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Pediatric sepsis is a serious condition causing organ failure owing to immune

dysregulation, linked to high morbidity and mortality, highlighting the need for

quick detection and treatment. This study aims to identify key genes involved in

pediatric sepsis using three gene expression datasets from the Gene Expression

Omnibus. We first identified differentially expressed genes (DEGs) with R, then

conducted a gene set enrichment analysis, and integrated DEGs with important

module genes from weighted gene coexpression network analysis. We also

screened adult sepsis datasets to find genes specific to pediatric cases,

ultimately validating XCL1 as a key gene. This study suggests that XCL1 is crucial

in understanding pediatric sepsis etiology and its molecular mechanisms.
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1 Introduction

Sepsis is a life-threatening condition affecting all ages, marked by abnormal immune

responses and organ dysfunction, posing a significant public health challenge (1). Globally,

pediatric sepsis occurs in 22 cases per 100,000 person-years, and neonatal sepsis at 2,202 cases

per 100,000 live births, totaling around 1.2 million cases annually (2, 3). The pediatric sepsis

mortality rate is 25%, mainly due to refractory shock or organ dysfunction, with many deaths

occurring within the first 48–72 h (4). Timely detection, appropriate resuscitation, and

meticulous care are essential for optimizing the prognosis of children with sepsis (5).

Historically, sepsis was believed to primarily result from sustained inflammatory

response to infection. However, clinical research aimed at treating sepsis by targeting

key inflammatory molecules, either selectively or non-selectively, has not achieved

significant progress (6). Most research revealed that sepsis development involves not

only a prolonged and intense inflammatory response but also immunosuppression (7).

This process involves a complex molecular network formed by interactions among

cytokines, chemokines, and neuroendocrine factors.

In recent years, advanced analytical methods that leverage biological networks have

emerged to extract key information from a broad range of histological data and to uncover

the interactions present within this information (8). The main types are gene regulation,

protein interactions, and coexpression networks. Weighted gene coexpression network

analysis (WGCNA) helps reveal connections between gene clusters with similar expression in

transcriptomic data and disease phenotypes, aiding in identifying molecular markers or

therapeutic targets in complex diseases (9).
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This study established a WGCNA network utilizing data from

the Gene Expression Omnibus (GEO), encompassing peripheral

whole blood samples from children with sepsis and healthy

controls. Through the application of coexpression networks and

diverse bioinformatics methodologies, this research elucidated

modules and hub genes correlated with the prognosis of pediatric

sepsis, with the objective of identifying potential biomarkers

closely associated with clinical outcomes.

2 Materials and methods

2.1 Data sources and gene expression
profiles

We searched the GEO database for high-throughput functional

genomics studies on pediatric sepsis, finding relevant microarray

datasets from children with sepsis and healthy controls, including

GSE26378, GSE26440, GSE13904, and GSE131761 (10–13). The

limma package was used for statistical analysis, error detection,

data cleaning, and organization, improving data management.

The robust multi-array average (RMA) method normalized data,

and limma identified DEGs with p < 0.05 and log2 fold-change ≥1.

GSE26378, GSE26440, and GSE13904 are pediatric sepsis

datasets, while GSE131761 is for adults. An analysis of four gene

expression datasets was conducted, with clinical details given in

Supplementary Table S1. The analysis included GSE26378,

GSE26440, and GSE13904, excluding GSE131761, to identify

sepsis-related genes in children (10–13).

2.2 WGCNA analysis and module
identification

The WGCNA method improves gene set expression analysis

using the WGCNA R package for constructing gene networks.

Cluster analysis identifies outliers, while an automated system

creates coexpression networks. Modules undergo functional

assessment via hierarchical clustering and dynamic tree cutting,

with Module Membership (MM) and Gene Significance (GS)

evaluated for clinical associations. Central modules have high

MM correlation and a p-value of 0.05, with MM over 0.80 and

GS above 0.1 indicating strong connectivity and significance.

Gene information for these modules supports further research.

Genes within the clinically significant gene module network

with a GS value exceeding 0.2 and an MM value greater than

0.80 are classified as hub genes. Genes identified as overlapping

are chosen as candidates for pivotal roles. The Venn R package is

employed to produce significant gene diagrams.

2.3 Supplementary method

Supplementary data provide the details on the methods for

identifying DEGs, conducting functional enrichment analysis,

and performing GeneMANIA analysis (14).

3 Results

3.1 Identification of DEGs in these datasets

Figure 1A identified differentially expressed genes (DEGs) in

the GSE26378, GSE26440, and GSE13904 datasets using p < 0.05

and |log2 (fold-change)| > 1, revealing their roles in immune

responses, especially neutrophil activation and cytokine

production (Supplementary Figures S1–S3). By analyzing the

overlapping regions of DEGs through a Venn diagram, we

identified 357 common gene regions (Figure 1B). Subsequently,

GO and KEGG analyses were conducted on these overlapping

genes. The findings demonstrated that these genes were

primarily enriched in the biological processes associated with

T-cell differentiation and PD-L1 expression (Figure 1C,

Supplementary Figure S4).

3.2 Identification of coexpression gene
modules in pediatrics sepsis

We used weighted WGCNA to find coexpression gene modules

in the pediatric sepsis dataset GSE26378, selecting a soft-threshold

power of β = 16 for a scale-free network with a scale independence

value of above 0.85 (Figures 2A,B). Samples from the GSE26378

dataset was classified into the pediatric sepsis group and the

control group, with no outliers detected (Figure 2C). Hierarchical

clustering and dynamic branch cutting techniques were employed

on the gene dendrogram, leading to the identification of 17

modules (Figures 2D,E). The heatmap displays the topological

overlap matrix (TOM) of the analyzed genes. The analysis

demonstrated a high degree of independence among the modules

associated with gene expression (Figure 2E). The brown module

(indicative of positive correlation) and coral2 module (indicative

of negative correlation) were significantly correlated with

pediatric sepsis and selected for further examination (Figure 2F).

In terms of module membership, these two modules encompass

35 genes significantly linked to pediatric sepsis.

At the same time, we used the same method to analyze the hub

modules and genes of two other GSE datasets (GSE26440 and

GSE13904). As shown in Supplementary Figures S5, S6, in the

GSE26440 dataset, hub modules lightpink4 and darkorange2

contained a total of 345 genes, while in the GSE13904 dataset,

hub modules antiquewhite4 and palevioletred3 contained a total

of 287 genes. Further, based on the 357 DEGs obtained

previously, the hub genes came from the three datasets, and a

Venn analysis revealed 16 intersected genes, including CD160,

XCL1, and CLIC3 (Figure 2G).

3.3 Identification of pediatric sepsis–related
hub genes

Furthermore, to examine the specificity of these 16 genes in

pediatric sepsis, we also used another adult sepsis dataset
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(GSE131761), whose patient clinical information was also

presented in Supplementary Table S1. In the GSE131761 dataset,

559 genes were upregulated and 628 were downregulated in adult

sepsis (Supplementary Figure S7).

After an intersection analysis of the 1,187 DEGs and 16 hub

genes of pediatric sepsis, ultimately, 5 specific hub genes of

pediatric sepsis were found, namely XCL1, CD160, KLRC3,

TGFBR3, and PYHIN1 (Figure 2H). In addition, another adult

sepsis dataset (GSE46955) was also used to analyze the hub genes.

The difference analysis of the five core genes showed that only

XCL1 and CD160 had no significant difference in adult sepsis and

healthy people, so XCL1 and CD160 were candidates for the hub

genes in pediatric sepsis (Supplementary Figure S8). Finally, a

GeneMANIA analysis revealed that XCL1 had the most

interaction among the five genes involved in a variety of cell signal

transduction, including cytokine receptor binding, leukocyte

migration, cytokine activity, and cellular chemotaxis (Figure 2I).

4 Discussion

Sepsis is a dysregulated response to infections and is common

in children with various illnesses. Pediatric sepsis has a better

prognosis than in adults, but risks remain (15). Children undergo

rapid growth and immune changes from birth to adolescence,

affecting their responses to respiratory infections (16). Treatment

guidelines for sepsis underscore the necessity for the prompt

administration of antibiotics in children exhibiting a high

suspicion of sepsis, to enhance prognosis (17). Identifying

diagnostic markers and immune cell patterns in pediatric sepsis

is crucial for optimizing prognosis and understanding its

immune impact. This endeavor will deepen our comprehension

of the impact of pediatric sepsis on the immune system.

WGCNA identifies genes with similar expression profiles and

organizes them into modules, suggesting interconnected

functions and shared signaling pathways (18). WGCNA improves

coexpression analysis by removing strict thresholds, preserving

key biological information (19).

We used blood gene expression data linked to pediatric sepsis

to create a coexpression network, identifying modules associated

with sepsis and highlighting the gene XCL1, which was

significantly elevated in affected children. This discovery not only

offers new insights into the pathogenesis of pediatric sepsis but

also establishes a foundation for future investigations into related

diagnostic and therapeutic strategies.

XCL1 is produced by T, NK, and NKT cells during infections and

inflammation, playing a key role in these processes and linked to

diseases such as infections, autoimmune disorders, and tumors

(20). Some research studies show XCL1 expression increases in

various infections, notably in activated CD8+ T cells during chronic

tuberculosis in mice, indicating a link to pathogenesis (21, 22). In a

model of experimental pneumococcal meningitis, XCL1 and other

cytokines have been detected during the acute phase of infection

(23). Furthermore, XCL1 expression is similarly elevated in mice

with chronic infections such as cytomegalovirus and herpes simplex

virus (24, 25). In autoimmune diseases, XCL1 expression is also

heightened. It can be identified in the synovial tissue of patients

with rheumatoid arthritis, with elevated levels observed in tissue

samples from sarcoidosis and Crohn’s disease (26–28). The

increased expression of XCL1 is crucial to the development and

FIGURE 1

Identification of DEGs in three datasets: (A) volcano and heatmaps of differential genes in three GEO datasets, (B) a Venn diagram of the DEGs, and (C)

KEGG analysis of the DEGs.
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pathogenesis of inflammatory neurological diseases, including

multiple sclerosis and HTLV-1-associated myelopathy (HAM) (25).

These findings underscore the significant role of XCL1 in a range of

infections and autoimmune diseases.

The methodology of the study involved an independent analysis of

three data sets, highlighting the need to address batch effects when

integrating multiple datasets to avoid biased results. Integration can

be achieved using methods like ComBat or Harmony, with changes

in batch effects visualized through principal component analysis

(PCA) or t-distributed stochastic neighbor embedding (t-SNE).

Conclusions are drawn from data integration without batch

correction, indicating potential technical variations. Future research

should validate key findings through independent cohorts or

sensitivity analysis.

Our research findings suggested that XCL1 was the hub gene in

pediatric sepsis. This study is not without limitations, as the

conclusions remain invalidated through animal models or clinical

samples. In addition, the conclusions of this study are based on a

retrospective public data set analysis, which has not been

validated in an independent cohort, especially in prospective

children with sepsis, and may be limited by the heterogeneity of

the original data (e.g., treatment regimens, ethnic differences)

and technical bias (e.g., interplatform batch effects). We hope to

obtain a multicenter pediatric SEPSIS cohort through

international cooperation (such as the European Sepsis database

and American PHIS database). Subsequent validation

experiments should cover different age stages (neonates/children),

pathogen types (bacteria/viruses), and sepsis phenotypes (shock/

non-shock) to assess the broad applicability of markers.

In the future, wewill undertake systematic investigations, including

the assessment of XCL1 expression levels in childrenwith sepsis and the

correlation with clinical characteristics (e.g., disease severity), thereby

exploring the function of XCL1 in pediatric sepsis. By employing in

vitro cell models and small animal models, we will comprehensively

explore the biological roles of XCL1 in pediatric sepsis, analyzing

how XCL1 modulates the immune response and pathological

progression of sepsis through the activation and chemotaxis of

immune cells, including T cells, NK cells, and macrophages.

5 Conclusions

The pathogenesis of sepsis is intricate and not yet completely

elucidated; however, it is marked by a sustained, excessive

FIGURE 2

A WGCNA analysis of the pediatric sepsis and health conditions in the GSE26378 dataset: (A,B) an analysis of network topology for various soft

thresholds (β), (C) a clustering dendrogram of all samples, (D) the gene dendrograms obtained by average linkage hierarchical clustering, (E) a

heatmap depicts a TOM of genes selected for weighted coexpression network analysis, (F) module–trait relationships, (G) a Venn diagram of key

module genes vs. DEGs, (H) a Venn diagram of the DEGs from GSE131761 and the 16 hub genes, and (I) GeneMANIA was used to analyze the

function and correlation of hub 5 genes of pediatric sepsis.
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inflammatory response and a disturbance in intraorganismal

homeostasis that is difficult to restore. To identify molecular

targets reflective of pediatric sepsis pathology, it is crucial to

reevaluate our research methodologies and promote interdisciplinary

collaboration, particularly between medicine and fields such as

computer science, to advance innovation in the diagnosis and

prevention of pediatric sepsis.
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