spreadsheets, SPSS 18.0 and MedCalc 11.1.0.

Results

The variables characterizing the schoolchildren studied are

shown in Table 1. Males presented greater body weight in

relation to females at 15 and 16 years of age and in height from

14–16 years of age (p < 0.05). Females showed a more advanced

maturity stage in relation to males, reaching APHV at 12 years

of age and in males around 14 years of age. Differences in
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maturity status between both sexes begin to appear from 10 years

onwards (p < 0.05). In the HGS of both hands, males showed

greater strength than their female counterparts. These differences

are significant from 14–16 years of age (p < 0.05). There were no

significant differences in BMI between both sexes and at all ages

(p > 0.05).

Table 2 shows the coefficients of determination (R²), effect size

(Cohen’s f²), F values, SEE and estimated parameters for the linear

and cubic models, according to sex, predictor variable

[Chronological age and maturity stage (APHV)] and right and

left hand.

In all cases, the cubic models presented a higher R² (in males,

>2%–3% and in females higher >1%–4%), a higher effect size (f²)

than the linear model (in all cases, the effect size is large >0.35).

Even in the cubic model, lower values of SEE were observed than

in the classic linear model.

Table 2 also shows the nested model comparison analysis

(F-test) to determine the statistical significance of the

improvement of the cubic model over the classical linear model

(by chronological age, and by APHV maturity stage). In all cases,

the inclusion of additional polynomial terms (Age² and Age³,

and APHV2 and APHV3) significantly increased the variance

explained and reduced the residual error. For males, F(2,

536) = 38.29 (p < 0.001) was obtained for chronological age for

both hands and F(2, 536) = 38.40 (p < 0.001) for APHV maturity

status. For females, F(2, 450) = 21.09 (p < 0.001) for chronological

age and for both hands and F(2, 450) = 20.0 (p < 0.001) for

APHV for both hands. These results confirm that the

improvement in the cubic model fit is statistically significant and

not due to chance.

In summary, the cubic model demonstrated a superior fit

compared to the traditional linear model, offering greater

accuracy and predictive capability. This is clearly illustrated in

Figures 1, 2.

Discussion

The results of this study have shown that the relationship

between HGS with chronological age and maturity status

(APHV) in children and adolescents does not follow a strictly

linear pattern. In fact, after data analysis, the cubic model

presented a higher coefficient of determination (R²), large effect

sizes (Cohen’s f²) and a lower SEE compared to the classical

linear model.

In addition, after the application of the F tests for nested

comparisons, they allowed us to confirm that there was a better

fit in the cubic polynomial models. They were also significant in

both hands and sexes (p < 0.001), both for chronological age and

APHV maturity status.

Overall, these findings support that the evolution of HGS in

child and adolescent population follows nonlinear patterns linked

TABLE 1 Anthropometric and HGS indicators of the schoolchildren studied.

Age (years) n Weight (kg) Height (cm) BMI (kg/m2) MS (APHV) HGS-R (kg) HGS-L (kg)

X SD X SD X SD X SD X SD X SD

Males

6 36 24.2 5.0 118.2 6.5 17.2 2.0 −5.2 0.2 15.5 3.7 15.8 4.2

7 38 28.2 6.4 123.2 6.7 18.4 2.8 −4.7 0.2 18.6 5.1 19.2 5.6

8 35 29.6 5.6 128.5 5.2 17.8 2.3 −4 0.2 19.3 4.7 20.9 5.3

9 52 35.6 8.6 132.6 8.6 20.0 3.3 −3.4 0.4 23.6 5.7 23.1 5.0

10 72 39.4 9.0 137.3 7.0 20.8 4.1 −2.8 0.3 25.0 6.0 25.3 6.8

11 62 49 9.1 148.6 9.1 21.9 3.8 −1.8 0.4 25.1 9.4 25.8 7.9

12 68 47.5 9.9 152.6 7.9 20.3 3.4 −1.1 0.4 29.1 9.4 29.5 8.3

13 47 53.3 8.9 160.4 7.4 20.6 3.5 −0.2 0.4 42.2 9.7 40.5 9.0

14 50 55.4 8.7 164.1 6.9 20.5 2.5 0.6 0.4 45.3 7.7 45.5 7.2

15 47 61 9.7 165.8 5.1 22.2 3.3 1.3 0.3 42.4 10.2 41.7 8.4

16 55 59.4 6.8 167.7 6.1 21.1 2.1 2 0.4 42.6 9.8 41.3 9.3

Females

6 25 23.4 3.6 119.5 4.8 16.4 2.1 −4.4 0.2 14.7 2.8 16.0 4.6

7 42 26.3 5.4 123.2 6 17.2 2.4 −3.8 0.3 17.4 4.8 18.0 5.5

8 41 30.1 7.3 127.5 6.9 18.3 3.0 −3.1 0.4 20.1 6.6 20.2 6.3

9 70 33.8 8.6 132.7 7.2 19 3.5 −2.4 0.4 23.0 4.6 22.9 5.4

10 64 40.9 8.9 140.1 8.6 20.7 4.3 −1.5 0.5 24.3 7.1 24.8 7.6

11 47 45.8 8.1 147.4 6.9 20.1 3.1 −0.6 0.4 24.5 6.7 25.0 7.0

12 54 47.5 8.0 151.9 5.5 20.5 3.0 0.3 0.3 28.3 9.3 28.7 9.2

13 34 52 8.6 153.1 5.6 22.1 2.8 1.0 0.4 35.3 7.2 35.6 6.9

14 38 54.4 6.1 154.8* 4.3 22.7 2.1 1.7 0.3 37.8* 7.5 38.1* 7.6

15 38 55.7* 9.0 155.7* 5.1 22.9 3.2 2.6 0.4 34.5* 6.3 34.3* 5.7

16 33 56.1* 9.2 155.3* 5.0 23.3 5.8 3.1 0.4 35.2* 6.8 35.4* 5.9

Legend: X, mean; SD, standard deviation; BMI, body mass index; MS, maturity status; APHV, peak years of growth velocity; HGS-R, right hand grip strength; HGS-L, left hand grip strength.

*Significant difference in relation to males (p < 0.05).
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to the biological changes of physical growth and pubertal

maturation. This is in agreement with what has been proposed

by some studies, where the trajectory of growth and somatic

maturation present nonlinear dynamics (18, 19). This confirms

the hypothesis put forward in our study.

Indeed, the physical growth curve plays an important role in

understanding growth trajectories over time and in examining

the mathematical relationship between the outcome variable and

time (18). Therefore, the nonlinear (cubic) model allows to

evidence these inflection points (30), reflecting more clearly and

realistically the complexity of the relationship between age and

maturity with the evolution of HGS. Whereas the classical linear

model only assumes a continuous and uniform relationship

between the predictor and criterion variable. Therefore, it does

not allow the identification of possible break points or abrupt

changes in the slope of the relationship.

In sum, the results of this study showed that the behavior of

HGS in children and adolescents does not follow a linear pattern,

unlike what has been reported by some previous studies (4, 17,

26). This suggests that the evolution of HGS responds to growth

and maturation processes that do not conform to linear

trajectories, but also present more complex changes that require

the analysis of specific nonlinear models to adequately describe

this pattern.

In this sense, the behavior observed in schoolchildren of both

sexes, both by chronological age and by maturity status aligned

with HGS, allows us to highlight these complex changes. For

example, in males at early ages (6–8 years) and/or prepuberty

(−5APHV and −4PHV), HGS remains relatively stable, followed

by a slow increase from age 9–13 years and/or (−3APHV to

0APHV). Subsequently, at age 14 years and/or (+1PHV) there is

a rapid increase in HGS until about age 17 years. In females at

early ages (6–8 years) and/or prepubertal (−5APHV and

−4PHV), HGS remains relatively stable as in males. However,

after 9–14 years and/or (−3APHV to +1PHV), HGS increases

rapidly until reaching a plateau at 15, 16, and 17 years and/or

(+2APHV, +3APHV, and +4APHV).

Consequently, the greatest increase in HGS in both hands is

evidenced precisely at the OAPHV level for both sexes (at

approximately 12 years in females and 14 years in males). The

use of the cubic model made it possible to reflect the natural

variability of HGS, offering a tighter representation of the

fluctuations linked to age and maturation status. This is

corroborated in the literature (11, 31).

On the other hand, it was also observed that models that

include maturity status (APHV) as a predictor variable explain a

greater proportion of the variance of HGS compared to

chronological age. This reinforces the importance of considering

biological indicators of maturity in the assessment of physical

development of children and adolescents in general.

These findings allow highlighting that maturity status values

determined by APHV reflect higher values of explanation, lower

values of SEE and large effect sizes relative to chronological age

in both sexes. This also demonstrates that HGS analysis should

be analyzed not only by chronological age, but also by maturity

status, as highlighted in the literature (11).T
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These results suggest that the application of cubic models

allows to better capture fluctuations in HGS. Especially when

associated with changes in maturity status. This could improve

accuracy in the assessment of physical development in

adolescent schoolchildren.

Therefore, the assessment and monitoring of maturity status

can provide valuable information to practitioners and researchers

in this area to better evaluate and compare youngsters of similar

chronological age during a period in which biological age can

vary by up to approximately five years (11, 32). In that sense,

morphological and body composition changes during the growth

and maturation period are determinant for strength development

and, consequently, for performance in motor tasks such as

running, jumping, and throwing (33).

Consequently, controlling for interindividual differences is

important when monitoring maturity status in youth sport, for

talent development, and for categorizing physical activity levels

in schoolchildren (34). As well as for designing conditioning and

training programs for young athletes and schoolchildren (35, 36).

Therefore, taking into account maturity status control along

with chronological age is essential for effective assessment and

planning of physical development in school-aged children and

FIGURE 1

Linear and non-linear (cubic) relationship between chronological age and HGS of both hands and in both sexes.
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especially HGS. This not only improves the accuracy of assessment,

but also contributes to the design of training programs that

optimize performance and minimize the risk of injury in school-

aged children and adolescents.

The information provided in this study can serve as a reference

for health and physical education professionals, facilitating the

interpretation of HGS patterns in growing and maturing

schoolchildren. Likewise, the findings of the study may be useful

in screening programs, design of interventions adapted by

biological maturity and promotion of physical activity based on

individual development.

The study has some limitations that should be acknowledged.

For example, it was not possible to evaluate other physical tests

of muscle strength such as horizontal jump, arm strength

(medicine ball throwing, among others). In addition, it is

necessary to control for fat-free mass in future studies. Since this

information could clarify the relationship between body

composition and performance in physical fitness tests in the

schoolchildren studied. In addition, the study design was cross-

sectional and the sample selection non-probabilistic. This limits

the ability to establish causal relationships and the generalization

of the results to other sociocultural contexts.

FIGURE 2

Linear and non-linear (cubic) relationship between maturity status and HGS of both hands and in both sexes.
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It also has some strengths, for example, it is one of the first

studies conducted in Peru at moderate altitude. This can serve as

a baseline for future comparisons and monitoring of secular

trends. The study contributes to the scientific evidence with

updated data for a specific population (moderate altitude Peru),

where the available information is scarce and limited, thus

contributing to fill an important gap in the literature. The use of

nonlinear models made it possible to capture complex patterns

of development that would not be evident with traditional

approaches. Thus, the nonlinear approach constitutes a

methodological novelty that allows a more accurate description

of physical changes during growth and biological maturation.

As future guidelines, it is suggested that studies in general use

or apply longitudinal designs to confirm these findings. In addition,

they should include nonlinear models in their analyses to more

accurately describe the evolution of HGS and other physical tests

related to muscle strength in pediatric populations and especially

in other social, cultural, and geographic contexts.

Conclusions

The results of this study show that the cubic model provides a

better fit and a more accurate explanation of the relationship

between chronological age, maturity status and hand grip strength

(HGS) compared to the linear model. An initial phase of

acceleration in HGS growth is observed, followed by a stabilization

stage and, in some cases, a further acceleration in later stages.

Males experience a more pronounced increase during late

maturation, whereas in females the growth is more progressive. In

addition, it was found that fluctuations in HGS are more accurately

described when maturity status is considered rather than

chronological age. This highlights the relevance of incorporating

biological indicators in the assessment of muscle development.

These findings suggest including nonlinear models and controlling

for maturity status. This facilitates the design of interventions

according to the different stages of maturational development.
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